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Abstract—

Small I/O requests are important for a large number of
modern workloads in the data center. Traditionally, storage
systems have been able to achieve low I/O rates for small I/O
operations because of hard disk drive (HDD) limitations that are
capable of about 100-150 IOPS (I/O operations per second) per
spindle. Therefore, the host CPU processing capacity and network
link throughput have been relatively abundant for providing these
low rates. With new storage device technologies, such as NAND
Flash Solid State Drives (SSDs) and non-volatile memory (NVM),
it is becoming common to design storage systems that are able to
support millions of small IOPS. At these rates, however, both
server CPU and network protocol are emerging as the main
bottlenecks for achieving large rates for small I/O requests.

Most storage systems in datacenters deliver I/O operations
over some network protocol. Although there has been extensive
work in low-latency and high-throughput networks, such as
Infiniband, Ethernet has dominated the datacenter. In this work
we examine how networked storage protocols over raw Ethernet
can achieve low, host CPU overhead and increase network link
efficiency for small I/O requests. We first analyze in detail the
latency and overhead of a networked storage protocol directly
over Ethernet and we point out the main inefficiencies. Then,
we examine how storage protocols can take advantage of context
switch elimination and adaptive batching to reduce CPU and
network overhead.

Our results show that raw Ethernet is appropriate for
supporting fast storage systems. For 4kB requests we reduce
server CPU overhead by up to 45%, we improve link utilization
by up to 56%, achieving more than 88% of the theoretical
link throughput. Effectively, our techniques serve 56% more I/O
operations over a 10Gbits/s link than a baseline protocol that
does not include our optimizations at the same CPU utilization.
Overall, to the best of our knowledge, this is the first work to
present a system that is able to achieve 14µs host CPU overhead
on both initiator and target for small networked I/Os over raw
Ethernet without hardware support. In addition, our approach
is able to achieve 287K 4kB IOPS out of the 315K IOPS that are
theoretically possible over a 1.2GBytes/s link.
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2Also with the Department of Computer Science, University of Crete,
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I. INTRODUCTION

Traditionally, small and typically random I/O requests have
been bound by the latency of storage devices, especially
magnetic hard disk drives (HDDs). Therefore, techniques for
improving throughput have mostly focused on large requests,
for which HDDs can achieve high throughput. Given that
HDDs dominate all I/O overheads, the server I/O path has
not been optimized for small I/Os.

However, small I/O requests are important for a large
number of modern workloads in data centers. Although large
files account for a large fraction of space, most files are 4kB or
smaller [1]. In addition, metadata requests are typically small
in size (4kB and 8kB), they follow a random access pattern
for both reads and writes, and they account for about 50% of
the I/O operations performed [2]. In some occasions, metadata
occupy similar space as regular files in modern file systems and
account for most I/O traffic.

Today, solid state drives (SSDs) and emerging persistent
memory technologies exhibit performance characteristics sim-
ilar to DRAM [3]. These technologies shift the bottleneck from
the devices to the rest of the I/O path. For the first time,
it now becomes possible to achieve high I/O operation rates
with few storage devices, commodity servers, and commodity
interconnects.

Applications today predominately use some form of net-
worked storage, therefore, the network path is an essential
component of the I/O path. Although there has been extensive
work in low-latency and high-throughput networks, such as
Infiniband, Ethernet has dominated the datacenter, and it is also
presently dominant in networked storage compared to other
networking technologies.

In our previous work, Tyche [4], we examine the design
of network storage protocols over raw Ethernet to achieve
high throughput without hardware support. Tyche employs
numerous techniques to improve throughput and reduce over-
heads: copy-reduction, storage-specific packet processing, pre-
allocation of memory, NUMA (Non-Uniform Memory Ac-
cess) affinity management, and RDMA (remote direct memory
access)-like operations. However, Tyche still exhibits high host
CPU overhead and low network link utilization for small I/Os.
This behavior is shown in Figure 1 that depicts the theoretical
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Fig. 1. Link utilization achieved by Tyche and NBD depending on the number
of outstanding I/O requests, with FIO, direct I/O and random reads.

link utilization achieved by Tyche when the micro-benchmark
FIO (Flexible I/O) [5] is run with direct I/O, random reads,
and several request sizes. Section III describes the testbed we
use in more detail. For a baseline comparison, Figure 1 also
includes the link utilization achieved by NBD (Network Block
Device). Tyche provides up to 5x the link utilization of NBD.
However, Tyche is able to achieve only up to 56% of link
utilization for 4kB requests, whereas, for 8kB requests link
efficiency is 90%.

In general, in today’s systems, small I/Os incur high server
CPU utilization and low network link utilization, therefore
reducing the effective rate of I/O operations per second (IOPS).
As network link speed increases and storage device latency
drops, the host I/O stack emerges as the main bottleneck in the
I/O path. The overheads introduced by the host I/O stack for
small I/Os can eliminate any potential benefits from improved
network speed and storage device latency.

In this paper, we analyze in detail the host CPU overheads
in the networked I/O path for small requests. We find out that
there are two fundamental limitations to achieve high IOPS
for small requests: Context switches impose significant CPU
overhead whereas network packet processing dominates over
link throughput.

Context switches cost on average 4µs. Considering only
the context switches along the common path of our baseline
protocol, they represent 27.5% of the total CPU overhead for
serving a 4kB request. Host overhead costs 65% of the total
CPU overhead for serving a 4kB request. Considering only
the processing done by Tyche, it costs 20% with no context
switches and 47% by taking into account the context switches
done during its path.

We design a protocol that reduces context switches for
small I/Os. This design is particularly effective for low degrees
of I/O concurrency and reduces host CPU overhead by 30.8%
per 4kB-I/O request, about equally divided between the client
(initiator) and server (target), and by up to 61% if we take into
account only the Tyche send/receive path, excluding processing
done by layer above Tyche.

