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Abstract—Data deduplication is important for snapshot
backup of virtual machines (VMs) because of excessive redundant
content. Fingerprint search for source-side duplicate detection is
resource intensive when the backup service for VMs is co-located
with other cloud services. This paper presents the design and
analysis of a fast VM-centric backup service with a tradeoff
for a competitive deduplication efficiency while using small
computing resources, suitable for running on a converged cloud
architecture that cohosts many other services. The design con-
sideration includes VM-centric file system block management for
the increased VM snapshot availability. This paper describes an
evaluation of this VM-centric scheme to assess its deduplication
efficiency, resource usage, and fault tolerance.

I. INTRODUCTION

Commercial “Infrastructure as a Service” clouds (i.e. public
clouds) often make use of commodity data center components
to achieve the best possible economies of scale. In particular,
large-scale e-commerce cloud providers such as Google and
Alibaba deploy “converged” components that co-locate com-
puting and storage in each hardware module (as opposed to
having separate computing and storage “tiers.”) The advantage
of such an approach is that all infrastructure components are
used to support paying customers – there are no resources
specifically dedicated to cloud services. In particular, these
providers use software to aggregate multiple direct attached
low-cost disks together across servers as a way of avoiding
the relatively high cost of network attached storage [12], [24],
[19]. In such an environment, each physical machine runs
a number of virtual machines (VMs) and their virtual disks
are stored as disk image files. Frequent snapshot backup of
virtual machine images can increase the service reliability by
allowing VMs to restart from their latest snapshot in the event
of a server failure. Snapshots contain highly redundant data
chunks and deduplication of redundant content [21], [32] is
necessary to substantially reduce the storage demand.

Source-side deduplication [28], [27], [11], [30] eliminates
duplicates before backup data is transmitted to a secondary
storage, which saves network bandwidth significantly; how-
ever its resource usage can impact other co-located cloud
services. It is memory-intensive to compare a large number of
fingerprints and identify duplicates, even with optimization or
approximation techniques developed [13], [8], [3], [10]. An-
other side effect of deduplication is the possible loss of failure

resilience [4]. If a shared block is lost, all files that share that
block are affected. A cloud may offload backup workload from
production server hosts to dedicated backup proxy servers (e.g.
EMC Data Domain) or backup services (e.g. Amazon S3).
This approach simplifies the cluster architecture and avoids
potential performance degradation to production applications
when backups are in progress. However, sending out raw and
undeduplicated backup data wastes a huge amount of network
bandwidth that would otherwise be available to user VMs.

Our work considers a backup service with source-side
deduplication for converged cloud architectures that is co-
located with user VMs, sharing the cloud compute, network,
and storage resource with them. This paper extends our
preliminary simulation study [31] to restrict the scope of cross-
VM deduplication and simplify the deduplication process by
separating popular data chunks and presents the design and
implementation of a VM-centric backup scheme. We term
this approach VM-centric because the deduplication algorithm
considers VM boundaries in making its decisions as opposed
to treating all blocks as being equivalent within the storage
system. Our work focuses on a tradeoff that allows the sharing
of only “popular” data blocks across virtual machines while
using localized deduplication within each VM to achieve both
storage savings and fault isolation. Another issue addressed
is fault isolation in a content sharing environment caused by
deduplication. One consequence of aggressive deduplication
is the possible loss of failure resilience. If a shared block is
lost, all files that share that block are affected [4] and our
work is motivated by this to develop VM-centric fault isolation
techniques.

The main contribution of this paper is 1) a design and
implementation of a backup service to integrate the VM-
centric techniques while minimizing the resource impact on
other collocated cloud services; 2) a VM-centric file block
management to improve snapshot availability by separating
popular chunk replication and packaging data chunks from
the same VM into a file system block as much as possible; 3)
an analysis on the deduplication efficiency by using popular
items and also on snapshot availability improved by the above
fault isolation design. The analysis provides insights and justi-
fication on the proposed VM-centric strategies. The integrated
optimization includes similarity-guided local deduplication for
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each VM to make the overall deduplication efficiency more
competitive to a traditional deduplication scheme. Our ex-
perimental study compares the VM-centric approach with the
previous VM-oblivious approaches in terms of deduplication
efficiency, resource usage, and snapshot availability. Compared
to our earlier study [31] which achieves 92% of what the full
deduplication can do, our integrated system delivers over 96%
in a tested dataset from Alibaba cloud.

The rest of this paper is organized as follows. Section II
reviews the background and discusses the design options for
snapshot backup with a VM-centric approach. Section III
presents our scheme for snapshot deduplication. Section IV
describes a system implementation that evaluates the proposed
techniques. Section V is our experimental evaluation that
compares with other approaches. Section VI concludes this
paper. The appendix describes an analysis on the deduplication
efficiency with top k popular chunks.

II. BACKGROUND AND DESIGN CONSIDERATIONS

Figure 1 illustrates a converged IaaS cloud architecture
where each commodity server hosts a number of virtual
machines and storage of these servers is clustered using a
distributed file system [12], [24]. Each physical machine hosts
multiple virtual machines. Every virtual machine runs its own
guest operating system and accesses virtual hard disks stored
as image files maintained by the operating system running on
the physical host. For VM snapshot backup, file-level seman-
tics are normally not provided. Snapshot operations take place
at the virtual device driver level, which means no fine-grained
file system metadata can be used to determine the changed
data. In a converged setting with source-side deduplication,
the resources that are used to implement snapshot backup and
deduplication are the same resources that must support cloud-
hosted VMs. Thus the backup service collocated with other
cloud services has to minimize its resource impact.
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Fig. 1. VM snapshot backup running on a converged cloud cluster.

File backup systems have been developed to use fingerprints
generated for data “chunks” to identify duplicate content [21],
[23]. Source-side deduplication is studied at a chunk or file
level [28], [27] for client data backup and can be integrated
with global deduplication among multiple clients [11]. In this
context, the client side is the source-side and the client-side
computing resource restriction is not a primary concern. Our
work considers the source-side deduplication in a cloud cluster
environment before data is transferred to a backup storage and

the computing resource constraint at the cluster side is a major
concern.

