
SecDep: A User-Aware Efficient Fine-Grained Secure Deduplication Scheme
with Multi-Level Key Management

Yukun Zhou, Dan Feng*, Wen Xia, Min Fu, Fangting Huang, Yucheng Zhang, Chunguang Li
Wuhan National Laboratory for Optoelectronics

School of Computer, Huazhong University of Science and Technology, Wuhan, China
*Corresponding author: dfeng@hust.edu.cn

Abstract—Nowadays, many customers and enterprises backup
their data to cloud storage that performs deduplication to
save storage space and network bandwidth. Hence, how to
perform secure deduplication becomes a critical challenge for
cloud storage. According to our analysis, the state-of-the-art
secure deduplication methods are not suitable for cross-user fine-
grained data deduplication. They either suffer brute-force attacks
that can recover files falling into a known set, or incur large
computation (time) overheads. Moreover, existing approaches of
convergent key management incur large space overheads because
of the huge number of chunks shared among users.

Our observation that cross-user redundant data are mainly
from the duplicate files, motivates us to propose an efficient
secure deduplication scheme SecDep. SecDep employs User-
Aware Convergent Encryption (UACE) and Multi-Level Key
management (MLK) approaches. (1) UACE combines cross-user
file-level and inside-user chunk-level deduplication, and exploits
different secure policies among and inside users to minimize the
computation overheads. Specifically, both of file-level and chunk-
level deduplication use variants of Convergent Encryption (CE)
to resist brute-force attacks. The major difference is that the
file-level CE keys are generated by using a server-aided method
to ensure security of cross-user deduplication, while the chunk-
level keys are generated by using a user-aided method with
lower computation overheads. (2) To reduce key space overheads,
MLK uses file-level key to encrypt chunk-level keys so that the
key space will not increase with the number of sharing users.
Furthermore, MLK splits the file-level keys into share-level keys
and distributes them to multiple key servers to ensure security
and reliability of file-level keys.

Our security analysis demonstrates that SecDep ensures data
confidentiality and key security. Our experiment results based on
several large real-world datasets show that SecDep is more time-
efficient and key-space-efficient than the state-of-the-art secure
deduplication approaches.

I. INTRODUCTION

With the rapid development of cloud computing, increasing
number of users and enterprises would like to backup their data
to cloud storage. IDC predicts that digital data will exceed
44ZB in 2020 [1]. Moreover, some recent publications also
show that there is a large amount of duplicate data among
users in storage systems, especially for backup systems [2, 3].
Data deduplication is a technique to eliminate duplicate copies
of data [4], which has been gaining increasing popularity in
cloud storage. For example, Dropbox [5], SpiderOak [6], and
Mozy [7], have adopted data deduplication to save storage
space and network bandwidth. Generally speaking, deduplica-
tion eliminates redundant data by keeping only one physical

copy that could be referenced by other duplicate data (copies).
Deduplication can be implemented at different granularities: a
file (i.e., file-level deduplication), or a fine-grained data chunk
(i.e., chunk-level deduplication) [8]. The latter has been widely
used because it renders the system more flexible and efficient.

To protect data confidentiality, users usually encrypt data
to make the data scrambled with their own keys, which
makes deduplication impossible. Specifically, the same data
encrypted by different users’ keys will result in different
ciphertexts such that duplicates will not be found. However,
sharing keys among users can result in data leakage because
of user compromise [9]. Therefore, how to ensure security of
users’ data is the main problem facing cross-user fine-grained
deduplication-based cloud storage systems. Most of existing
secure deduplication solutions use a deterministic encryption
method called Convergent Encryption (CE) [10]. CE uses a
hash of the data as a key to encrypt the data. Hence, CE
will encrypt the identical data into the same ciphertext, which
enables deduplication on the ciphertext.

