
978-1-4673-7619-8/15/$31.00 © 2015 IEEE

Fig. 1. Performance comparison in a virtualized

and a non-virtualized environment with a SATA

SSD and an NVMe SSD through FIO.

Improving Performance by Bridging the Semantic Gap

between Multi-queue SSD and I/O Virtualization Framework

Tae Yong Kim
*†

, Dong Hyun Kang
*
, Dongwoo Lee

*
, Young Ik Eom

*

*
College of Information and Communication Engineering, Sungkyunkwan University, Suwon, South Korea

†
SSD Development Team, Samsung Electronics, Hwasung, South Korea

{taeyongkim, kkangsu, dwlee, yieom}@skku.edu

Abstract—Virtualization has become one of the most helpful

techniques, and today it is prevalent in several computing

environments including desktops, data-centers, and enterprises.

However, an I/O scalability issue in virtualized environments still

needs to be addressed because I/O layers are implemented to be

oblivious to the I/O behaviors on virtual machines (VM). In

particular, when a multi-queue solid state drive (SSD) is used as

a secondary storage, each VM reveals semantic gap that degrades

the overall performance of the VM by up to 74%. This is due to

two key problems. First, the multi-queue SSD accelerates the

possibility of lock contentions. Second, even though both the host

machine and the multi-queue SSD provide multiple I/O queues

for I/O parallelism, existing Virtio-Blk-Data-Plane supports only

one I/O queue by an I/O thread for submitting all I/O requests.

In this paper, we propose a novel approach, including the design

of virtual CPU (vCPU)-dedicated queues and I/O threads, which

efficiently distributes the lock contentions and addresses the

parallelism issue of Virtio-Blk-Data-Plane in virtualized

environments. We design our approach based on the above

principle, which allocates a dedicated queue and an I/O thread

for each vCPU to reduce the semantic gap. We also implement

our approach based on Linux 3.17, and modify both the Virtio-

Blk frontend driver of guest OS and the Virtio-Blk backend

driver of Quick Emulator (QEMU) 2.1.2. Our experimental

results with various I/O traces clearly show that our design

improves the I/O operations per second (IOPS) in virtualized

environments by up to 167% over existing QEMU.

Keywords—multi-queue; solid state drive; non-volatile memory

express; lock contention; parallelism; virtualization; quick

emulator

I. INTRODUCTION

Today, virtualization is one of the most helpful techniques,
which has been stabilized through several optimization
techniques. Therefore, it is now prevalent in several computing
environments including desktops, data-centers, and enterprises.
However, in the area of virtualization, I/O performance issues
still need to be addressed because I/O layers are implemented
to be oblivious to the I/O behaviors. Thus, both industry and
academia have focused on optimizing the I/O layers in
virtualization. Their approaches can be classified into two
categories: hardware approach and software approach. Today,
a number of chip manufacturers provide a variety of
technologies and interfaces, such as Virtualization Technology
(VT) [1], Virtualization Extensions (VEs) [2], Single Root I/O

Virtualization (SR-IOV) [3], and I/O Memory Management
Unit (IOMMU) [4], for supporting virtualization at the
hardware level. However, these approaches can be
inappropriate in some virtualized environments since they
require specialized hardware, even though their performance
has practically reached that of bare-metal systems. In addition,
SR-IOV and IOMMU limit the benefits of virtualization (e.g.,
VM migration [5], [6]) by dedicating a virtual machine to a
physical device of the host machine. Therefore, many efforts
have been made to overcome the limitations of the hardware
approaches. Some researchers have reported the problems of
I/O overheads incurred during communication between the
guest and the host machine (e.g., exit and duplicated I/O layers)
and have proposed software-based approaches such as Virtio
[7], Kernel-based Virtual Machine (KVM) [8], and Efficient
and Scalable Para-virtual I/O System (ELVIS) [9] in order to
minimize the I/O overheads.

A multi-queue SSD with Peripheral Component
Interconnect Express (PCIe) [10] dramatically accelerates the
I/O performance of a secondary storage by exploiting
parallelism in SSD (e.g., Non-Volatile Memory Express
(NVMe) SSD). Unfortunately, it does not directly result in
overall system performance. This is because the block layer of
the operating system waits to hold a lock whenever an I/O
request is sent from a single request queue to the multi-queue
SSD. To address this lock contention problem, in previous
work, a block layer was proposed that efficiently improves the
system performance by using two levels of queues: software
staging queues and hardware dispatch queues [11]. However,
in virtualized environments based on QEMU [12], the
proposed mechanism cannot take advantage of the multi-queue
SSD because QEMU has another lock contention problem,
which is incurred by using the Virtio-Blk-Data-Plane technique
[17]. This technique was introduced to optimize the
performance of VMs. It provides a dedicated I/O thread for
each I/O device in the host, and skips some of the duplicated
I/O layers between the host and the guest (e.g., the I/O
scheduler and the block layer). The dedicated I/O thread
directly issues I/O requests of its vCPU to a shared circular
queue in QEMU after holding the lock on the single queue. In
addition, the dedicated I/O thread, which is responsible for
submitting I/O requests in the single queue to the host kernel,
periodically attempts to hold the lock on the single queue. As a
result, QEMU significantly suffers from frequent lock

Fig. 1. Performance comparison in a virtualized and a non-virtualized

environment with a SATA SSD and an NVMe SSD through FIO.

contentions. To relieve the lock contentions in virtualized
environments, Ming Lei proposed the design of Virtio-Blk
multiple queues with two optimization schemes [13]. However,
the proposed approach cannot fully take advantage of the
multi-queue SSD since the I/O scalability problem remains due
to using the single I/O thread. Oh et al. also proposed a scheme
involving a pipelined polling I/O thread to optimize the
performance of the I/O thread. However, they did not consider
the I/O scalability of a VM [14].