We also incorporate a batching technique to achieve high
link utilization under high degrees of I/O concurrency. Batch-
ing has been used extensively in both networking and storage
systems. The novelty of our contribution is a dynamic tech-
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Fig. 2. Overview of the send and receive path from the initiator (client) to
the target (server).

nique that varies the degree of batching to match the load
at a fine grain, without a negative impact on I/O overhead
and response time. We dynamically determine the number
of requests to include in a batch message by analyzing the
throughput obtained. Results show that our batching technique
can improve link utilization by up to 56.9% and 53% for
reads and writes, respectively, when comparing with the link
utilization obtained without batching.

Overall, to the best of our knowledge, this is the first work
to present a system that is able to achieve 14µs host CPU
overhead on both initiator and target for small networked I/Os
over raw Ethernet without hardware support (including both
initiator and target CPU cycles) and to reach 88% of the
theoretical link utilization at high concurrency. In addition,
Tyche is able to achieve 287,695 4kB IOPS over a single 10
GigE link, again with no hardware support.

This paper is organized as follows. Section II presents
an overview of Tyche. Section III describes our experimental
environment. Section IV analyzes in detail the overheads of
Tyche. Section V and VI propose and evaluate our techniques
to reduce overheads. Section VII discusses related work and
Section VIII draws our conclusions.

II. BACKGROUND OVERVIEW

Tyche [4] is a network storage protocol on top of raw
Ethernet that achieves high I/O throughput without hardware
support (Figure 2). Tyche presents the remote storage device
locally by creating at the initiator a virtual local device, that
can be used as a regular device. Tyche is independent of the
storage device, and supports any existing file system.

Tyche uses RDMA-like operations, reliable delivery, fram-
ing, and transparent bundling of multiple NICs. It is an end-to-
end protocol that does not require any hardware support. Tyche
uses a copy reduction technique based on virtual memory
page remapping to reduce processing cost for data packets.
The target avoids all copies for writes by interchanging pages
between the NIC receive ring and Tyche. The initiator requires
a single copy for reads due to OS-kernel semantics for buffer
allocation. We would like to remark that Tyche does not
use RDMA in Ethernet, instead our protocol uses a similar,
memory-oriented abstraction that allows us to perform RDMA-
like operations.



Tyche uses small request messages for requests and com-
pletions, and data messages for data pages. A request message
corresponds to a request packet that is sent using a small
Ethernet frame. A data message corresponds to several data
packets that are sent using Jumbo Ethernet frames of 4 or
8kB.

Tyche has two pre-allocated buffers, one for each kind of
message, for sending and receiving messages. The initiator
handles both buffers by specifying in the message header its
position, and, on its reception, a message is directly placed on
its buffer’s position. At the target, the buffer for data messages
contains lists of pre-allocated pages for sending and receiving
data messages and issuing I/O requests to the local device. The
initiator has no pre-allocated pages, it uses the pages of the
user I/O requests.

The initiator send path can operate in two modes. In
the “inline” mode (Figure 2), the application context issues
requests to the target with no context switch. In the “queue”
mode, requests are inserted in a queue at the block level, and a
thread dequeues them and issues them to the target. There is no
other difference between them. The inline mode outperforms
the queue mode for reads and for writes of small size; the
queue mode may outperform the inline mode when there are
many outstanding writes of large size.

The target uses a work queue for sending completions
back to the initiator, because local I/O completions run in
an interrupt context that cannot block. So, the local I/O
completion schedules a work queue task to send the required
network responses.

In each node, the receive path uses a network thread per
NIC to process packets and messages. A block layer thread
(per connection) processes messages and issues local I/O
requests (in the target) or completes requests (in the initiator).

Figure 3 depicts the end-to-end I/O path of a request
message through the different layers, buffers, and rings. To
simplify the figure, we only include a single message buffer.
Arrows correspond to the flow of an I/O operation in the I/O
path.

III. EXPERIMENTAL ENVIRONMENT

Our experimental platform consists of two systems (ini-
tiator and target) connected back-to-back. Both nodes have
two, quad core, Intel(R) Xeon(R) E5520 CPUs running at
2.7GHz. The operating system is the 64-bit version of CentOS
6.3 testing with Linux kernel version 2.6.32. Each node uses
a Myricom 10G-PCIE-8A-C card that is capable of about
10Gbits/s throughput in each direction. The target node is
equipped with 48GB DDR-III DRAM, and the initiator with
12GB. The target uses 12GB as RAM, and 36GB as ramdisk.
The ramdisk provides throughput and latency of DRAM and
the storage device is not anymore the slowest part of our
network-storage system. The NIC device is configured for not
delaying the delivery of interrupts. For the evaluation, we use
the micro-benchmark FIO (Flexible I/O) [5] that allows us to
generate several workloads.

IV. END-TO-END OVERHEAD ANALYSIS

This section analyzes the cost of the I/O path for a request.
Figure 3 marks with arrows and labels the parts of the I/O
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Fig. 3. End-to-end I/O path showing the components we measure, and the
associated context switches that are marked with a green circle. Labels A, B,
C, etc. just help us describe the computed values.

path that we measure. Table I summarizes the individual and
cumulative overheads of Figure 3. To study the overhead of our
protocol, we have modified the Tyche version implemented in
Linux kernel 2.6.32 [4] by including the overhead computation.

Table II presents overheads, in µs, and throughput, in
MB/s, obtained by Tyche, for reads and writes of 4kB, 8kB,
64kB, and 128kB. We use FIO with direct I/O, random
requests, and 60s of runtime. The storage device is accessed
in a raw manner (no file system). There is a single application
thread issuing I/O requests, and a single outstanding request.
We apply NUMA affinity by allocating memory and pinning all
threads in the same NUMA node where the NIC is connected.
In addition, as a baseline comparison between Tyche and NBD,
Table III provides the total overhead, in µs, obtained by both
protocols, for read and write requests, of 4kB, 8kB, 64kB and
128kB, when running the same experiment.