Convergent Encryption nevertheless brings new challenges.
First, it either suffers brute-force attacks [9] or incurs large
computation overheads. Specifically, CE suffers brute-force
attacks because of deterministic and keyless issues [9]. If the
adversary knows the target ciphertext C of the target data
D is in a specific or known set S = {D1, ..., Dn} of size
n, the adversary can recover the data D from the set S by
off-line encryption. For each i = 1, ..., n, the adversary just
simply encrypts Di via CE to get the ciphertext denoted Ci

and returns the Di such that C = Ci, which actually breaks
the ciphertext C. To solve this problem, Bellare et al. propose
DupLESS [9], which encrypts data by a message-locked key
obtained from a key-server via RSA-OPRF protocol [11] to
resist brute-force attacks. However, DupLESS is inefficient and
incurs large computation overheads for chunk-level dedupli-
cation. Specifically, each chunk performs the time-consuming
RSA-OPRF protocol [9, 11] to generate message-locked key.
The key generation for chunk-level deduplication will incur
significant computation overheads. The key generation time
will increase with the enormous number of chunks.

Second, existing key management approaches of CE also
have several limitations, including large key space overheads
and single-point-of-failure [12]. Generally, users encrypt their
data by the convergent keys and protect convergent keys with

978-1-4673-7619-8/15/$31.00 c⃝ 2015 IEEE

users’ master key [9, 13]. Thus, the number of convergent keys
increases linearly with the number of unique data and number
of sharing users [12]. Master key suffers from a single point of
failure risk [12]. To ensure chunk keys’ security and reliability,
Dekey [12] splits chunk keys into key shares via Ramp Secret
Sharing Scheme (RSSS) [14, 15] and distributes key shares to
multiple servers. As a result, the number of convergent keys
explodes with the number of key shares.

To overcome the aforementioned challenges, we develop
a secure and efficient deduplication scheme called SecDep.
The main idea behind SecDep is to exploit redundant data
distribution among and inside users, and use variants of CE to
make a trade-off between data security and duplicate detection
performance. Our key observation is that cross-user redundant
data are mainly from the duplicate files, which motivates
us to propose User-Aware Convergent Encryption (UACE)
and Multi-Level Key management (MLK) approaches. Specif-
ically, (1) for an inputed file, UACE performs cross-user
deduplication at file-level and file-level keys are generated
by server-aided HCE [16–18]. If it is not a duplicate file,
UACE performs inside-user chunk-level deduplication with the
user-aided CE. The secret information provided by the user is
used for generating a more secure chunk-level CE key. (2)
MLK encrypts chunk-level keys with the corresponding file-
level keys. MLK splits file-level keys into share-level keys via
Shamir Secret Sharing Scheme (SSSS) [19] and sends them
to the Distributed Key Servers.

Security analysis demonstrates that SecDep could resist
attacks from both external and internal adversaries. As a result,
SecDep significantly reduces both of time and key space
overheads compared with the state-of-the-art schemes, while
ensuring a comparable high-level data security.

This paper makes the following contributions.

• SecDep proposes a User-Aware Convergent Encryption
(UACE) approach to resist brute-force attacks and reduce
time overheads. UACE ensures both data security and
deduplication efficiency.

• SecDep proposes a Multi-Level Key management (MLK)
approach to ensure key security and reduce key space
overheads. MLK also provides the confidentiality and
reliability of file-level keys by splitting file-level keys
into share-level keys and distributing them to multiple
key servers.

• Our security discussion demonstrates that SecDep is
secure under the proposed threat model. SecDep achieves
security goals and ensures the security of both users’ data
and keys by using our UACE and MLK approaches.

• We implement a prototype of SecDep via UACE and
MLK approaches. Experimental results based on four
real-world datasets suggest that SecDep reduces 52-92%
of time overheads at the expense of only losing 2.8-
7.35% of dedup factor compared with the sate-of-the-art
DupLESS-chunk approach. SecDep reduces 34.8-96.6%
of key space overheads compared with the state-of-the-art
Dekey and Master Key approaches.

The rest of paper is organized as follows. Section II presents
the background and motivation of this paper. Section III de-
scribes the threat model and security goals. Section IV presents
the design and workflow of SecDep. Section V describes the
implementation details. In Section VI, we discuss the security
of SecDep. Section VII describes our experimental evaluation
of SecDep and the performance comparisons among the state-
of-the-art approaches. Finally, we draw conclusion in Section
IX.