To understand the impact on the performance of the VM
when using the multi-queue SSD and the SSD based on Serial
ATA (SATA) interface, we first measured random read
performance by varying the number of I/O-intensive processes
with a Flexible I/O tester (FIO) benchmark [15], and compared
the performance to that of bare-metal systems (Figure 1). Our
experimental results show two important implications. First,
the VM with the multi-queue SSD reveals poor performance,
with a decrease of up to 74% as the number of I/O processes
increases. Second, the results of the SATA-based SSD are
similar to those obtained on bare-metal systems. These results
imply that the performance of the VM decreases as the I/O
latency increases because the high I/O latency accelerates the
possibility of the lock contentions that degrade the overall
performance of the VM. In addition, the existing Virtio-Blk-
Data-Plane in QEMU utilizes only one I/O request queue by an
I/O thread for submitting all I/O requests, even though both the
host machine and the multi-queue SSD provide multiple I/O
request queues for parallelism. As a result, the lock contention
problem and the parallelism issue incur the semantic gap
between the host and the guest.

In this paper, we propose a novel approach with the design
of vCPU-dedicated queues and I/O threads, to address the
semantic gap. vCPU-dedicated request queues efficiently
distribute the lock contentions by allocating a dedicated queue
for each vCPU. vCPU-dedicated I/O threads improve the
parallelism by exploiting the characteristics of the multi-queue
SSD (e.g., multiple queue-pairs and multiple interrupts).

Our main contributions can be summarized as follows:

 Motivation and Design. We analyze the performance
of the virtualized systems and find significant
performance degradations in the virtualized system with
multi-queue SSD. This observation motivates the

design of our approach. Based on this observation, we
design a novel approach that distributes the lock
contentions and improves the parallelism by extending
the Virtio-Blk-Data-Plane with vCPU-dedicated queues
and I/O threads. We also implement the prototype of the
proposed approach by modifying both the frontend
driver of the guest OS and the backend driver of QEMU
2.1.2.

 Three optimizations. In order to further optimize the
I/O performance, we introduce three optimization
techniques as follows. (1) We set the CPU affinity for
callback functions of the request queues to prevent
unnecessary CPU scheduling. (2) We eliminate the
inter-process interrupt (IPI) mechanism of the guest to
simplify I/O path. (3) We dynamically adjust the
number of I/O requests for I/O batch submission
according to incoming workload volumes.

 Evaluations on both a null block device and a real
SSD. We evaluate our approach on a null block device
[19], which simulates a multi-queue virtual device by
receiving I/O requests and acknowledging I/O
completions immediately. Also, we evaluate a real
NVMe SSD to increase the scope of our evaluation. The
experimental results clearly show that the proposed
approach improves the I/O performance in a virtualized
environment by up to 167% over the state-of-the-art
virtualization approach, known as Virtio-Blk-Data-
Plane.

The remainder of this paper is organized as follows. We
explain the multi-queue SSD and describe the architecture of
QEMU and its behaviors in Section II. We present the design
of our approach and three optimization techniques in Section
III. In Section IV, we analyze the results of our evaluation.
Finally, we discuss related works in Section V and conclude
our findings in Section VI.

II. BACKGROUND

A. Multi-queue SSD

While SSDs have been improved due to internal parallelism
of Non-Volatile Memory (NVM) and fast response time, their
potential could not be further exploited due to the physical
limit on hardware. For example, SATA (which is a typical
storage interface in desktop environments) has 6 Gbps in link
speed, and the link speed of SAS, which is a standard in
enterprises, is up to 12 Gbps. Unfortunately, recently-released
SSDs have already reached the full speed provided by
hardware interfaces. In short, the performance bottleneck has
shifted from SSDs to host interfaces.

A multi-queue SSD is a PCIe-based SSD with novel
protocols such as NVMe and Small Computer System Interface
(SCSI) express, which contribute to higher performance when
compared to a SATA SSD and a Serial Attached SCSI (SAS)
SSD. Thus, this has become a general trend, replacing
conventional SSDs. Meanwhile, PCIe was previously utilized
as a graphic device interface due to its powerful link speed,
reaching 128 Gbps. However, it has recently been used as a
storage interface because of its low latency.

Fig. 2. Comparison of I/O paths and main components between SATA SSD
and PCIe-based SSD.

Fig. 3. Primary software layers and data structures for I/O requests in a

single VM with four vCPUs.

PCIe has many advantages as a storage interface. First,
PCIe 3.0 supports 8 Gbps link speed per lane and 128 Gbps
with 16 lanes. This is ten times faster than typical storage
interfaces. Second, PCIe reduces hardware overheads. A PCIe-
based SSD can be directly connected to the PCIe interface,
while conventional SSDs are attached to the host through an
additional host chipset or host bus adaptor. This difference
creates a bus overhead of 1 microsecond or more per command.
The overhead is not a major issue for HDDs which transfer
4KB of data in 10 microseconds, but SSDs can transfer the
same size data in 2 microseconds or less. Thus, reducing
hardware overheads is essential for developing high
performance SSDs. For these reasons, PCIe interface qualifies
as a storage interface [16].

The PCIe-based SSD needs a software interface, namely
protocol, as well as a hardware interface to communicate with
a computer system; NVMe is a typical example, and Advanced
Host Controller Interface (AHCI) and SCSI express can also be
used. However, AHCI is not suitable for multi-core systems
with high performance storage as it is an old standard for
HDDs, and the specification of SCSI express is still ongoing,
and no product has yet been released. NVMe has been
originally designed to address the needs of desktop, data-center,
and enterprise systems by maximizing parallelism and
supporting future NVM technologies. To achieve its goals,
NVMe has two primary characteristics: it has up to 64K I/O
queues with 64K commands per queue and is an aggregation of
2K MSI-X interrupts [10]. These features mean that NVMe can
transfer data concurrently on multi-core systems without
synchronizations among the CPU cores. Figure 2 shows
multiple layers with three data paths of two software protocols
for the multi-queue SSD. Unlike AHCI, NVMe has separate
submission and completion queues for handling I/O requests.