Table III shows that Tyche already reduces by more than 2x
the total overhead achieved by NBD. However, the overhead
introduced by Tyche for small requests is still large and the
main bottleneck when using fast storage devices.

We note that message processing is the most important
source of per-I/O request overhead, being up to 65% of the
total overhead. Considering only Tyche overheads (Ty-IS, Ty-
TR, Ty-TS, Ty-IR, CS-WQ, CS-Rec, and CS-IRQ), for a 4kB
request, they represents 47%, taking into account the context
switches done along the I/O path, and 20% without these
context switches (without CS-WQ, CS-Rec, and CS-IRQ).
Similar percentages are true for other request sizes.

The send and receive paths are more expensive when data
is involved, since a request packet and several data packets are
sent or received. Receiving data is more expensive for reads
than for writes, since, reads copy data pages from the NIC
driver to the I/O request, whereas writes interchange pages [4].



TABLE I. COMPONENTS MEASURED DURING THE END-TO-END I/O PATH OF TYCHE (SEE FIGURE 3 FOR A DETAILED GRAPH).

Name Path Description

Total A - B - E - B - A Overhead, reported by the application, of serving the request measured as the time delay between the time the application issues
the request until the request is completed.

Tyche B - E - B Overhead measured by Tyche as the time between the arrival of the request to its block layer until its completion. Effectively,
this is the overhead of our protocol excluding the above layers.

Ty-IS B - C

Overhead of the Tyche (Ty): send path at the initiator (IS) and target (TS) and receive path at the initiator (IR) and target (TR).Ty-TR D - E

Ty-TS F - G

Ty-IR H - B

CS-WQ Cost of the context switch due to work queues.

CS-Rec Cost of the context switch between the network layer and block layer threads (includes context switches of both sides).

CS-IRQ Cost of the context switches done when a NIC’s IRQ is raised. Measured as the time spent since the IRQ handler function executes
the wake up function until the network thread starts its execution.

Ramdisk E - F Overhead of the ramdisk from submitting a bio until receiving its completion. Ramdisk is synchronous so, IO happens inline with
no context switches.

In/Out kernel A - B and B - A Time needed by a request to arrive from the application to Tyche and time needed to complete the request from Tyche. This
overhead is calculated (not measured) as the difference between total and Tyche overheads.

Network C - D and G - H
Overhead of the network interface and the network link(s). This overhead is calculated (not measured) as the difference between
Tyche overhead and the sum of Ty-IS, Ty-TR, Ty-TS, Ty-IR, CS-WQ, CS-Rec, CS-IRQ, and Ramdisk. It includes the overhead
of the corresponding driver at the host, which however, is low compared to the rest of the host overheads.

TABLE II. OVERHEAD, IN µs, AND THROUGHPUT, IN MB/S, CALCULATED FOR TYCHE, BY RUNNING FIO WITH A SINGLE THREAD AND A SINGLE
OUTSTANDING I/O, DIRECT I/O, RANDOM READS AND WRITES, AND SEVERAL REQUEST SIZES.

Overhead (µs)
Read requests Write requests

4 kB 8 kB 64 kB 128 kB 4 kB 8 kB 64 kB 128 kB

Software

In/Out kernel 13.19 13.13 16.25 15.33 12.80 14.66 26.38 40.96

Ty-IS 2.75 2.00 3.00 2.00 4.75 5.00 15.00 26.25

Ty-TR 3.00 3.00 4.00 4.25 5.00 6.00 15.00 24.25

Ty-TS 4.00 5.00 12.00 22.00 3.00 4.00 4.00 3.00

Ty-IR 5.00 6.00 24.00 45.00 2.25 2.00 2.00 2.00

CS-WQ 4.00 4.00 4.00 4.00 4.00 3.00 5.00 3.00

CS-Rec 8.00 8.00 8.00 7.00 8.00 8.00 8.00 7.00

CS-IRQ 8.15 7.02 20.30 30.54 8.13 8.02 23.82 37.90

Hardware
Ramdisk 1.00 2.00 16.00 30.75 1.00 2.00 17.00 31.00

Network 24.60 32.73 45.20 60.21 24.87 30.98 47.18 63.35

Total 73.69 82.88 152.75 221.08 73.80 83.66 163.38 238.71

Throughput (MB/s) 52.50 94.00 408.50 565.00 52.50 92.75 382.00 523.25

The In/Out kernel overhead is high, and depends not only
on the request size but also on its type. For reads, this overhead
has a larger impact in small requests, being a 17.9% and 15.8%
of the total overhead for 4kB and 8kB requests, respectively.
For larger requests, the overhead is less important, being 10.6%
and 6.9% for 64kB and 128kB requests, respectively. For
writes, its impact in the total overhead does not depend on
the request size, and represents, on average, 17.0% of the total
overhead.

A significant component of the In/Out kernel overhead
is the overhead due to the context switch done when the
application thread is waken up to complete the request (marked
as CS-Out in Figure 3 and but not included in Table I).
We further examine this issue by creating two “fake” block
devices: BD-NCS (Block Device No Context Switch) and
BD-WCS (Block Device With Context Switch). The block
layer of BD-NCS, when it receives a request, just completes
the request, without any further processing. The block layer

of BD-WCS forces a context switch before completing the
request, similar to a regular request. The overhead of BD-WCS
corresponds to the In/Out kernel overhead. For both devices,
Table IV provides the total overhead, in µs, when running the
same test as previously.