It is expensive to compare a large number of fingerprints so
a number of techniques have been proposed to improve dupli-
cate identification. For example, the Data Domain method [32]
uses an in-memory Bloom filter to identify non-duplicates and
a prefetching cache for potential duplicates that might hit in
the future. Additional inline deduplication and approximation
techniques are studied in the previous work [3], [17], [26],
[31].

Even with these optimization and approximation techniques,
resource usage such as memory for deduplication is still
extensive for a shared cloud cluster. For example, in the
experiments discussed in Section V-A, the raw snapshot data
has a size of 1,000TB on 100 physical machines that host
VMs, cross-machine fingerprint comparison using Bloom filter
and approximated routing [32], [8] still needs several gigabytes
of memory per machine. This can impact other primary cloud
services sharing the same computing resource. Our objective
is to have an approximation scheme which uses no more
than a few hundred megabytes of memory during normal
operation. Thus the desired ratio of raw data to memory ratio is
from 100K:1 to 30K:1. Our proposed scheme achieves 85K:1
and this ratio is about the same as the number of machines
increases.

Index sampling with a prefetch cache [13] is proposed
for efficient single-machine deduplication. This scheme uses
25GB memory per 500TB of raw data and thus the raw data
to memory ratio is 20K:1. The scheme proposed in this paper
uses three times less memory. We have not incorporated this
index sampling technique because it is difficult to extend for a
distributed architecture. To use a distributed memory version
of the sampled index, every deduplication request may access
a remote machine for index lookup and the overall overhead
of access latency for all requests is significant.

While deduplication reduces storage cost, it creates an
artificial data dependence among VMs: when a shared data
chunk is lost in the storage, all VMs that refer such chunks
after deduplication face a data loss. Such an issue has been
identified in file systems [4] and more replication is used
for shared data. we follow this idea and study VM-centric
strategies. When the backup storage is implemented using
a distributed file system such as Hadoop and Google file
system [12], the file system block size is often chosen to
be large (e.g. 64MB). On the other hand, deduplication im-
plementations [13], [3], [32], [14], [8] typically use smaller
chunk sizes (e.g. 4K bytes). Thus we need to address the size
gap between file system blocks and chunks.

III. VM-CENTRIC SNAPSHOT DEDUPLICATION

With the considerations discussed in the previous section,
we propose a VM-centric approach (called VC) for a co-
located backup service that has a resource usage profile suit-
able for use with converged cloud architectures. This compares
the traditional deduplication approach VM-oblivious (VO)
which manages duplicate data chunks without consideration
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Fig. 2. Duplicate frequency versus chunk ranking in a log scale after local
deduplication.

of VMs. Section III-A discusses our key ideas and design for
duplicate detection.

A. VM centric strategies

We separate the deduplication within a VM and cross VMs
and simplify the cross-VM deduplication while maximizing
the inter-VM deduplication efficiency as much as possible.
This is because global deduplication that detects the appear-
ance of a chunk in any VM requires a substantial resource for
fingerprint comparison. To simplify cross-VM deduplication,
we restrict the search scope of deduplication within the top k
most popular items. This popular data set is called the PDS.

What motivates us to use PDS is that for those chunks
that appear in different VMs, the top k most popular items
dominate the appearance distribution following our previous
evaluation [31]. Figure 2 shows the distribution of chunk
popularity for a data trace from Alibaba with 2500 VMs
discussed in Section V. We define chunk popularity as the
number of unique copies of the chunk in the data-store, i.e.,
the number of copies of the chunk after local deduplication.
The distribution from this figure is Zipf-like. Let σ denote as
the percentage of unique data chunks belonging to PDS and
from the evaluation in Section V, we find that σ with about
2% can deliver a fairly competitive deduplication efficiency.

PDS can be computed in an offline manner periodically,
e.g., on a monthly basis. Compared to [32], the fingerprint
index size is reduced by 100−σ percentage (e.g. 98% with
σ = 2%) and the searchable fingerprint space becomes very
small under the popularity constraint. The fingerprint-guided
distributed mapping in [3], [8] narrows the search scope
of each data chunk, but it does not reduce th total amount
of searchable fingerprints used for the entire deduplication.
Appendix A provides an analysis of the k value selection and
PDS effectiveness.

We describe two complementary strategies below for the
above VM-centric design.
• VM-specific duplicate search optimization – While

cross-VM deduplication is simplified, we intend to opti-
mize the VM-specific deduplication under a reasonable

memory consumption to make up the loss of dedu-
plication opportunities due to the cross-VM popularity
constraint. We start with the standard version-based de-
tection [7], [28] to identify changed content with dirty bits
in a coarse grain segment level. A segment is essentially
a super-chunk containing many data chunks. The reason
to choose a coarse grain segment level is that since every
write for a segment will touch a dirty bit, the device
driver maintains dirty bits in memory and cannot afford
a small segment size. It should be noted that dirty bit
tracking is supported or can be easily implemented in
major virtualization solution vendors.

Parent snapshot metadata

......

Segments to backup

Local duplicate 
chunk search

Similar segment selection

non-duplicate chunks

Fig. 3. Similarity-guided local duplicate detection

Since the previous work typically uses a non-uniform
chunk size with an average of 4KB or 8KB for the
best deduplication effectiveness [13], [3], [32], [8], we
conduct additional local similarity guided deduplication
by comparing chunk fingerprints of a dirty segment in
a snapshot with those in potentially similar segments
from its parent snapshot. Similarity-guided search can
be desirable for cases that data chunks are duplicated
irregularly. For example, we found from the Alibaba’s
cloud cluster dataset that data segment movement happens
frequently and files are often rewritten rather than being
modified in place. A dirty-bit or offset-based detection is
not able to detect such a movement.
We consider a parent segment is potentially similar to the
current dirty segment if 1) the parent segment is at the
same offset as the current segment. 2) the signature of
these segments is the same. The signature of a segment
is defined as the minimum value of all its chunk finger-
prints computed during backup and is recorded in the
snapshot metadata (called recipe). This above approach
is motivated by the previous work for similarity-based
deduplication [6], [3], [8], [2] while our focus is local
search.
When processing a dirty segment, its similar segments
can be found easily from the parent snapshot metadata.
Then metadata of the similar segments is loaded to
memory, containing chunk fingerprints to be compared.
To control the time cost of search, we set a limit on
the number of similar segment recipes to be fetched.
For example, assume that a segment is of size 2MB, its
segment recipe is roughly 19KB which contains about



500 chunk fingerprints and other chunk metadata. By
limiting at most 10 similar segments to search, the amount
of memory for maintaining those similar segment recipes
is 190K, which is insignificant.