Furthermore, NVMe applies 2,048 interrupts with a steering
scheme while AHCI supports only a single interrupt.

 Generally, the development of storage technologies
requires structural changes in software and computer systems.
Multi-queue SSDs would be used broadly from desktops, data-
centers, and enterprises due to their advantages [16]. Several
manufacturers have been releasing PCIe-based NVMe SSDs,
and their performance reaches up to 750K IOPS of 4KB
random read. Moreover, their throughput achieves up to 3 GB/s
in 32KB sequential read. These I/O performance improvements
challenge the processing ability of software such as the OS and
applications. In particular, it is probable that PCIe-based
NVMe SSDs largely affect virtualized systems because of
complicated architectures on software.

B. QEMU and Virtio-Blk-Data-Plane

In our research, we use QEMU to create a VM with Virtio-
Blk-Data-Plane (which is an outstanding I/O virtualization
technique) and propose a new architecture based on Virtio-Blk-
Data-Plane through specific structural analyses. QEMU is a
typical open source machine emulator and hypervisor.
Especially, QEMU achieves near native performance by
executing the guest code directly on the host CPU using KVM
or Xen in Linux on x86 machines [7], [8].

Virtio-Blk-Data-Plane rapidly accelerates I/O operations
through a para-virtualized I/O technique called Virtio-Blk. The
main feature of Virtio-Blk-Data-Plane is a dedicated per-device
thread for processing I/O requests. When several storage
devices are attached on the same VM, this approach can
process I/O requests of each device in parallel by avoiding
synchronizations that requires acquiring a global mutex. As a

Fig. 4. Comparison of the architecture between (a) virtio-blk-data-plane and

(b) vCPU-dedicated queue and I/O thread.

result, the Virtio-Blk-Data-Plane technique achieved up to
200K IOPS per SCSI target server, or a total of 1.5M IOPS
with 7 SCSI target servers at 4KB I/O requests in contrast to
the Virtio-Blk reaching a total of 147K IOPS [17].

Actually, the process of I/O request transfer from a vCPU
in a VM to the host device is quite complicated. Figure 3
illustrates a typical architecture when a single VM is created by
QEMU with four vCPUs, and shows an I/O path from the
vCPUs to the device. As shown in Figure 3, the number of
software layers and data structures through which an I/O
request should pass is excessive as compared to non-virtualized
systems. The software layers prevent a VM from improving
I/O performance. Therefore, we focus on the frontend driver in
the guest OS and the backend driver in QEMU, and attempt to
enhance I/O virtualization mechanism in our research.

III. ARCHITECTURE AND IMPLEMENTATION

In this section, we propose the design of vCPU-dedicated
queues and I/O threads that addresses I/O scalability problem.
Various optimizations are possible to improve performance.
However, the significant semantic gap between multi-queue
SSD and I/O virtualization framework should be realized and
resolved above all. This not only improves performance, but
also motivates other optimizations.

A. Design of vCPU-dedicated queues and I/O threads

vCPU-dedicated queue: First, single request queue in
QEMU should be modified to solve the lock contention
problem when QEMU uses the Virtio-Blk-Data-Plane
technique. According to our analysis, one vCPU basically
acquires a single global mutex when accessing the shared
request queue atomically. In this situation, the other vCPUs
which try to access the queue should wait the mutex
continuously. This operation poses severe lock contentions

among the vCPUs, which result in unnecessary CPU
scheduling.

Therefore, we provide QEMU with a vCPU-dedicated
request queue per vCPU. The considerable advantage of our
approach is the advanced vCPU parallelism achieved by
minimizing the lock contentions. Figure 4 shows our abstract
architecture, which mainly describes major threads and data
structures, before (a) and after (b) applying the vCPU-
dedicated queues when a VM that consists of 4 vCPUs is
created by QEMU. The number of request queues located
between vCPUs and I/O threads is significantly different
between the two architectures. In previous studies [13], [14], a
small number of request queues were utilized regardless of the
number of vCPUs in a VM. When there are only a few request
queues and the VM has more vCPUs than request queues in
order to enhance overall performance on multi-core system, the
performance is again limited due to lock contentions. Thus, to
sustainably diminish the lock contentions, the number of
request queues should be identical to the number of vCPUs. As
a result, if the number of I/O-intensive processes is equal to the
number of vCPUs, the waiting time to acquire the lock
decreases by 80%, from 50 microseconds to 10 microseconds.
Also, in addition to the vCPU-dedicated queue, the mechanism
of the vCPU-dedicated I/O thread is essential to enhance I/O
parallelism.

vCPU-dedicated I/O thread: The main issues on the I/O
parallelism is closely related to the single I/O thread, even
though the vCPU-dedicated queue is able to partially
contribute on the performance. The Linux kernel generally has
per-core software queues and multiple hardware queues for I/O
parallelism. Moreover, the position of the software queue,
where an I/O request will be inserted, is determined by the
index of the host CPU that submits the I/O requests. However,
even if each vCPU requests I/Os, the host OS cannot recognize
which vCPU submits the I/O request because the single I/O
thread actually submits all I/O requests. For this reason, when a
VM has a single I/O thread, all I/O requests are inserted into
one queue in the host block layer. Consequently, the single I/O
thread inefficiently uses the host software queues. In such a
case, the performance on a multi-queue SSD is limited due to
the utilization rate of the software queues. This is because the
multi-queue SSD is able to maximize its performance when the
software queues are fully utilized. In addition, the single I/O
thread inevitably becomes a serious bottleneck due to the
significant number of I/O completions that the single I/O
thread should handle.