BD-NCS has significantly smaller overhead than BD-
WCS: In BD-NCS the overhead of crossing the user-kernel
boundary from application to Tyche is 4µs for 4kB and 8kB
requests, 7µs for 64kB, and 10µs for 128kB. For BD-WCS,
this overhead is closer to In/Out kernel in Table II: About
10.70µs for 4kB reads (vs. 13.19µs for In/Out kernel). For
large requests, however, BD-WCS exhibits significantly lower
overhead compared to In/Out kernel: For 64kB and 128kB
writes, BD-WCS incurs an overhead of 13.80µs and 18.00µs,
respectively, whereas, In/Out kernel overhead is 26.38µs and
40.96µs, respectively. The reason of this difference is that
In/Out kernel incurs more cache misses, since it runs the full
Tyche I/O path, whereas BD-WCS, as a fake configuration,



TABLE III. TOTAL OVERHEAD, IN µs, CALCULATED FOR TYCHE AND
NBD, WITH FIO, A SINGLE THREAD AND ONE OUTSTANDING I/O, DIRECT

I/O, RANDOM READS AND WRITES.

4 kB 8 kB 64 kB 128 kB

Reads
Tyche 73.69 82.88 152.75 221.08

NBD 152.35 162.42 433.84 561.48

Writes
Tyche 73.80 83.66 163.38 238.71

NBD 151.79 153.78 332.23 520.02

runs only a small part of the path. Therefore, In/Out kernel
overhead is mainly due to blocking and waking up of the
application thread.

A. Context switch overhead

Overall, each context switch costs around 4µs. For 4kB
and 8kB requests, at Tyche level, there are five context swit-
ches that represent 27.5% and 23%, respectively, of the total
overhead. For larger requests, there are more context switches
since a large number of data packets are sent/received, and
more NIC IRQs are raised. For 64 kB and 128 kB requests,
they represent up to 22.5% and 20.0% of the total overhead,
respectively.

We confirm the cost of a context switch in our testbed
system with a simple test. We launch two kernel threads, A
and B. Each one has its own wait queue, and they communicate
through a control variable. A sets the control variable, it wakes
up B, that is sleeping in its wait queue, and then A blocks.
When B is waken up, it resets the variable, wakes up A, and
it blocks. We measure the cost of a context switch as the time
between A waking up B until B is executed again (and the
other way around).

When both threads run in the same NUMA node, the
context switch costs around 2.5µs, but when they run in
different NUMA nodes, it costs around 5µs. Similar numbers
were obtained by Li et al. [6], whose experiments in the same
NUMA node showed 3µs per context switch. Note that for our
protocol the context switches are more expensive compared
to this simple test, because the cost of a context switch also
depends on the program data size, system caches, memory
allocation, and other factors [6], [7].

This test shows that NUMA affinity matters as well. The
cost of a context switch is smaller when the threads are running
in the same NUMA node. In addition, we have made a test
in which the application and network threads are pinned in a
node that does not have the NIC attached, and the block layer
thread is pinned in the same NUMA node of the NIC. For
a 4kB read, the overhead of the whole send/receive path is
increased by up to 75%, and the context switch cost increases
by up to 45% to 5.8µs.

These results show that context switches are expensive
compared to other overheads in the I/O path. Next, we discuss
our techniques for reducing the number of context switches

V. REDUCING CONTEXT SWITCHES

Serving a request involves, at least, six context switches:

• Two on the receive path, one at the initiator and one at
the target, marked as CS-Rec in Figure 3. The receive

TABLE IV. TOTAL OVERHEAD, IN µs, FOR FIO WITH THE TWO FAKE
BLOCK DEVICES THAT JUST COMPLETES THE REQUEST.

4 kB 8 kB 64 kB 128 kB

BD-NCS
Reads 3.60 3.80 6.40 9.00

Writes 3.40 3.60 6.60 9.70

BD-WCS
Reads 10.70 11.00 13.40 16.10

Writes 10.50 10.70 13.80 18.00

path has two threads: one thread that runs the tasks
of the network layer, and another one that runs the
tasks of the block layer. At least a context switch
occurs between these threads. The roundtrip of an
I/O request involves two request messages (request
and completion) and a data message. For writes, the
initiator sends the request and data messages and
the target sends back the completion message. For
reads, the initiator sends the request message and the
target sends the completion and data messages. Since
a request message that has associated a data message
cannot be processed without its data, Tyche always
sends the data message before its request message.
Therefore, in a controlled experiment as the one run
here, a data message will always arrive before its co-
rresponding request message1. Thus, when the request
message arrives, there is a context switch between the
network thread and the block layer thread. The block
layer thread fetches first the request message and then
the data message without doing an additional context
switch.

• One context switch at the target send path, marked as
CS-WQ in Figure 3. This one is done because a work
queue sends the completion back to the initiator (see
Section II).

• Two context switches, one on each side, due to the
NIC interrupts, marked as CS-IRQ in Figure 3. When
a NIC’s IRQ is raised, its handler function just wakes
up our network thread to receive the packets. Once this
thread is running, it continuously polls the NIC for
new packets. The thread will block, waiting for a new
IRQ, when the NIC receive ring is empty. For small
requests, two context switches are done. For large
requests, more context switches are expected because
the number of data packets sent/received depends on
the request size. It is worth emphasizing that Tyche
cannot avoid these context switches. The reason is
that interrupt handler functions cannot do anything
that would sleep, such as waiting an event or getting
a lock. Previous works [8], [7] have examined how to
avoid this context switch by using polling instead of
interrupts. They propose to have threads spinning and
waiting for the arrival of packets. However, we have
not considered this option because the spinning time
could be significant large, specially for large requests.

• One context switch, CS-Out in Figure 3, is done to
complete the request. After issuing a request, the ap-
plication thread is blocked waiting for its completion.

1Since Tyche allows out-of-order transfers, a request message may arrive
before its corresponding data message.



On the reception of a completion message, Tyche runs
a function to complete the request that ends up waking
the application thread and doing a context switch. To
avoid this context switch, layers above Tyche should
be modified, but, this is beyond the scope of this paper,
since this context switch is out of the control of Tyche.
One option could be that the application thread waits
for the completion spinning [9], [8]. But, when there
are a large number of threads concurrently issuing I/O
requests, the spinning option is not viable.

Tyche works in the inline mode (see Section II) that
outperforms the queue mode for small requests. Therefore,
at the initiator send path requests are issued with no context
switch.