• VM-centric file system block management – When
a chunk is not detected as a duplicate to any existing
chunk, this chunk will be written into a file system
block. In addition to the fact that a distributed file system
block [12], [24] is often configured to be much larger than
a chunk, a number of chunks can be combined together
and compressed further using a standard compression
method such as LZO. Thus a backend file system block
contains a large number of compressed chunks. We set
the following two constraints in composing chunks for
a file system block: 1) Each file system block is either
dedicated to non-PDS chunks, or to PDS-chunks. 2) A
non-PDS file system block is only associated with one
VM.
Restricting the association with one VM improves fault
isolation when some file blocks are lost during storage
failures. In addition, storing PDS chunks separately from
non-PDS chunks allows special replication handling for
those popular shared data. If we do not separate the
popular chunks from the less-popular, the popular chunks
are dispersed across all of the filesystem blocks in the
storage system and we would have to add extra replica-
tions for all file blocks in order to follow the popularity-
driven replication idea from [4]. That reduces the storage
efficiency.

The underlying distributed file system has a fixed replication
degree for all file system blocks [12], [24]. We add extra
replicas for file blocks containing PDS chunks and this brings
additional failure protection for these chunks shared by many
VMs.

B. Fault Tolerance and Snapshot Availability

We analyze the impact of losing d physical machines to
the VM centric and oblivious approaches. There are two
impacts to VC. 1) Some PDS fingerprint lookup services do
not respond. As a result, some duplicates are not detected
and deduplication efficiency suffers, but the overall systems
can still function well and fault tolerance is not affected. As
discussed in Section IV, PDS index is distributed among
all machines in our implementation and thus a percentage of
failed nodes causes an increase in missed duplicates propor-
tionally. 2) Some storage nodes do not respond and file blocks
on those machines are lost. The availability of VM snapshots
is affected and we analyze this impact as follows.

To compute the full availability of all snapshots of a VM,
we estimate the number of file system blocks per VM and the
probability of losing a snapshot file system block of a VM
in each approach as follows. Parameters used in our analysis
below are defined in Table I.

As illustrated in Figure 4, we build a bipartite graph
representing the association from unique file system blocks to
their corresponding VMs in two approaches. For VC, each VM

r, rc Replication degree of non-PDS and PDS file
blocks in VC. r is also replication degree in VO.

n, p Number of virtual and physical machines in the
cluster

N1, N2 The average no. of non-PDS and PDS file blocks
in a VM in VC

No, Vo The average no. of file blocks in a VM and the
average no. of VMs shared by a file system block
in VO

A(r) Availability of a file block with r replicas and d
failed physical machines

TABLE I
MODELING PARAMETERS

(a) Sharing of file system blocks under VC

(b) Sharing of file system blocks under VO

Fig. 4. Bipartite association of VMs and file blocks.

has an average number N1 of non-PDS file system blocks and
has an average of N2 PDS file system blocks. Each non-PDS
block is associated with only one VM. By counting outgoing
edges from VMs in Figure 4(a), we get:

n∗N1 = Number of non-PDS file system blocks in VC.

For VO, by counting outgoing edges from VMs in Fig-
ure 4(b) with parameters defined in Table I, we have

n∗No =Vo ∗Number of file system blocks in VO.

Since we choose 2-4% of unique chunks for PDS and
Section V-A shows that the deduplication efficiency of VC is
very close to that of VO, the number of non-PDS file blocks
in VC is fairly close to the number of file blocks in VO. Then

No

N1
≈Vo.

Figure 5 shows N1, N2, and No values of 105 VMs from a
test dataset discussed in Section V when increasing the number
of VMs. N1 is much smaller than No as the formula shows
above.

Given d failed machines and r replicas for each file block,
the availability of a file block is the probability that all of
its replicas do not appear in any group of d failed machines
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Fig. 5. Measured average number of 64MB file system blocks used by a
single VM in VC and VO.

Failures (d) A(rc)×100%
rc = 3 rc = 6 rc = 9

3 99.999381571 100 100
5 99.993815708 100 100

10 99.925788497 99.999982383 99.999999999
20 99.294990724 99.996748465 99.99999117

TABLE II
A(rc) VALUES IN A CLUSTER WITH P=100 NODES.

among p nodes [9]. Namely,

A(r) = 1−
(

d
r

)
/

(
p
r

)
.

Then the availability of one VM’s snapshot data under VO
approach is the probability that all its file blocks are unaffected
during the system failure:

A(r)No .

For VC, there are two cases: r ≤ d < rc and rc ≤ d.

• r≤ d < rc: In this case there is no PDS data loss and we
need to look at the non-PDS data loss. The full snapshot
availability of a VM is:

A(r)N1 .

Since N1 is typically much smaller than No, the VC
approach has a higher availability of VM snapshots than
VO in this case.

• rc ≤ d: Both non-PDS and PDS file system blocks in VC
can have a loss. The full snapshot availability of a VM
in the VC approach is

A(r)N1 ∗A(rc)
N2 .

That is still smaller than that of VO based on the obser-
vations of our data. There are two reasons for this: 1)
N1 is much smaller than No and we are observing that
N1 +N2 < No. 2) A(r)< A(rc) because r < rc.

Table II lists the A(r) values with different replication
degrees, to demonstrate the gap between A(r) and A(rc).

IV. SYSTEM DESIGN AND IMPLEMENTATION

We describe the design and implementation of a VM-centric
backup system that runs on a cluster of Linux machines with
Xen-based VMs and the QFS [20] distributed file system. All
data needed for the backup service including snapshot data and
metadata resides in this distributed file system. One physical
node hosts tens of VMs, each of which accesses its virtual
machine disk image through the virtual block device driver
(called TapDisk[29] in Xen).