We propose a mechanism of vCPU-dedicated I/O threads,
the number of which is the same as the number of vCPUs, and
each I/O thread shares the dedicated request queue with a
vCPU. This mechanism of vCPU-dedicated I/O thread can
improve parallelization by fully exploiting multiple hardware
queues in a multi-queue SSD because each I/O thread is
commonly executed by a non-overlapping CPU core. The
differences between the single-threaded I/O design (a) and the
vCPU-dedicated I/O thread design (b) are illustrated in Figure
4. While some researchers asserted that small number of I/O
threads can utilize the entire hardware performance [13], [14],
this may be incorrect. Of course, four I/O-intensive processes
can utilize the overall performance of an NVMe SSD,

Fig. 5. Comparison between non-optimized and optimized I/O completion

paths.

achieving up to 750K IOPS, but this is shortsighted because the
performance of SSD can be increased constantly. Eventually,
to solve the fundamental performance limitation due to the
single I/O thread, the mechanism of vCPU-dedicated I/O
thread should be applied to QEMU, and we verify our design
in Section IV.

Moreover, the mechanism of vCPU-dedicated I/O thread
offers another significant benefit since our approach can
consistently maintain I/O patterns of applications in the guest
to a storage device in the host. Mostly, the performance of
sequential access to SSDs is faster than that of random access.
Therefore, maintaining the characteristic of the sequential
access is essential to improve the performance. However,
sequential access from the guest is polluted by the single I/O
thread in virtualized environments, because every I/O
workload is mixed in the single I/O thread. The characteristic
of the combined I/O workload is very similar to that of random
access from the viewpoint of the host. On the contrary, the
vCPU-dedicated I/O thread mechanism can avoid pollution of
the I/O workloads due to the separation of vCPU-dedicated
queues and I/O threads. Unfortunately, this advantage may not
result in performance improvements immediately without the
technical support of SSDs because the SSDs should manage
the I/O workloads internally to get the advantage. Nevertheless,
this merit is essential for upcoming higher performance SSDs.
In our evaluation, we verify that the performance is gradually
improved as the number of I/O threads increase by up to the
number of vCPUs. Moreover, we demonstrate the specific
result of the experiment and the test environment in Section IV.

Although the design of vCPU-dedicated queues and I/O
threads contributes to higher performance improvements, the
VM still has the issue of unrevealed overheads. Therefore, to
optimize parallelism and to get better performance, (1) we
configure CPU affinity for callbacks of I/O completions, (2)
remove useless inter-processor interrupts, and (3) enhance the
technique of the I/O batch submission through awareness of the
I/O workloads.

B. Configuring CPU Affinity for I/O Completions

The design of the vCPU-dedicated queue and the I/O thread
motivates QEMU to enhance the I/O completion process in
addition to the performance improvements by their mechanism.
QEMU usually uses Message Signaled Interrupts Extended
(MSI-X) interrupts of PCIe for I/O completions when I/O
requests are performed by the host. Unlike the line-based
interrupt, MSI-X is able to designate the number of CPUs for
interrupt handling to deal with the interrupts effectively on
multi-core systems. For example, if the 4th CPU is designated
for interrupt handling and the interrupt is triggered, all I/O
requests would be completed on the 4th CPU. This feature
reduces scheduling overheads and enhances cache hit rates by
processing the I/O submission and the completion on the same
CPU [16], [18]. In practice, NVMe has adopted this technique
to simplify its I/O path and complicated interrupt handlings.
Even though QEMU has also adopted MSI-X, this is actually
useless due to the single I/O thread which is responsible for
submissions and completions. This is largely because a single
designated CPU for the I/O thread can become a bottleneck. To
be specific, a considerable number of I/O completions

converge simultaneously on the same CPU if a single CPU is
assigned for all I/O completions. In addition, in the case of
multiple designated CPUs for the I/O thread, the number of
cache miss rates will significantly increase because
submissions and completions can be handled on different
CPUs.

In this respect, the design of the vCPU-dedicated queue and
I/O thread necessitates an appropriate configuration on the
CPU affinity. Thus, we assign a single non-overlapping CPU
per vCPU-dedicated I/O thread. This improves the cache hit
rates and reduces the scheduling overheads caused by
unnecessary context switches [18]. As a result, the
performance was improved by 10% via this configuration on
CPU affinity. We demonstrate the specific result of the
experiment in Section IV.

C. Eliminating Inter-process Interrupts

Configuring CPU affinity for I/O completions not only
improves performance but also provides another optimization
point which simplifies an I/O path by removing useless IPIs.
When a hardware interrupt that notifies an I/O completion is
triggered, an IPI generally occurs to steer the interrupt to the
particular CPU which issued the I/O request. Similarly, QEMU
also utilizes IPIs for steered I/O completions. An IPI, of course,
increases the cache hit rates; however, this induces scheduling
delays due to the additional interrupt handlings. However,
through the configuration on CPU affinity, useless IPIs can be
entirely eliminated. In our experiment, we measured in detail
the latencies among software layers such as a guest kernel, a
guest frontend driver, a QEMU backend driver, and a host
kernel. The result shows that the latency of about 150
microseconds between the frontend driver and the guest kernel
completely disappeared when configuring the CPU affinity.

 Figure 5 illustrates a conventional I/O path (a) and an
improved I/O path by configuring CPU affinity and eliminating
IPIs (b). While MSI-X interrupts are mostly handled by
different CPU in the case of I/O thread No. 1, an I/O
completion of I/O thread No. 2 is directly processed on the

same CPU without scheduling delays (c). Moreover, the I/O
completion path has been shortened by removing IPIs (d).