II. BACKGROUND & MOTIVATION

In this section, we will describe the cryptographic primitive
of Convergent Encryption, which is the most widely used
encryption scheme for data deduplication. In addition, we will
analyze and make comparison of existing secure deduplication
methods and key management approaches. Finally, we will
discuss several key observations that motivate our work.

A. Convergent Encryption for Data Deduplication

For data deduplication based storage systems, the same data
encrypted with different users’ keys will generate different ci-
phertexts, which makes deduplication impossible for eliminat-
ing cross-user redundant data. To solve this problem, previous
work formalizes the primitive of Convergent Encryption [10]
or Message-Locked Encryption [18]. Convergent Encryption
is presented as five-tuple polynomial-time algorithms listed
below. A user generates a convergent key via Genkey from
the original data copies and encrypts them with the key by
Encry. The tag will be generated via GenTag and can be used
for duplicate checking. If two data have the same tag, they are
considered as identical. Tag is also referred to as “fingerprint”
in other papers [8]. We give some definitions of the five tuples
as follows [10, 18].

• Setup(1λ) −→ P . P is the public parameter that is gener-
ated by using a parameter generation algorithm [9] with
the security parameter 1λ. For all λ ∈ N,P∈ [Setup(1λ)].

• GenKey(P , M) −→ K. K is a message-derived key
that is generated by a key generation algorithm. And
the public parameter P and a message (i.e., data) M are
inputs. K is also called convergent key.

• Encry(P , K, M) −→ C. Encry is a deterministic and
symmetric encryption algorithm. C is the ciphertext of
message M returned by Encry. And the public parameter
P , message-derived key K, and message M are inputs.

• GenTag(P , C) −→ T . GenTag is the tag generation
algorithm. It uses public parameter P and ciphertext C
as inputs and returns data tag T for duplicate checking.

• Decry(P , K, C) −→ M . Decry is also a deterministic
and symmetric decryption algorithm that takes public
parameter P , convergent key K, and data ciphertext C
(C ∈ {0, 1}∗) as inputs. Finally, the returned M is the
decrypted data.

B. State of The Art on Secure Deduplication

Focusing on data security and privacy, existing secure dedu-
plication methods suffer mainly two problems: data confiden-

TABLE I
STATE OF THE ART ON SECURE DEDUPLICATION. ‘F ’ AND ‘B’ REPRESENT FILE-LEVEL AND CHUNK-LEVEL DEDUPLICATION RESPECTIVELY.

Security Goals Approaches Granularity Representative Work Limitations

Data Confidentiality
CE F & B Farsite [10], Bellare et al. [18] Brute-force atttacks
HCE F & B Pastiche [16], Storer et al. [20], MLE [18] Brute-force attacks, duplicate-faking attacks
DupLESS F DupLESS [9] Large computation overheads (chunk-level)

Key Security
Single Key Server F & B Storer et al. [20], ClouDedup [13] Single point of failure
Master Key F & B Pastiche [16], Dekey [12], DupLESS [9] Single point of failure, key space overheads
Secret Splitting B Dekey [12] Large key space overheads

tiality and key security. State-of-the-art secure deduplication
methods and key management approaches are summarized in
table I. We will analyze these approaches and their limitations
in detail as below.

16K 128K 1024K 16M 128M 1G

1024

4096

16384

65536

262144

C
om

pu
ta

tio
n

tim
e

(s
ec

)

File size (Byte)

 File-level
 Chunk-level

16K 128K 1M

1
4
16
64
256

Fig. 1. The computation time of RSA-OPRF protocol on file-level and
chunk-level deduplication. Note that the later uses the average chunk size of
4KB.