A. Per Node Software Components

Fig. 6. Data flow during snapshot backup

As depicted in Figure 6, there are four key service compo-
nents running on each cluster node for supporting backup and
deduplication: 1) a virtual block device driver, 2) a snapshot
deduplication agent, 3) a snapshot store client to store and
access snapshot data, and 4) a PDS client to support PDS
metadata access.

We use the virtual device driver in Xen that employs a
bitmap to track the changes that have been made to the
virtual disk. Every bit in the bitmap represents a fixed-sized
(2MB) segment, indicating whether the segment has been
modified since last backup. Segments as super-chunks are
further divided into chunks using a content-based chunking
algorithm [15], which brings the opportunity of fine-grained
deduplication. When the VM issues a disk write, the dirty bit
for the corresponding segment is set and this indicates such a
segments needs to be checked during snapshot backup. After
the snapshot backup is finished, the driver resets the dirty bit
map to a clean state. For data modification during backup,
copy-on-write protection is set so that backup can continue to
copy a specific version while new changes are recorded.

The representation of each snapshot has a two-level index
data structure. The snapshot meta data (called snapshot recipe)
contains a list of segments, each of which contains segment



metadata of its chunks (called segment recipe). In snapshot
and segment recipes, the data structures include reference IDs
to the actual data location to eliminate the need for additional
indirection.

B. A VM-centric Snapshot Store

Snapshot
store client

Container data structures

VM

Snapshot store data of one VM

Container 1 Container 2 Container n......

DFS://SnapshotStore/VmId/

Container data

Container index
First chunk ID
in the group

Size Offset

1 ... ...

1001 ... ...

... ... ...

ChunkGroup
header

ChunkGroup
data

... ...

... ...

... ...

... ...
Deletion log

Chunk ID
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217

PDS client
PDS data of all VMs

DFS://PDS/data

PDS data file

Fig. 7. VM snapshot store data structures

We use the QFS distributed file system to hold snapshot
backups. Following the VM-centric idea for the purpose of
fault isolation, each VM has its own snapshot store, containing
new data chunks which are considered to be non-duplicates.
As shown in Figure 7, we explain the data structure of the
snapshot stores as follows. There is an independent store
containing all PDS chunks shared among different VMs as a
single file. Each reference ID to a PDS data chunk in the PDS
index is the offset within the PDS file. Additional compression
is not applied because for the data sets we have tested, we only
observed limited spatial locality among popular data chunks.
On average the number of consecutive PDS index hits is lower
than 7, thus it is not very effective to group a large number
of chunks as a compression and data fetch unit. For the same
reason, we decide not to take the sampled index approach [13]
for detecting duplicates from PDS as limited spatial locality
is not sufficient to enable effective prefetching for sampled
indexing. It should be noted that the above spatial locality
number for PDS data is subject to application characteristics
and we plan to study further on this issue in the future.

PDS data are re-calculated periodically in an offline manner,
but the total data size is small. When a new PDS data set
is computed, the in-memory PDS index is replaced, but the
PDS file on the disk appends the new PDS data identified
and the growth of this file is very slow. The old data are not
removed because they can still be referenced by the existing
snapshots. A periodic cleanup is conducted to remove unused
PDS chunks (e.g. every few months).

For non PDS data, the snapshot store of a VM is divided
into a set of containers and each container is approximately

1GB. The reason for this division is to simplify the compaction
process conducted periodically. When chunks are deleted
from old snapshots, chunks without any reference from other
snapshots can be removed by this compaction process. By
limiting the size of a container, we can control the length of
each round of compaction. The compaction can work on one
container at a time and move the in-use data chunks to another
container. The 1GB setting is based on our experience that
compaction performs well and can complete in a reasonable
amount time.

Each non-PDS container is further divided into a set of
chunk groups for compression. Each chunk compression group
is composed of a set of data chunks and is the basic unit for
compression and for data access and retrieval. In writing a
chunk during backup, the system accumulates data chunks
and stores the entire group as a unit after compression.
This compression can reduce data by several times in our
tested data. For the experiments, we use LZO2 which is a
lossless compression library and does not affect snapshot data
availability. When accessing a particular chunk, its chunk
compression group is retrieved from the storage and decom-
pressed. Given the high spatial locality and usefulness of
prefetching in snapshot chunk accessing [13], [23], retrieval of
a data chunk group naturally works well with prefetching. A
typical chunk compression group contains 1000 chunks in our
experiment and this setting is effective for the VM snapshot
dataset experienced at Alibaba. Each non-PDS data container
is represented by three files: 1) the container data file holds
the actual content, 2) the container index file is responsible for
translating a data reference into its location within a container,
and 3) a chunk deletion log file records all the deletion requests
within the container.

A non-PDS data chunk reference ID stored in the index
of snapshot recipes is composed of two parts: a container ID
with 2 bytes and a local chunk ID with 6 bytes. Each container
maintains a local chunk counter and assigns the current num-
ber as a chunk ID when a new chunk is added to this container.
Since data chunks are always appended to a snapshot store
during backup, local chunk IDs are monotonically increasing.
When a chunk is to be accessed, the segment recipe contains a
reference ID pointing to a data chunk, which is used to lookup
up the chunk data as described shortly.

Three API calls are supported for data backup:
• Append(). For PDS data, the chunk is appended to the

end of the PDS file and the offset is returned as the
reference. This operation may only be used during PDS
recalculation. For non-PDS data, this call places a chunk
into the snapshot store and returns a reference ID to be
stored in the recipe of a snapshot. The write requests
to append chunks to a VM store are accumulated at the
client side. When the number of write requests reaches a
fixed group size, the client compresses the accumulated
chunk group, adds a chunk group index to the beginning
of the group, and then appends the header and data to the
corresponding VM file. A new container index entry is
also created for each chunk group and is written to the



corresponding container index file.
• Get(). Fetching PDS data is straightforward since each

reference ID contains the file offset, and the size of a
PDS chunk is available from a segment recipe. We also
maintain a small data cache for the PDS data service to
speedup common data fetching. To read a non-PDS chunk
using its reference ID with container ID and local chunk
ID, the snapshot store client first loads the corresponding
VM’s container index file specified by the container ID,
then searches the chunk groups using their chunk ID
coverage. After that, it reads the identified chunk group
from DFS, decompresses it, and seeks to the exact chunk
data specified by the chunk ID. Finally, the client updates
its internal chunk cache with the newly loaded content to
anticipate future sequential reads.