D. Workload-aware I/O batch submission

To improve performance, we investigated an I/O batch
submission technique, and finally discovered a significant
source where optimization is required. The I/O batch
submission is an effective technique used to improve
performance by batching all I/O requests in the request queue
and submitting them to the host at the same time through io_
submit system call. This technique can diminish the frequency
of mode switches between user mode and kernel mode. In a
previous study [13], the effectiveness of the I/O batch
submission was presented, showing that the number of I/O
requests per system call is increased by 26 times and the
performance was improved by up to 54%. However, this
technique may degrade the performance by the feature of the
vCPU-dedicated I/O thread because I/O requests are distributed
by allocated I/O threads even during I/O-intensive workloads
unlike the single-threaded architecture.

We implemented an advanced I/O batch submission
technique that accumulates I/O requests efficiently by
recognizing whether the I/O workload is heavy and issuing the
batched requests all at once when necessary. This is largely
because of the relative efficiency whereby the I/O requests are
handled at the same time via only one submission system call
in the case of I/O-intensive workloads. Therefore, our approach,
the workload-aware I/O batch submission, records the number
of I/O requests per system call and estimates intensiveness of
the I/O workload through the batched I/O history. Moreover,
during executing the I/O-intensive workloads, our technique
additionally waits for more time to batch more I/O requests
before submitting. To verify this technique, we present the
comparative experiment in Section IV.

IV. EXPERIMENTS AND EVALUATION

A. Experimental Group

In our evaluation, we compared our architecture with two
other solutions as follows.

Baseline: This is an unmodified QEMU 2.1.2 with the
Virtio-Blk-Data-Plane technique, which is the latest version
now. Baseline consists of a single request queue and a single
I/O thread, which leads to the I/O scalability problem.

MQ: This was presented in a previous research conducted
by Ming Lei [13]. MQ supports a feature of multiple request
queues unlike Baseline, and it has a single I/O thread like
Baseline. In our experiment, we directly compiled the MQ
source code without any modifications, and allocated 8 request
queues which were equal to the number of created vCPUs.

MIOT: This is our approach based on QEMU 2.1.2 (which
is identical to Baseline) that applies the design of vCPU-
dedicated queues and I/O threads. Moreover, all the proposed
optimizations are adopted, including configuring CPU affinity
for I/O completions, eliminating IPIs, and workload-aware I/O
batch completion.

B. Experiment Setup

All experiments were performed on a system equipped with
an Intel i7-2600 hyper-threaded quad-core CPU running at
3.40GHz, 16GB RAM, and two types of storage devices. The
first storage type is a null block device which is a virtual device
for simulation of storage. The second storage type is a
Samsung XS1715 1.5TB NVMe SSD that can deliver 750K
IOPS on random reads, and 350K IPS on random writes. In
addition, it also offers a speed of 2780MB/s in sequential reads
and a speed of 1330 MB/s in sequential writes.

The null block device [19], used widely in our evaluation,
is highly suitable for simulating a multi-queue SSD. It is
mostly similar with the Linux null device regarding internal
I/O operations, but it particularly has a characteristic of
multiple queues. Therefore, much like the NVMe SSD, the null
block device is able to simulate multi-queue operations without
a real device. Furthermore, it can validate a higher range of
performance where the NVMe SSD is unable to reach. For
example, the null block device is capable of reaching 1200K
IOPS with 8 I/O-intensive processes.

The experimental system creates one VM which consists of
8 vCPUs and 14GB RAM. Although the system is equipped
with a quad-core CPU, it can achieve its maximum
performance using 8 threads due to hyperthreading. This is the
reason why we allocated 8 vCPUs in one VM. In addition, the
VM directly attaches storage devices to minimize the
duplicated software layers between the host and the guest.

In general, normal experiments on scalability were
previously performed on datacenter or enterprise systems
equipped with many-core CPUs, unlike our experimental setup.
However, we evaluate all experiments on a desktop PC
because NVMe SSDs have been developed not only for
datacenter and enterprise systems but also for desktop
environments, and the maximum performance of the NVMe
SSD is easily achieved with a quad-core CPU for desktops.
Thus, we can fully verify the I/O scalability in our
experimental environment. For these reasons, high
performance systems are not practically vital for our research.

C. FIO benchmark for I/O workloads

All I/O workloads are generated by FIO microbenchmark
to clarify the experimental results through detailed
configurations such as request type, address, data size, queue
depth, I/O engine, cache mode, and even the number of I/O
processes. Furthermore, the benchmark demonstrates internal
information such as latency and the number of context switches
as well as IOPS and throughput (MB/s). These outputs help to
clarify our experimental results.

Basically, we use four types of I/O workloads: 4KB
random read, 4KB random write, 32KB sequential read, and
32KB sequential write. We also set the I/O engine to libaio, the
I/O depth to 32, and the non-cache mode. To verify I/O
scalability, we vary the number of I/O processes from 1 to 8,
and each I/O process transfers a total of 1GB data.

Fig. 6. IOPS with FIO when scaling the number of I/O threads.

Fig. 7. Performance with varying polling interval on polling-based vCPU-

dedicated I/O thread design.

Fig. 8. Measuring the number of I/O requests in a single I/O batch

submission for Baseline, MQ, MIOT, and MIOT without the workload-

aware I/O batch submission technique.