Finally, we use a ramdisk to emulate fast storage devices
so we omit the context switch on the target side. This context
switch is related to the interrupt handler that completes the I/O
to the local device and then performs a context switch to the
corresponding Tyche thread.

We now discuss two variants of the base protocol that
reduce the number of context switches. The first one avoids
context switches on the receive path. The second one, in
addition, avoids the context switch due to the work queue.

A. Tyche-Rec

To avoid the context switch between the network and block
threads (CS-Rec in Figure 3), we propose using a single
thread to run the whole receive path (Tyche-Rec). Currently,
the network thread runs its own tasks, and the tasks of the
block layer as well. The network thread processes a packet,
composes the message, and checks whether any data message
related to the one just composed has arrived. When all the
messages (request message and data message if any) have been
received, the network thread runs the block layer tasks by using
a callback function. By using callback functions the network
thread also checks whether all the messages that compose an
I/O request have been received. This way, the thread will not
block when a message is missing because it has been not
received it yet.

The notification rings (marked as not in Figure 3) that
communicate both threads are not used. Consequently, we also
reduce overhead by avoiding, these rings and, for instance, the
lock to ensure exclusive access.

B. Tyche-NoWQ

Next, we eliminate, in addition to Tyche-Rec, the context
switch in the target send path due to the work queue (CS-WQ
in Figure 3). This version, Tyche-NoWQ, attempts to send
the response to the initiator from the completion context of
the local I/O. If it succeeds, there will be no context switch.
But, if the operation needs to block, which is not allowed in
the completion context, it will fall back to the work queue of
the base version. Note that, the completion context will block
if, for instance, there is no space in the transmission ring.
Avoiding the work queue results in avoiding the management
associated. For instance, a lock is required to insert/dequeue a
task into/from the work queue.

C. Evaluation of Tyche-Rec and Tyche-NoWQ

To study the context-switch costs we implement Tyche-Rec
and Tyche-NoWQ based on the Tyche version that computes
the overhead. Tables V and VI provide the overhead break-
down, in µs, and throughput, in MB/s, for reads and writes.
We use again FIO with the same configuration as in Section IV.

Total overhead is reduced by up to 27.6% and 17.6% for
4kB and 8kB reads respectively, and throughput is improved
by up to 39.1% and 21.3%, respectively. For 64kB and
128kB reads, overhead is reduced by up to 12.7% and 8.1%,
respectively, and throughput is improved by up to 14.5% and
8.8% respectively. For writes, this reduction is 30.8% and
21.3% for 4kB and 8kB requests, respectively, and throughput
is improved by up to 44.8% and 26.4%, respectively. The over-
head reduction is 12.3% and 5.2%, respectively. Throughput
is improved by up to 13.9% and 5.5%, for 64kB and 128kB
writes, respectively.

By analyzing values in detail, and taking into account only
Tyche send/receive path, we reduce overhead by up to 56% and
61.1% for reads and writes, respectively, for 4kB requests.

Results for Tyche-Rec show that CS-Rec is reduced to
zero, since no context switch is done on the receive path.
These results also show that Ty-TR and Ty-IR are significantly
reduced. There are two reasons: i) the notification rings are not
used because a single thread runs the whole receive path; ii)
the locks to protect these rings are not required.

For Tyche-NoWQ, CS-WQ is reduced to zero, since the
context switch due to the work queues is not performed. Ty-
TS is also reduced, because the management of the work queue
is avoided, for instance we avoid the lock to add a job to the
work queue.

These results show, as expected, that avoiding locks also
reduces overhead. However, only versions such as Tyche-Rec
and Tyche-NoWQ, where a single thread executes exclusively
one path, allow us to eliminate locks. When several threads
can send/receive simultaneously packets, locks are needed to
ensure exclusive access to the shared data structures.

The In/Out kernel overhead is also slightly reduced. In this
case, there is no difference in the way the test is run. We
believe that the reduction is due to the system caches as Li et
al. point out [6], since there are fewer threads running and
fewer context switches.

VI. ADAPTIVE BATCHING

At high concurrency when there is a large number of
outstanding requests, the previous designs cannot achieve high
link utilization and consequently high IOPS. This section
discusses how adaptive batching can improve significantly link
utilization for small requests. The novelty of our proposal is a
dynamic technique that varies the degree of batching without
increasing I/O overhead and response time.

We introduce a new request message, called batch request
message or batch message. A batch message is a single
network message that includes several I/O requests, reads or
writes, issued by the same or different threads. When a batch
message is received, the target issues to the local device a
regular I/O request per request included in the batch message.



TABLE V. OVERHEAD, IN µs, AND THROUGHPUT, IN MB/S, CALCULATED FOR TYCHE-REC, BY RUNNING FIO WITH A SINGLE THREAD AND A SINGLE
OUTSTANDING I/O, DIRECT I/O, RANDOM READS AND WRITES, AND SEVERAL REQUEST SIZES.

Overhead µs)
Read requests Write requests

4 kB 8 kB 64 kB 128 kB 4 kB 8 kB 64 kB 128 kB

Software

In/Out kernel 12.63 13.72 17.13 14.98 12.80 13.70 25.76 42.55

Ty-IS 2.00 2.00 2.25 2.00 4.00 4.00 12.25 23.50

Ty-TR 1.00 1.00 2.00 3.75 2.00 2.00 12.75 23.00

Ty-TS 4.00 5.00 12.75 23.00 3.00 4.00 4.00 3.00

Ty-IR 2.00 2.00 19.50 41.50 0.00 0.00 0.00 0.25

CS-WQ 4.00 4.00 3.25 3.00 3.50 4.00 4.00 3.00

CS-Rec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CS-IRQ 8.12 8.28 21.03 31.11 8.02 8.04 23.74 38.35

Hardware
Ramdisk 1.00 2.00 16.00 30.25 1.00 2.00 16.25 30.00

Network 26.88 35.72 49.47 61.39 25.98 36.21 53.01 68.15

Total 61.63 73.72 143.38 210.98 60.30 73.95 151.76 231.80

Throughput (MB/s) 63.00 105.25 435.75 592.00 64.00 105.00 411.25 538.75

TABLE VI. OVERHEAD, IN µs, AND THROUGHPUT, IN MB/S, CALCULATED FOR TYCHE-NOWQ, BY RUNNING FIO WITH A SINGLE THREAD AND A
SINGLE OUTSTANDING I/O, DIRECT I/O, RANDOM READS AND WRITES, AND SEVERAL REQUEST SIZES.