• Delete(). Chunk deletion occurs when a snapshot expires
or gets deleted explicitly by a user. When deletion re-
quests are issued for a specific container, those requests
are simply recorded into the container’s deletion log
initially and thus a lazy deletion strategy is exercised.
Once local chunk IDs appear in the deletion log, they
will not be referenced by any future snapshot and can be
safely deleted when needed. This is ensured because we
only dedup against the direct parent of a snapshot, so the
deleted snapshot’s blocks will only be used if they also
exist in other snapshots. Periodically, the snapshot store
identifies those containers with an excessive number of
deletion requests to compact and reclaim the correspond-
ing disk space. During compaction, the snapshot store
creates a new container (with the same container ID)
to replace the existing one. This is done by sequentially
scanning the old container, copying all the chunks that are
not found in the deletion log to the new container, and
creating new chunk groups and indices. Every local chunk
ID however is directly copied rather than re-generated.
This process leaves holes in the chunk ID values, but
preserves the order and IDs of chunks. As a result,
all data reference IDs stored in recipes are permanent
and stable, and the data reading process is as efficient
as before. Maintaining the stability of chunk IDs also
ensures that recipes do not depend directly on physical
storage locations, which simplifies data migration.
It should be emphasized that the deleted chunks are
marked in the log, but they do not get deleted until
compaction time. Only compaction process will read and
use this information. New snapshots should not refer a
chunk marked as deletion and referenced data will never
enter the delete log.

V. EVALUATION

We have implemented and evaluated a prototype of our VC
scheme on a Linux cluster of machines with 8-core 3.1Ghz
AMD FX-8120 and 16 GB RAM. Our implementation is based
on the Alibaba cloud platform [1], [31] and the underlying
DFS uses QFS with default replication degree 3 while the
PDS replication degree is 6. Our evaluation objective is to

study deduplication efficiency and resource usage of VC,
and assess its processing time and backup throughput, and
the benefit in fault tolerance. We will compare VC with
a VO approach using stateless routing with binning (SRB)
based on the previous work [8], [3]. SRB executes distributed
deduplication by routing data chunks to cluster machines [8]
using a min-hash function [3]. Once a data chunk is routed to
a machine, the chunk is compared with the fingerprint index
within this machine locally [3]. While this VO approach is
designed for general deduplication and data backup, we choose
it as a baseline for comparison because the other approaches
would have a similar level of computing resource usage.

We have performed a trace-driven study based on a produc-
tion dataset from Alibaba Aliyun’s cloud platform [1] with
about 2500 VMs, running on 100 physical machines. Each
machine in the production environment is more powerful than
our evaluation cluster and has 16 cores with 48GB memory.
Each machine hosts up to 25 VMs and each VM keeps 10
automatically-generated snapshots in the storage system while
a user may instruct extra snapshots to be saved. Each VM has
about 40GB of storage data on average including OS and user
data disk while the size distribution is highly skewed and the
maximum to the average ratio is close to 40. Each physical
machine deals with about 10TB of snapshot data and each
1TB data represents one snapshot version of 25 VMs. Thus
the total amount of raw snapshot in 100 physical machines
is about 1,000TB. The VMs of the sampled data set use
popular operating systems such as Debian, Ubuntu, Redhat,
CentOS, win2008 and win2003. Each machine hosts a variety
of applications running these operating systems including web
services and database management. The amount of daily data
update is not significant and the daily snapshot change rate
is about 1-3% on average. The fingerprint for variable-sized
chunks is computed using their SHA-1 hash [18], [22]. Note
that variable sizing is not required in our scheme.

A. Deduplication Efficiency and Memory Usage

VC VO
No PDS No PDS 2%PDS SRB
no simil simil simil

Dedup 75.86% 87.91% 96.01% 97.86%
Efficiency
Memory N/A 10MB 118MB 2.4GB

per-machine

TABLE III
DEDUPLICATION EFFICIENCY AND PER-MACHINE MEMORY USAGE FOR

DIFFERENT VC SETTINGS AND SRB.

Table III shows the deduplication efficiency and per-
machine memory usage for SRB and VC with different
settings. Deduplication efficiency is defined as the percent of
duplicate chunks removed, comparing to a perfect scheme
which detects and removes all duplicates. Notice σ is the
percentage of unique chunks selected in PDS. With σ = 2%,
Column 4 shows its deduplication efficiency can reach over
96%. The loss of efficiency in VC is caused by the restriction



of the physical memory available in the cluster for fast in-
memory PDS index lookup. Memory usage per machine is
low because each machine only hosts 1/p of index for PDS
plus some buffer space where p is the number of physical
machines. SRB in Column 5 can deliver up to 97.86% dedu-
plication efficiency, which is slightly better than VC. Thus
this represents a tradeoff as VC uses much less resource and
faster deletion. Memory usage per machine in SRB includes
the Bloom filter space to access the on-disk index and cache
for frequently or recently accessed chunk index.

Column 2 of Table III shows deduplication efficiency of VC
without using PDS and local similarity search. It just relies on
the file segment dirty bits maintained in the Alibaba virtual
machine platform. Thus there is no memory cost (marked as
N/A). Thus segment-level version detection reduces the data
size to about 24.14% of original data, which is a 75.86%
reduction. Namely 10TB snapshot data per machine is reduced
to 2.414TB. Column 3 shows the deduplication result with
similarity-guided local. It can further reduce the data size to
about 1.205T, which is 12.05% of original. Thus it delivers a
50.08% reduction after the version-based deduplication. The
popularity-guided global deduplication with σ = 2% reduces
the data further to 860GB, namely 8.6% of the original size. So
it provides additional 28.63% reduction. The overall memory
usage of VC for each physical machine is very small, which
is insignificant to other hosted cloud services. In comparison,
the 2.4GB per-machine memory usage of SRB is very visible
to other services.