D. Impact of the Number of I/O Threads

In order to verify the effectiveness of the number of I/O
threads, we explore the performance of 4KB random read
varying the number of I/O threads because the small size
random read is beneficial to make the I/O threads read data in
parallel. To improve experimental accuracy, we specify a non-
overlapping CPU affinity for each I/O thread, which helps to
prevent unintended CPU scheduling. This is because an I/O
thread can be processed by a number of CPUs through the host
CPU scheduling in a short period of time. This results in I/O
requests being distributed to the different software queues in
the host, as in the multiple I/O thread techniques. Figure 6
shows that the number of I/O threads has a distinct effect on
performance. In conclusion, more I/O threads obviously
contributed to higher performance and the design of the vCPU-
dedicated I/O thread was motivated by this result.

E. Event-driven I/O Thread vs. Polling I/O Thread

The existing QEMU basically uses an event-driven I/O
thread that reacts to events such as I/O submission and
completion by dispatching to event handlers. However, we
attempted a new I/O thread based on the polling mechanism to
achieve better performance. Numerous previous studies [20],
[21], [22] claimed that overheads in I/O virtualization were
mainly caused by exits between the guest and the host. Thus,

most studies proposed exitless methods based on the polling
mechanism. Likewise, the existing QEMU generates exits
when a vCPU notifies the I/O thread of the I/O submissions
and a device notifies the I/O completions to the I/O thread,
because the event-driven I/O thread is also an exit-based
architecture. Furthermore, it is likely that many of the exits
pose performance degradations due to unnecessary context
switches.

In our approach, we observed that the event-driven design
of vCPU-dedicated queues and I/O threads generates more
exits while improving overall parallelism. Thus, we
implemented and tried to use a polling-based vCPU-dedicated
I/O thread to diminish the number of increased exits. As shown
in Figure 7, we measured performance with various polling
intervals on 4KB random read, and the polling interval was
varied from 10 microseconds to 200 microseconds in order to
find the appropriate interval. Of course, we validated the effect
of the polling I/O thread using perf [23]; using the polling I/O
thread, the number of exits was decreased by 76%. However,
the performance of optimized polling I/O threads was not
impressive, because it was not superior to that of event-driven
I/O threads. This is largely because (1) one vCPU can no
longer have a negative effect on the other vCPUs because of
the minimized lock contentions through the feature of the
vCPU-dedicated queue. (2) QEMU does not always produce an
exit for every I/O request and response. Through the I/O batch
techniques provided by Linux block I/O [24], the performance
degradation caused by exits is not as severe as expected, and
(3) all polling-based techniques commonly have an inherent
problem in terms of CPU utilization rates regardless of the
optimized polling interval. For these reasons, we finally
adopted the event-driven I/O thread which is highly
appropriate for our design.

F. Effect of Workload-aware I/O batch submission

To verify the effect of the workload-aware I/O batch
submission, we measured the number of I/O requests handled
at the instant of each I/O batch submission, and compared the
MIOT with prior works such as Baseline and MQ. In addition,
MIOT excluding workload-aware I/O batch submission
(denoted as MIOT-v) was also subject to this experiment. As
shown in Figure 8, the measured value of MIOT is 21.1 on

Fig. 10. Measurement of the number of exits and the cause of the exit to

verify the effectiveness of the various optimizations.

Fig. 9. Comparison of IOPS, latency, and the number of context switches among Baseline, MQ, MIOT-w, MIOT-v, and MIOT.

average, while that of Baseline is 53.2. The major reason for
this result is that I/O requests were distributed by numerous I/O
threads. However, in terms of the number of I/O requests per
unit time, the result of MIOT is possibly higher than that of
Baseline, because unlike the other threads vCPU-dedicated I/O
threads performs their operations simultaneously. Nevertheless,
the measured value of MIOT is increased by up to 72%
compared to MIOT-v. As a result, the overall performance was
improved by 10% through workload-aware I/O batch
submission.

G. Analysis of the Effect of Three Optimizations

To analyze the effectiveness of the three optimizations, we
measured the IOPS, latency, and the number of context
switches through 4KB random read of FIO, and the
measurement was performed with five targets: Baseline, MQ,
MIOT without the three optimizations (denoted as MIOT-w),
MIOT without only the workload-aware I/O batch submission
(denoted as MIOT-v), and MIOT.

First, the result of IOPS demonstrates that the three
optimizations have a positive impact on performance as shown
in Figure 9(a). Especially, MIOT improves IOPS by up to
167% compared with Baseline because it reduces the overhead
of context switches by using multiple I/O threads. Figure 9(b)
shows that all latencies are proportional to the number of I/O
processes, but there is no particular difference among MIOT-
w, MIOT-v, and MIOT. As we expected, MIOT significantly
reduces the latency by up to 59% over Baseline.

Note that, as shown in Figure 9(c), the number of context
switches of Baseline increases fairly steeply compared to the
other solutions as the number of I/O processes increases. On
the other hand, the measured the values of MIOT-w, MIOT-v,
and MIOT are approximately 10% of that of Baseline. This
demonstrates that excessive context switches, caused by the
single request queue and the single I/O thread, are the major
cause of performance degradations.

Most previous works in virtualization environments
focused on the exit overhead because it significantly degrades
performance of virtual machine. Therefore, we measured the
number of exits and the total time that is used for handling the

events during the same amount of time for executing the I/O
workload, and analyzed the relation between the outcomes and
performances. Figure 10 shows the number of exits while
running the perf [23] that is a standard tool to profile
performance counters. As shown in Figure 10, the experiment
was performed with six targets: Baseline, MQ, MIOT without
the three optimizations (denoted as MIOT-w), MIOT without
the workload-aware I/O batch submission (denoted as MIOT-
v), MIOT, and MIOT with the polling technique (denoted as
MIOT-p). First, MIOT-w decreased the number of exits by
17% compared to Baseline, mainly due to the drop of
MSR_WRITEs and HLTs. In contrast, IO_INSTs and
EXT_INTs increased because of the improved performance
due to I/O parallelism. Moreover, the number of exits
decreased with MIOT-v and MIOT because of the reduction in
EXT_INTs. Particularly, due to MIOT-v, the MSR_WRITEs
were dramatically reduced by 95%. In addition, the workload-
aware I/O batch submission decreased the EXT_INTs by 49%.
In these results, the number of exits is mostly proportional to
the total time for handling events (Figure 10); however it is
invalid in the case of MQ and MIOT-p. Although the number
of exits in MQ and MIOT-p is much lower than that of the
other solutions, not only the total time for handling events but

Fig. 11. Performance comparison on four types of I/O workloads among Baseline, MQ, and MIOT using a null block device.