Overhead (µs)
Read requests Write requests

4 kB 8 kB 64 kB 128 kB 4 kB 8 kB 64 kB 128 kB

Software

In/Out kernel 11.38 13.83 14.43 14.77 12.11 14.27 25.61 42.36

Ty-IS 2.00 3.00 2.00 2.00 3.00 4.00 11.00 23.75

Ty-TR 1.00 1.00 1.00 2.50 2.00 2.00 12.00 20.25

Ty-TS 3.00 3.00 11.00 20.00 1.00 1.00 2.00 2.00

Ty-IR 1.00 2.00 20.00 40.00 0.00 0.00 0.00 0.25

CS-WQ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CS-Rec 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CS-IRQ 8.09 8.16 20.4 30.71 8.01 9.10 23.77 38.92

Hardware
Ramdisk 1.00 2.00 16.00 30.50 1.00 2.00 16.00 31.00

Network 25.91 35.34 48.6 62.79 23.99 32.90 52.98 67.83

Total 53.38 68.33 133.43 203.27 51.11 66.27 143.36 226.36

Throughput (MB/s) 73.00 114.00 467.75 614.75 76.00 117.25 435.25 552.00

Completions are sent as batch messages as well. The target
sends the completion message when all the requests associated
with the batch message are completed.

Batch messages significantly reduce the number of mes-
sages and the associated message processing. For instance, a
batch message with 32 requests sends two messages (one in
each direction) instead of 64 concurrent messages (32 in each
direction). Equally important, batching reduces the number of
context switches required.

There are two general remarks about batching. First, batch-
ing makes sense up to some request size. Large I/O requests
already make efficient use of the network, and batching offers
no benefit. Given the low overhead of Tyche, this size is 8kB,
so in our case we only batch 4kB requests. Other systems, with
higher overheads, will benefit from batching larger requests
as well. Second, static batching does not work in practice,
as our results show. Thus, we employ an adaptive technique
that constantly adjusts the number of requests batched. When
our technique chooses a batch degree of one, it incurs no
additional overhead compared to the optimized inline mode
of the previous section.

A. Batch mechanism

Our batching mechanism is built around a batch queue
introduced in the send path of the inline mode. Figure 4 depicts
the initiator with the batch mechanism (to simplify the figure,
we have omitted the message buffers). Now, at the initiator,
each I/O request is inserted into the batch queue. Then, a single
(batch) thread dequeues requests and includes them in a batch
request message. If there is no batch message pending, a new
one will be created. Although we could use directly the batch
message to place all requests, it is preferable to use a separate
queue. The reason is that managing the batch message results
in a larger critical section than enqueuing a request to the batch
queue. So, it is better to have the many user contexts insert
requests to the batch queue and a single thread dequeues and
prepares batch messages.

A key aspect of our batching approach is to decide when
to wait for new requests or when to send the batch message
immediately. We use a parameter, the current batch level
(current_batch_level), to determine the number of
requests to include in a batch message. We send a batch
message when it has current_batch_level requests. We
dynamically calculate current_batch_level based on
the link throughput achieved. If by increasing or decreasing the



Batch message 

tx ring

NIC tx ring

Batch queue

I/O requests

Applications

HD

N
et w

or k 
driv er

Tyc he 
netw

ork  
laye r

Tyc he b loc k
laye r

Fig. 4. Initiator send path with batching. To simplify, we have omitted the
message buffers.

batch level compared to the current value results in increased
throughput, we will keep moving in the same direction.

The value of current_batch_level varies between
1 and max_batch_level. Where max_batch_level
corresponds to the maximum number of requests that a batch
message can carry.

To compute the value of current_batch_level, our
batch mechanism calculates two values:

• The throughput achieved (Xput and Xput_p) in the
last and previous intervals by using the number of I/O
requests completed and their size.

• The average number of outstanding I/O requests
(a_out_r) in the batch queue during the last interval.

We then calculate the improvement in throughput of
the last interval over the previous interval, and we set
current_batch_level as:

• If the improvement is larger than 3% the new value
of current_batch_level will be increased to:

current_batch_level+min(a_out_r,max_batch_level)
2 .

• If the improvement is smaller than -3%, the value of
current_batch_level will be reduced to:

1+min(a_out_r,current_batch_level)
2 .

• Otherwise, no change is made to the batch level.

To avoid delaying batch messages too long, we use a
maximum amount of time (max_delay) that the first request
of a batch message may be delayed. A batch message will be
sent if current_batch_level is reached or max_delay
expires.

Finally, we avoid the case where the batch level re-
mains unmodified because throughput is stable, although
there is potential for better link utilization. For this rea-
son, if after 10 consecutive intervals there are no changes,
we compare the throughput of current_batch_level
to the throughput of current_batch_level − 1 and
current_batch_level+1. If for one of these new values,

there is an improvement of at least 3%, we start adjusting
current_batch_level again.

B. Batching data messages

We also use a simple batch mechanism for data messages.
The data of a 4kB request is sent by using a single data packet
in a Jumbo Ethernet frame of 4kB. By batching data messages,
the data messages of two 4kB requests are transmitted by using
a single data packet of 8kB and a single data batch message.
The method to batch data messages may be applied to larger
requests as well, but the main benefit occurs when 4kB requests
are batched and sent in 8kB packets.