We explain why similarity-guided local search provides
such an improvement as follows. There are VMs in which
data segments are moved to another location on disk, for
example when a file is rewritten rather than modified in
place, and a dirty-bit or offset-only based detection would not
be able to detect such a movement. We have found that in
approximately 1/3 of the VMs in our dataset this movement
happens frequently. Compared a previous approach [31] which
maintains additional offset dirty bits within each segment,
local similarity-guided search adds additional deduplication
efficiency about 3%, which is a saving of 300GB per machine.

Comparing the experiment results of the sampled index
method [13], our scheme achieves a 85K:1 ratio between
raw snapshot data and memory usage with 96% deduplication
efficiency while the sampled index method achieves 20K:1
(25GB memory per 500TB raw data) with 97% deduplication
efficiency. Thus our scheme is more memory efficient with
a good tradeoff for deduplication efficiency. If we change
σ = 4%, the deduplication efficiency of VC increases to
96.58% while memory usage per machine increases to about
220MB. Notice also that the sampled index method is designed
for single-machine deduplication.

B. More on Resource Usage and Processing Speed

We show additional experimental results on resource usage,
processing time and throughput of VC.

Storage cost of replication. When the replication degree
of both PDS and non-PDS data is 3, the total storage for all

Tasks CPU Mem Read Write Backup Time
(MB) (MB/s) (MB/s) (hrs)

1 19% 118 50 16.4 1.31
2 35% 132 50 17.6 1.23
4 63% 154 50 18.3 1.18
6 77% 171.9 50 18.8 1.162

TABLE IV
RESOURCE USAGE OF CONCURRENT BACKUP TASKS AT EACH PHYSICAL

MACHINE WITH σ = 2% AND I/O THROTTLING.

VM snapshots in each physical machine takes about 3.065TB
on average before compression and 0.75TB after compression.
Allocating one extra copy for PDS data only adds 7GB in total
per machine. Thus PDS replication degree 6 only increases the
total space by 0.685% while PDS replication degree 9 adds
1.37% space overhead, which is still small.

Memory usage with multi-VM processing and disk
bandwidth with I/O throttling. We have further studied the
memory and disk bandwidth usage when running concurrent
VM snapshot backup on each machine with σ = 2%. Table
IV gives the resource usage when running 1 or multiple VM
backup tasks at the same time on each physical machine.
Each task handles the backup of one VM snapshot including
deduplication. “CPU” column is the percentage of a single
core used. “Mem” column includes ∼100MB memory usage
for PDS index and other space cost for executing deduplication
tasks such as recipe metadata and cache. The “Read” column
is controlled to 50MB/s local disk bandwidth usage with I/O
throttling so that other cloud services are not significantly
impacted. The peak raw storage read performance is about
300MB/s and we only use 16.7% with this collocation con-
sideration. “Write” is the I/O write usage of QFS; note that
each QFS write triggers disk writes in multiple machines due
to data replication. 50MB/s dirty segment read speed triggers
about 16.4MB/s disk write for non duplicates with one backup
task.

Table IV shows that when each machine conducts backup
one VM at a time, the entire cluster backup completes in 1.31
hours. Since there are about 25 VMs per physical machine,
we could execute more tasks in parallel at each machine. But
adding more backup concurrency does not shorten the overall
time significantly in this case because of the controlled disk
read bandwidth usage. When I/O throttling is not used, we
will show below that processing multiple VMs concurrently
does improve the throughput of backup.

Processing time breakdown without I/O throttling. Ta-
ble V shows the average time breakdown for processing a dirty
VM segment in milliseconds under VC and SRB. VC uses
σ = 2%. The overall processing latency of SRB is about 23.9%
slower than VC. For VC, the change of σ does not significantly
affect the overall backup speed as PDS lookup takes only a
small amount of time. It has a breakdown of processing time.
“Read/Write” includes snapshot reading and writing from disk,
and updating of the metadata. “Network” includes the cost of
transferring raw and meta data from one machine to another
during snapshot read and write. “Index Lookup” is the disk,



Algorithm Time Spent in Task (ms)
Read/Write Network Index Lookup

SRB 73 17.078 20.098
VC σ = 2% 66.328 16.626 5.784

TABLE V
AVERAGE TIME IN MILLISECONDS TO BACKUP A DIRTY 2MB VM

SEGMENT UNDER SRB AND VC WITH I/O THROTTLING.

Concurrent Throughput without
backup tasks I/O throttling (MB/s)
per machine Backup Snapshot Store QFS

(write) (write)
1 1369.6 148.0 35.3
2 2408.5 260.2 61.7
4 4101.8 443.3 103.1
6 5456.5 589.7 143.8

TABLE VI
THROUGHPUT OF SOFTWARE LAYERS PER MACHINE UNDER DIFFERENT

CONCURRENCY AND WITHOUT I/O THROTTLING.

network and CPU time during fingerprint comparison. This
includes PDS data lookup for VC and index lookup from
disk in SRB. The network transfer time for VC and SRB is
about the same, because the amount of raw data they transfer
is comparable. SRB spends slightly more time for snapshot
read/write because during each snapshot backup, SRB involves
many small bins, while VC only involves few containers
with a bigger size. Thus, there are more opportunities for
I/O aggregation in VC to reduce seek time. SRB also has
a higher cost for index access and fingerprint comparison
because most chunk fingerprints are routed to remote machines
for comparison while VC handles most chunk fingerprints
locally.

Throughput of software layers without I/O throttling.
Table VI shows the average throughput of software layers
when I/O throttling is not applied to control usage. The
“Backup” column is the throughput of the backup service
per machine. “Snapshot store” is the write throughput of the
snapshot store layer and the significant reduction from this
column to “Backup” column is caused by deduplication. Only
non-duplicate chunks trigger a snapshot store write. Column
“QFS” is the write request traffic to the underlying file system
after compression. For example, with 148 MB/s write traffic to
the snapshot store, QFS write traffic is about 35.3 MB/s after
compression. However, the underlying disk storage traffic will
be three times greater with replication. The result shows that
the backup service can deliver up to 5.46 GB/s per machine
without I/O restriction under 6 concurrent backup tasks. For
our dataset, each version of total snapshots has abut 1TB per
machine for 25 VMs and thus each machine would complete
the backup in about 3.05 minutes. With a higher disk storage
bandwidth available, the above backup throughput would be
higher. In comparison, the sampled index method [13] achieves
about 5.5GB per second with 16 concurrent backup tasks
and 6GB per second with more tasks. Thus the per-machine
throughput of our scheme is reasonable.