Fig. 12. Performance comparison on four types of I/O workloads among Baseline, MQ, and MIOT using an NVMe SSD.

also IOPS were worse than those of MIOT-w, MIOT-v, and
MIOT. Furthermore, the MIOT-p method even has a few
IO_INSTs. Thus, while it is true that the increased number of
exits leads to performance degradations, this is not absolute in
all cases.

H. Performance on Null Block Device

We evaluated and compared the performances of the three
different designs including Baseline, MQ, and MIOT with a
null block device, while varying the number of I/O-intensive
processes from 1 to 8. The performance was measured in IOPS
and throughput (MB/s) using the four types of I/O workloads
illustrated in Section IV.C. First, as shown in Figure 11(a),
IOPS gradually decreased in Baseline even though the number
of I/O processes increased, while MQ and MIOT increased it.
In particular, MIOT improved IOPS by up to 2.67x compared
to Baseline and by up to 38% compared to MQ, and the
performance on the other I/O workloads also increased
significantly as shown in Figure 11(b), (c), (d). It shows that
the I/O scalability issue is completely disappeared.

Actually, we expected that the performance of MQ would
not improve due to the single I/O thread allocated in MQ;
however, its performance was acceptable. This was because the
I/O thread was assigned a number of CPUs by the CPU
scheduling in the host. This unexpected scheduling gave a
positive impact on performance, similar to the effect of the
multiple I/O thread technique, but it also had a limitation as
shown in the experimental result.

While we achieved excellent performance improvements, a
performance limit was observed when the number of I/O

processes went over four. This is not caused by the number of
CPU cores, but largely due to basic overheads incurred by the
virtualization layers. We attempted the same experiment on
another system equipped with an octa-core CPU, and the result
was very similar. Unfortunately, completely eliminating
fundamental overheads was impossible in software-based I/O
virtualization.

In conclusion, our approach sustains 440K IOPS in random
read, 350K IOPS in random write, 9800 MB/s throughput of
sequential read, and 9200 MB/s of sequential write. These
results show the performance improvement of up to 167%
compared to Baseline.

I. Performance on NVMe SSD

Finally, we conducted the same experiment with an NVMe
SSD because the null block device is not perfectly identical to
the NVMe SSD, even if the null block device can similarly
simulate a multi-queue SSD.

Unlike the concern regarding the differences between the
two devices, noteworthy variation was not observed in the
experimental result, while some differences were observed.
First, the IOPS of random read on the NVMe SSD was slightly
higher than that on the null block device. To be specific, as
shown in Figure 12(a), MIOT achieved approximately 460K
IOPS in random read, and was improved by up to 187%
compared to Baseline. Figure 12(b) also shows that the IOPS
of MIOT was better than that of Baseline and MQ. On the
other hand, surprisingly, the throughputs of sequential read (c)
and sequential write (d) had comparatively not improved.
According to our analysis, the NVMe SSD has relatively poor

throughput (3000 MB/s in sequential read and 1400 MB/s of
sequential write), while high random read IOPS has about
750K. For this reason, the performance improvements are now
concealed on the NVMe SSD. However, our design will be
more advantageous because it is obvious that higher
performance SSDs will be developed in the near future.

V. RELATED WORK

Numerous studies have attempted to reduce the I/O
performance gap between virtualized and non-virtualized
systems. However, although high performance SSDs such as a
multi-queue SSD were announced, studies on how the multi-
queue SSD affects the virtualization framework are uncommon.
Fortunately, some studies relevant to the multi-queue SSD
have recently been published.

A recent study posed an I/O scalability problem in Linux
block I/O layer caused by serious lock contentions, and
proposed a new Linux block I/O layer [11] to solve the
problem. The researchers designed two levels of queues which
consist of software staging queues and hardware dispatch
queues to diminish lock contentions and improve I/O
parallelism. Even though the research was conducted in non-
virtualized environments, this significantly motivated our
desire to study the impact of a multi-queue SSD on
virtualization.

Ming Lei revealed performance degradations with a multi-
queue SSD in a virtualized environment for the first time [13].
He raised a lock contention problem produced by a single
shared request queue in Virtio-Blk-Data-Plane, and proposed
extended multiple request queues and two optimization
schemes. However, unlike our approach, the study focused
only on the single request queue, and ignored another problem
caused by the single I/O thread. Moreover, the evaluation was
conducted with a small number of request queues and I/O
processes. Thus, it was not sufficient to verify I/O scalability
with the scheme. We evaluated the output of the research in
Section IV. The results of our experiments showed that our
approach improved the performance by 38% compared to the
work.

A recent work posed another performance degradation
issue using four SSDs combined by RAID0 [14]. The main
contribution was reducing the number of exits between the host
and the guest via a pipelined polling I/O thread in Virtio-Blk-
Data-Plane. Furthermore, they proposed a technique of
multiple issues and multiple completions through multiple I/O
threads for an NVMe SSD. Our approach has several key
differences to this research. First, this work uses a polling
mechanism as an operating mode of the I/O thread, and it was
not impressive with multiple I/O threads as demonstrated in
Section IV.E. Second, this work utilized only three I/O threads
while our approach applies the per-vCPU I/O thread scheme.
Lastly, we experimented not only with the NVMe SSD, which
are evaluated in this work, but also with a null block device
because it can validate the higher range of performance where
the NVMe SSD is unable to reach.