C. Overhead of dynamic batching

The batch mechanism increases overhead. For instance,
a lock is required to ensure exclusive access to the batch
queue, and new context switches are done by the batch
thread to handle the batch messages. However, tasks can be
overlapped: the thread adds a request to a batch message, while
an application thread inserts its requests into a batch queue.
Batching may increase processing at the layer block, but it
reduces the number of messages, so it reduces processing at
the network layer of our protocol. As our results show, this
overhead increase is offset by a significant improvement in
throughput.

D. Evaluation of adaptive batching

To study the effects of batching, we have implemented a
version called Tyche-Batch that batches requests and applies
the dynamic algorithm to choose the batch level. This version
is based on the Tyche version implemented in Linux kernel
2.6.32 [4]. In addition, we have implemented a static version
with a fixed batch level during the whole execution. Next, we
examine to questions: i) how our dynamic algorithm chooses
the right batching level depending on the throughput achieved;
ii) how dynamic batching compares to static batching.

We run FIO with direct I/O, random reads and writes, 4kB
request size, and 1, 2, 4, 8, 16, 32, 64, and 128 threads issuing
requests, 4 outstanding requests per thread, and a runtime of
60s. The remote storage device is accessed in a raw manner
(there is no file system). We have also tested that our batch
technique provides no benefit for other sizes, such as 8kB,
16kB, 32kB, and 64kB, but it does not hurt. For Tyche threads
we apply NUMA affinity, by pinning them in the same NUMA
node where the NIC is connected. The application threads are
not pinned, since they are too may to pin all of them in the
same node.

The dynamic version is configured with 1s as check
interval, 64 requests as max_level_batch, and 5ms as
max_delay. We run the static version with 2, 4, 8, 16, 32,
and 64 requests as max_batch_level. However, we only
present results for 2, 8, and 64 requests, since all of them have
similar behavior.

Figure 5 depicts the theoretical link utilization, depending
on the number of outstanding requests, achieved by the dy-
namic Tyche-Batch version (DyB in the figure), and the static
version with 2, 8, and 64 requests as batch level (B-2, B-8,
and B-64), and Tyche with no batching (NoB).



When there is high concurrency, dynamic Tyche-Batch
outperforms the no batching version by up to 44.2% and 49.5%
for reads and writes, respectively. At 32 outstanding requests,
it improves over the no batch version by 28.1% and 35.8% for
reads and writes, respectively. By batching requests, Tyche is
able to achieve up to 80.7% and 79.2% of link utilization for
reads and writes, respectively.

Comparing the dynamic version to the static, we see that
the dynamic version achieves the best performance and follows
the static version providing the best behavior. Sometimes, a
static version outperforms the dynamic version, but the larger
difference between them is only up to 8.6%. In these cases,
the algorithm took a conservative decision when by batching a
large number of requests, it could achieve a higher throughput.

We also note that the static version achieves poor perfor-
mance and link utilization at low concurrency. The reason is
that batch messages are sent to the target because max_delay
expires and not because the batch level is reached.

Figure 6 depicts the batching level used during the execu-
tion of the test depending on the number of outstanding re-
quests. For reads, the dynamic version increases the batch level
as the number of outstanding requests increases. For writes,
the batch level is kept constant, and when there are more than
256 outstanding requests, the algorithm starts to increase the
number of requests included in a batch message. Although
the batch level is small, the dynamic version achieves better
performance than without batching. With low concurrency, the
static version obtains a small batch level, since max_delay
forces to send the batch messages without reaching the fix
batch level.

Figure 7 depicts the theoretical link utilization, depending
on the number of outstanding requests, when we also batch
data messages, achieved by the same configurations and run-
ning the same test. Now, dynamic Tyche-Batch outperforms
the no batch version up to 56.9% and 53% for reads and
writes, respectively. For reads, our proposal achieves up to
88.0% of link utilization, and for writes up to 81.1%. The
dynamic version is close to the static version providing the
best performance. Although the graph for the batch level is
omitted due to space constraints, the algorithm chooses similar
batch levels when data messages are also batched.

To show that the batching technique works well with
different simultaneous request sizes, we run FIO with direct
I/O, random reads and writes, and two different request sizes.
During 360s, there are 32 threads issuing 4kB requests and 4
outstanding requests per thread. Then, every 60s, we launch a
new thread that issues 128kB requests with a single outstand-
ing request. So, during the test, the first 60s, 32 threads issue
4kB requests, the second 60s, 32 threads issue 4kB requests
and one thread issues 128kB requests, the third 60s, 32 threads
issue 4kB requests and two threads issue 128kB requests,
and so on. Figure 8 depicts the theoretical link utilization,
depending on time, achieved by the dynamic version when
data messages are also batched and by Tyche with no batching.
The batch mechanism significantly outperforms the version
without batching, by improving the link utilization by up to
3× and 2× for reads and writes, respectively. For reads, the
batching approach achieves up to 91.3% of link utilization, and
on average 88.8%, whereas no batching achieves up to 74.4%,
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Fig. 5. Link utilization achieved by the dynamic and static Tyche-Batch
versions and Tyche with no batching, with FIO with direct I/O and random
reads and writes of 4kB.

but on average only 56.7%. Similar numbers are obtained also
for write requests. Note that there are few points in which
the algorithm is not able to get the right decision and its
performance momentarily drops to the performance of the
version without batching.