C. Snapshot Availability

We demonstrate the snapshot availability of VC and SRB-
based VO when there are failed machines. Appendix III-B
provides a detailed analysis of snapshot availability and the
estimated result depends on how frequent a duplicate chunk is
shared among snapshots of VMs. The trace driven execution
allows us to estimate the number of file blocks shared by each
VM in the VO and VC approaches and then calculate the
average availability of VM snapshots.

Table VII shows the estimated availability of VM snapshots
when there are up to 20 machines failed in a cluster. The
case for a 1000-node cluster is also listed, assuming file block
sharing patterns among VMs remain the same from p = 100
setting to p = 1000. Each machine hosts about 25 VMs in
both cases and with different p values, the availability varies
when the number of failures in the cluster changes.

Table VII shows that VC has a significantly higher avail-
ability than VO. With p = 100 and 3 failures, VO with 69.5%
availability could lose data in 763 VMs while VC with 99.7%
only loses data for 8 VMs out of 2500 VMs. The key reason
is that for most data in VC, only a single VM can be affected
by the loss of a single file block while in VO, the loss of
a single block tends to affect many VMs. The availability of
PDS data is very high as seen in Table II with more failures.
On the other hand, the increasing of failures gradually affects
the availability of non-PDS data. Overall speaking, VC can
tolerate more failures compared to VO. When the number of
physical machines failed reaches 20, the availability of VO
reaches 0% and VC also drops to 1.13%. This is because
even though availability for PDS data remains good, VC still
loses many of the non-PDS blocks given the replication degree
for non-PDS is 3. When p = 1000, the percentage of failures
is then 2% and VC delivers a meaningful availability with
99.62%, outperforming VO significantly.

Figure 8 shows the impact of increasing PDS data repli-
cation degree. While the impact on storage cost is small
(because we have separated out only the most popular blocks),
a replication degree of 6 has a significant improvement over
4. The availability does not increase much when increasing
rc from 6 to 9 and the benefit is minimal after rc > 9. That
is because when the number of failed machines increases
beyond 6, the non-PDS data availability starts to deteriorate
significantly given its replication degree r is set to 3. Thus
when r = 3, the reasonable choice for rc would be a number
between 6 and 9.

Failures (d)
VM Snapshot Availability(%)

p = 100 p = 1000
VO VC VO VC

3 69.548605 99.660194 99.964668 99.999669
5 2.647527 96.653343 99.647243 99.996688

10 0 66.246404 95.848082 99.96026
20 0 1.132713 66.840855 99.623054

TABLE VII
AVAILABILITY OF VM SNAPSHOTS FOR VO (r = 3) AND VC (rc = 6,

r = 3).
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Fig. 8. Availability of VM snapshots in VC with different PDS replication
degrees on a p = 100-node cluster.

VI. DISCUSSIONS AND CONCLUSIONS

The main contribution of this paper is the development and
analysis of a low-profile and VM-centric deduplication scheme
that uses a small amount of system resource in both snap-
shot deduplication and deletion while delivering competitive
deduplication efficiency. The VM-centric design also allows
an optimization for better fault isolation and tolerance. Our
evaluation has the following results.
• Competitive deduplication efficiency with a tradeoff. The

proposed VC scheme can accomplish over 96% of what
complete global deduplication can do. In comparison,
SRB [8], [3] can accomplish 97.86% while the sampled
index [13] can deliver 97% for a different test dataset.
Local similarity search removes 12.05% of the original
data after using a segment-based dirty bit method and
among them, 3% is contributed by the increased similarity
search. Notice that our earlier study [31] reaches 92%
of what global deduplication can do with a relatively
simpler strategy and thus the new design in this paper
makes a VM-centric scheme much more competitive to
a traditional VM-oblivious approach.

• Lower resource usage in deduplication. The VC scheme
achieves a 85K:1 ratio between raw snapshot data and
memory usage and is much more memory-efficient than
SRB with 4K:1 ratio and sampled index with 20K:1.
VC with 100 machines takes 1.31 hours to complete
the backup of 2,500 VMs using 19% of one core and
16.7% of IO bandwidth per machine. Processing time
of VC is 23.9% faster than SRB in our tested cases
and the per-machine throughput of VC is reasonable
based on the result from [13]. Noted that both VC and
SRB are designed for a distributed cluster architecture
while the sampled index method is for a single-machine
architecture.

• Higher availability. The snapshot availability of VC is
99.66% with 3 failed machines in a 100-machine cluster
while it is 69.54% for SRB or a VM-oblivious approach.
The analysis shows that the replication degree for the
popular data set between 6 and 9 is good enough when
the replication degree for other data blocks is 3, and adds

only a small cost to storage.
The offline PDS recomputation does require some modest I/O
and memory resource and since the recomputing frequency
is relatively low (e.g. on a monthly basis), we expect such
resource consumption is acceptable in practice. The erasure
code has been shown to be effective to improve reliability on
duplicated data storage [16] and such a technique can be in-
corporated. Other interesting future work includes studying the
physical layout of backup images [25] and further assessing
the benefit of PDS separation.
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APPENDIX A
IMPACT OF TOP k VALUE ON DEDUPLICATION EFFICIENCY

Choosing the top k value for the most popular chunks affects
the deduplication efficiency. We analyze this impact based on
the characteristics of the VM snapshot traces studied from ap-
plication datasets. Additional parameters used in this analysis
are defined in Table VIII. The popularity of data chunks after
local deduplication follows a Zipf-like distribution[5] and its
exponent α is ranged between 0.65 and 0.7.

k The number of top most popular chunks
selected for deduplication

c The total amount of data chunks in a cluster
of VMs

cu The total amount of unique fingerprints after
perfect deduplication

fi The frequency for the ith most popular fin-
gerprint

δ The percentage of duplicates detected in lo-
cal deduplication

σ The percentage of unique data belonging to
PDS

TABLE VIII
PARAMETERS FOR MODELING DEDUPLICATION.