VI. CONCLUSION

In this paper, we observed that existing virtualization
technologies cannot guarantee the performance of guest
machines when a multi-queue SSD is used as its secondary
storage. This is because the guest machines suffer from lock
contentions when issuing their I/O requests from the I/O
virtualization framework to the multi-queue SSD. Furthermore,
the guest machines cannot fully exploit multiple I/O queues in
the host, which is caused by the semantic gap between the
guest and the host machines. In order to reduce this semantic
gap, we proposed a novel approach that efficiently distributes
the lock contentions and improves the I/O parallelism by
developing a new architecture including vCPU-dedicated
queues and I/O threads with three optimization schemes.

We evaluated our approach on a null block device, which
simulates a multi-queue virtual device by receiving I/O
requests and acknowledging I/O completions immediately, as
well as on a real NVMe SSD. Our experimental results with
various I/O traces clearly show that IOPS performance was
significantly improved by up to 2.67x, and that the throughput
was enhanced by up to 132% compared to a state-of-the-art I/O
virtualization technique, the Virtio-Blk-Data-Plane.

ACKNOWLEDGMENT

This research was supported by Next-Generation
Information Computing Development Program through the
National Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT & Future Planning (2010-0020730)
and this work was supported by ICT R&D program of
MSIP/IITP. [10041244, SmartTV 2.0 Software Platform].
Young Ik Eom is the corresponding author of this paper.

REFERENCES

[1] D. Abramson et al., “Intel virtualization technology for directed I/O,”
Intel Technology J., vol. 10, no. 3, pp. 179-191, Aug. 2006.

[2] R. Mijat and A. Nightingale, “Virtualization is coming to a platform
near you,” ARM White Paper, 2011.

[3] Y. Dong et al., “High performance network virtualization with SR-
IOV,” J. Parallel Distributed. Computing, vol. 72, no. 1, pp. 1471-1480,
Nov. 2012.

[4] AMD I/O virtualization technology (IOMMU) specification [Online].
Available: http://developer.amd.com/wordpress/media/2012/10/488

821.pdf

[5] KVM live migration [Online]. Available: http://www.linux-
kvm.org/images/5/5a/KvmForum2007$Kvm_Live_Migration_Forum_2
007.pdf

[6] C. Clark et al., “Live migration of virtual machines,” in Proc. 2nd Symp.
on Networked Syst. Design & Implementation, Boston, MA, 2005, pp.
273–286.

[7] R. Russell, “VIRTIO: towards a de-facto standard for virtual I/O
devices,” ACM SIGOPS Operating Syst. Review, vol. 42, no. 5, pp. 95-
103, Jul. 2008.

[8] A. Kivity et al., “KVM: the linux virtual machine monitor,” in Proc.
Linux Symp., Ottawa, ON, 2007, pp. 225–230.

[9] N. Har'El et al., “Efficient and scalable paravirtual I/O system,” in Proc.
USENIX Annu. Tech. Conf., San Jose, CA, 2013, pp. 231-242.

[10] NVM Express specification 1.2 [Online]. Available:
http://www.nvmexpress.org/wp-content/uploads/NVM-Express-1_2-
Gold-20141209.pdf

[11] M. Bjørling et al., “Linux block io: introducing multi-queue ssd access
on multi-core systems,” in Proc. 6th Int. Syst. and Storage Conf., Haifa,
2013, pp. 22:1-22:10.

[12] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc.
USENIX Annu. Tech. Conf., Anaheim, CA, 2005, pp. 41-46.

[13] Virtio Blk multi-queue conversion [Online]. Available:
http://www.linux-kvm.org/images/6/63/02x06a-VirtioBlk.pdf

[14] M. Oh et al., “Enhancing the I/O system for virtual machines using high
performance SSDs,” in Proc. IEEE int. Performance Computing and
Commun. Conf., Austin, TX, 2014, pp. 1-8

[15] FIO: flexible IO tester [Online]. Available:
http://freecode.com/projects/fio

[16] K. Eshghi and R. Micheloni, “SSD architecture and PCI Express
interface,” in Inside Solid State Drives (SSDs), Dordrecht, Netherlands:
Springer Netherlands, 2013, pp. 19-45.

[17] KVM virtualized I/O performance [Online]. Available FTP:
public.dhe.ibm.com Directory: /linux/pdfs File:
KVM_Virtualized_IO_Performance_Paper_v2.pdf

[18] W. Shin et al., “OS I/O path optimizations for flash solid-state drives,”
in Proc. USENIX Annu. Tech. Conf., Philadelphia, PA, 2014, pp. 483-
488

[19] Null block device driver [Online]. Available:
https://www.kernel.org/doc/Documentation/block/null_blk.txt

[20] A. Gordon et al., “Towards exitless and efficient paravirtual I/O,” in
Proc. 5th Int. Syst. and Storage Conf., Haifa, 2012, pp. 10:1-10:6.

[21] A. Landau et al., “Splitx: split guest/hypervisor execution on multi-
core,” in Proc. 3rd Conf. on I/O Virtualization, Portland, OR, 2011, pp.
1.

[22] K. Adams and O. Agesen, “A comparison of software and hardware
techniques for x86 virtualization,” in Proc. 12th Int. Conf. on
Archtectural Support for Programming Languages and Operation
System, San Jose, CA, 2006, pp. 2-13.

[23] Perf: linux profiling with performance counters [Online]. Available:
https://perf.wiki.kernel.org

[24] J. Axboe, “Linux block IO—present and future,” in Proc. Linux Symp.,
Ottawa, ON, 2004, pp. 51–61.