VII. RELATED WORK

Lately, there have been renewed interest in latency and
overhead for storage access due to SSDs and emerging storage
devices. Rumble et al. [10] analyze the latency problem of
network protocols, and they claim that operating systems
should implement a new networking architecture and new
protocols to solve the latency problem end-to-end. Flajslik
and Rosenblum [11] provide a network interface solution for
low latency request-response protocols. They reduce latency
by minimizing the number of transitions over the PCIe in-
terconnect, particularly for small requests. HERD [12] is a
key-value cache that leverages RDMA features to deliver low
latency and high throughput. Pilaf [13] is a distributed in-
memory key-value store that leverages RDMA to achieve high
throughput with low CPU overhead. They only use RDMA
to perform reads from server’s memory, whereas writes are
handled via traditional messaging. FaRM [14] is a main
memory distributed computing platform that uses RDMA to
improve latency and throughput. It uses RDMA writes to
implement a fast message passing primitive. HERD, Pilaf, and
FaRM rely in RDMA hardware to achieve low latency, whereas
Tyche provides low latency without any hardware support.
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Fig. 6. Batch level used by the dynamic and static Tyche-Batch versions,
with FIO with direct I/O and random reads and writes of 4kB.

Regarding the reduction of latencies inside the data center,
there are several works, such as jVerbs [15] and Chronos [16].
jVerbs offers low latencies to applications running inside a
Java Virtual Machine by mapping the network device directly
into JVM. Chronos reduces latency by removing the kernel
and network stack from the critical path of communication.

Recently, several works have proposed to bypass the kernel
and to run in user-space I/O stacks to reduce latency by
eliminating kernel crossing overheads. Moneta Direct [17],
[9] bypasses the operating and file systems while preserves
their management and protection functions to reduce latency.
For each process, it provides a private, virtual interface to the
device. Aerie [18] is a file system architecture that allows user-
mode programs to access files without kernel interaction. The
kernel provides only coarse-grained allocation and protection,
while most functionality is distributed to client processes.
Arrakis [19] is an operating system that removes the kernel
from the I/O path by separating the control and data plane.
In the data plane, I/O devices are accessed without kernel
mediation by delivering I/O directly from the device hardware
to a user-level library. The control plane uses the kernel
to manage naming and coarse-grain allocation. Bypassing
the kernel complicates resource sharing and creates security
tradeoffs since application bugs can corrupt the I/O stack.
IX [8] is an operating system that also reduces latency by
separating the control and data plane. Its control plane is
responsible for coarse-grain resource provisioning between
applications, whereas its data plane runs the networking stack
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Fig. 7. Link utilization achieved by the dynamic and static Tyche-Batch
versions and Tyche with no batching, when data messages are also batched,
with FIO with direct I/O and random reads and writes of 4kB.

and application logic. IX does not bypass the kernel, instead,
it leverages hardware virtualization to run the data plane
kernel. Our proposal is to reduce latency without modifying
the operating system, by redesigning the network I/O path.

Li et al. [6] show that the cost of a context switch
depends not only on the regular context switch process of
saving/restoring registers, execution of the scheduler, flushing
processor pipeline, etc., but also on the program data size and
even on the access pattern of the task. Gim et al. [7] show
that the overhead of a context switch becomes relatively more
significant for faster storage devices and that the overhead of
a context switch mostly comes from the pollution of the data
cache. They propose an intelligent context switch mechanism
called SmartCon. To serve a given I/O requests, SmartCon de-
cides whether to switch context over another thread (interrupt
driven manner), or to simply stall (busy-wait based manner).
The decision is based on the device characteristics, I/O latency,
request size, and CPU utilization. Our approach, however, is to
eliminate context switches for 4kB requests by using a single
thread that runs the whole path and not by having threads
spinning.

Currently, many network storage protocols are using batch
messages or batch operations. For instance, NFSv4 reduces
latency for multiple operations by bundling together different
RPC calls [20], a lookup, open, read, and close can be sent
once, and the server can execute the entire compound call as
a single entity.
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Fig. 8. Link utilization achieved by dynamic Tyche-Batch when data
messages are also batched and Tyche with no batching, with FIO with direct
I/O and random requests of 4kB and 128kB size.

Automatic TCP corking [21] is another example. It is
included in Linux kernel 3.14 to improve performance for help
applications doing small write/sendmsg operations on TCP
socket. Although it is not a proper batch operation, it allows to
delay the dispatch of messages in a socket in order to coalesce
more bytes in the same packet, reducing the number of packets
to send. Previous versions of Linux allow the use TCP corking,
however, Linux kernel 3.14 is the first one to include automatic
TCP corking.

IX [8] batches network requests in the presence of network
congestion and allows application threads to issue batched
system calls. Similarly, we batch I/O requests based on the
observed I/O concurrency by examining the queues in the
I/O path and additionally we use a performance feedback
mechanism (achieved throughput) to adapt batching, regardless
of the network conditions.

VIII. CONCLUSIONS

Our work shows how networked storage protocols over
raw Ethernet can achieve low host CPU overhead and high
network link utilization for small I/O requests. We analyze in
detail the overheads of Tyche, our in-house networked storage
protocol deployed directly over Ethernet. We point out that
context switches significantly increase overhead, especially for
small I/Os. Then we propose a new design for network storage
protocols that reduces context switches for small I/Os and that
is particularly effective for low degrees of I/O concurrency.

For high degrees of I/O concurrency, and to achieve high link
utilization, we propose an adaptive batching mechanism. The
novelty is that our batching mechanism dynamically calculates
the degree of batching based on the throughput obtained
without a negative impact on I/O overhead and response time.

Our results show that host CPU overhead is an important
source of overhead, and it represents up to 65% of the total
overhead. Considering only our protocol, for a 4kB request,
its Tyche overhead represents 47%.

We reduce total overhead by up to 31% with our optimized
protocol that reduces context switching. Considering only
the overhead introduced by Tyche, avoiding context switches
reduces overhead by up to 61.1% (from 36.1µs to 14µs) per
4kB-I/O request, about equally divided between the initiator
and target. Adaptive batching improves link utilization for
small I/Os by up to 56.9% and 53% for reads and writes,
respectively, achieving 88% and 81% of the theoretical link
utilization for 4kB reads and writes, respectively. Overall, our
approach is able to achieve 287K 4kB IOPS out of 315K IOPS
possible on a 1.2GBytes/s link, without any hardware support.
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