By Zipf-like distribution, fi = f1/iα . The total number of
chunks in our backup storage which has local duplicates
excluded is c(1− δ ), this can be represented as the sum of
each unique fingerprint times its frequency:

f1

cu

∑
i=1

1
iα

= c(1−δ ).

Given α < 1, f1 can be approximated with integration:

f1 =
c(1−α)(1−δ )

c1−α
u

.



Thus putting the k most popular fingerprints into PDS index
can remove the following number of chunks during global
deduplication:

f1

k

∑
i=1

1
iα
≈ f1

∫ k

1

1
xα

dx≈ f1
k1−α

1−α
= c(1−δ )σ1−α .

Deduplication efficiency of the VC approach using top k
popular chunks is the percentage of duplicates that can be
detected:

Ec =
cδ + c(1−δ )σ1−α

c− cu
. (1)

We store the PDS index using a distributed shared memory
hash table such as Memcached and allocate a fixed percentage
of memory space per physical machine for top k popular items.
As the number of physical machines (p) increases, the entire
cloud cluster can host more VMs; however, ratio σ which is
k/cu remains a constant because each physical machine on
average still hosts a fixed constant number of VMs. Then the
overall deduplication efficiency of VC defined in Formula 1
remains constant. Thus the deduplication efficiency is stable
as p increases as long as σ is a constant.

40 60 80 100 120 140 160 180

20

30

40

Total num. chunks stored (in billions)

P
D

S
C

ov
er

ag
e

(%
)

Measured (σ = 1%) Measured (σ = 2%)
Measured (σ = 4%) Predicted (σ = 1%)
Predicted (σ = 2%) Predicted (σ = 4%)

Fig. 9. Predicted vs. actual PDS coverage as data size increases.

Ratio σ1−α represents the percentage of the remaining
chunks detected as duplicates in global deduplication due to
PDS. We call this PDS coverage. Figure 9 shows predicted
PDS coverage using σ1−α when α is fixed at 0.65 and
measured PDS coverage in our test dataset. σ = 2% represents
memory usage of approximately 100MB memory per machine
for the PDS. While the predicted value remains flat, measured
PDS coverage increases as more VMs are involved. This is
because the actual α value increases with the data size.
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[9] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and
J. McPherson. Cohadoop: Flexible data placement and its exploitation
in hadoop. Proc. VLDB Endow., 4(9):575–585, June 2011.

[10] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, Y. Zhang, and
Y. Tan. Design tradeoffs for data deduplication performance in backup
workloads. In Proceedings of the 13th USENIX Conference on File and
Storage Technologies, FAST 2015, Santa Clara, CA, USA, February 16-
19, 2015, pages 331–344, 2015.

[11] Y. Fu, H. Jiang, N. Xiao, L. Tian, F. Liu, and L. Xu. Application-aware
local-global source deduplication for cloud backup services of personal
storage. IEEE Trans. Parallel Distrib. Syst., 25(5):1155–1165, 2014.

[12] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In
SOSP’03, pages 29–43. ACM.

[13] F. Guo and P. Efstathopoulos. Building a high-performance deduplica-
tion system. In ATC’11. USENIX.

[14] K. Jin and E. L. Miller. The effectiveness of deduplication on virtual
machine disk images. In SYSTOR’09. ACM.

[15] E. Kave and T. H. Khuern. A Framework for Analyzing and Improving
Content-Based Chunking Algorithms. Technical Report HPL-2005-
30R1, HP Laboratory, 2005.

[16] X. Li, M. Lillibridge, and M. Uysal. Reliability analysis of deduplicated
and erasure-coded storage. SIGMETRICS Perform. Eval. Rev., 38(3):4–
9, Jan. 2011.

[17] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezis, and
P. Camble. Sparse Indexing: Large Scale, Inline Deduplication Using
Sampling and Locality. In FAST’09, pages 111–123. USENIX.

[18] U. Manber. Finding similar files in a large file system. In USENIX
Winter 1994 Technical Conference, pages 1–10.

[19] Nutanix. Nutanix Complete Cluster, A Technical Whitepaper , 2013.
[20] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly.

The quantcast file system. Proc. VLDB Endow., 6(11):1092–1101, Aug.
2013.

[21] S. Quinlan and S. Dorward. Venti: A New Approach to Archival Storage.
In FAST’02, pages 89–101. USENIX.

[22] M. O. Rabin. Fingerprinting by random polynomials. Technical Report
TR-CSE-03-01, Center for Research in Computing Technology, Harvard
University, 1981.

[23] S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive content-addressed
storage in foundation. In ATC’08, pages 143–156. USENIX.

[24] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In MSST’10, pages 1–10. IEEE.

[25] S. Smaldone, G. Wallace, and W. Hsu. Efficiently storing virtual machine
backups. In 5th USENIX HotStorage (Hot Topics in Storage and File
Systems), San Jose, CA, USA, June 27-28, 2013, 2013.

[26] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti. idedup: latency-
aware, inline data deduplication for primary storage. In FAST’12, pages
24–24. USENIX.

[27] Y. Tan, H. Jiang, D. Feng, L. Tian, Z. Yan, and G. Zhou. SAM: A
semantic-aware multi-tiered source de-duplication framework for cloud
backup. In 39th International Conference on Parallel Processing, ICPP



2010, San Diego, California, USA, 13-16 September 2010, pages 614–
623, 2010.

[28] M. Vrable, S. Savage, and G. M. Voelker. Cumulus: Filesystem backup
to the cloud. In FAST’09, pages 225–238. USENIX.

[29] A. Warfield, S. Hand, K. Fraser, and T. Deegan. Facilitating the
development of soft devices. page 22. USENIX.

[30] J. Wendt. A Candid Examination of Data Deduplication. White Paper,
Symantec Corporation , 2009.

[31] W. Zhang, H. Tang, H. Jiang, T. Yang, X. Li, and Y. Zeng. Multi-
level selective deduplication for vm snapshots in cloud storage. In
CLOUD’12, pages 550–557. IEEE.

[32] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the data