To ensure data confidentiality, existing secure deduplication
methods mainly include: Convergent Encryption (CE) [10,
18], Hash Convergent Encryption (HCE) [16, 18], and Dup-
LESS [9]. First, Convergent Encryption, where data is encrypt-
ed with it’s hash value and tag is generated from ciphertext of
data, has been adopted by Farsite [10]. However, Convergent
Encryption is vulnerable to brute-force attacks because it is
deterministic and keyless [9]. If the adversary knows the target
data is in a specific or known set, he could encrypt data
to generate ciphertext and compare with target ciphertext to
recover the original data. Second, Hash Convergent Encryption
(HCE), where data is encrypted with it’s hash value and
the tag is generated by hashing encryption key, is proposed
by Pastiche [16]. HCE offers better performance than CE,
because HCE just simply hashes the encryption key while
CE needs to first encrypt the entire file and then hash the
ciphertext. Nevertheless, HCE suffers brute-force attacks and
duplicate-faking attacks [18], where a legitimate message is
undetectable replaced by a fake one. Third, Bellare et al. [9]
propose DupLESS which encrypts data with message-based
keys obtained from a key-server via an oblivious PRF protocol
(i.e., RSA-OPRF) [11]. DupLESS incurs large computation
time overheads on fine-grained deduplication because oblivi-
ous PRF protocol is time-consuming.

In Figure 1, we test and compare the time consumptions
of RSA-OPRF protocol for file-level and chunk-level dedu-
plication. The results demonstrate that DupLESS is inefficient
and not suitable for fine-grained deduplication. This is because
the modular exponentiation in RSA-OPRF protocol is time-
consuming, which incurs large computation overheads for
chunk-level deduplication due to a large number of chunks.
The time overhead of chunk-level deduplication will increase
with the number of chunks compared with file-level dedupli-
cation.

To ensure key security, there are three approaches for
fine-grained convergent key management, Single Key Server,
Master Key, and Secret Splitting. (1) Single Key Server, which
stores all keys on a key server, has adopted by Storer et al. [20],
ClouDedup [13], etc. However, the key server suffers from a
single point of failure risk. If the key server is compromised,
all users’ keys can be stolen by adversaries. (2) Master Key
is an approach that encrypts chunk-level keys with users’ own
master key and stores the master keys securely. Nevertheless,
it is not suitable for fine-grained deduplication because the
number of convergent key will increase with the number of
users and unique chunks [12]. In addition, Master key suffers
from a single point of failure risk [12]. (3) Dekey [12] divides
each chunk-level key into key shares and distributes pieces to
different key servers. However, Dekey’s goal is to ensure the
reliability of convergent keys, but not the key space efficiency.
And hence, Dekey still suffers enormous key space overheads.

C. Observation & Motivation

As shown in Table I, existing encryption solutions for fine-
grained deduplication either suffer brute-force attacks, or incur
large time overheads. State-of-the-art key management ap-
proaches have limitations, including large key space overheads
and single-point-of-failure. In order to solve the above chal-
lenges, it is necessary to propose a new secure deduplication
scheme with an efficient key management approach to balance
deduplication security and efficiency. In table II, we study
the data redundancy distribution on the four large real-world
datasets (whose workload characteristics are detailed in Table
VI in Section VI). “Total” represents the duplicates eliminated
by global (i.e., cross- & inside-user) chunk-level deduplication.
“Cross-user file-level” represents the duplicates eliminated by
cross-user file-level deduplication. “Inside-user chunk-level”
represents the duplicates eliminated by the inside-user (chunk-
level) after (cross-user) file-level deduplication. According to
the results shown in Table II, we obtain two key observations.

TABLE II
THE DATA REDUNDANCY DISTRIBUTION ON FOUR LARGE REAL-WORLD

DATASETS.

Datasets Total Cross-user Inside-user Cross-user
(global) dup files dup chunks dup chunks

One-set (GB) 202.1 104.28 78.62 19.2
(100%) (51.6%) (38.9%) (9.5%)

Inc-set (GB) 141.3 108.8 27.13 5.37
(100%) (77%) (19.2%) (3.8%)

Full-set (GB) 2457.6 2393.7 60 1.95
(100%) (97.4%) (2.4%) (0.02%)

FSLhomes (GB) 14463.3 13764.7 687 11.6
(100%) (95.17%) (4.85%) (0.08%)

TABLE III
THE COMPARISONS OF DIFFERENT SECURE DEDUPLICATION SCHEMES IN

TERMS OF DEDUPLICATION EFFICIENCY AND SECURITY OVERHEADS.

Deduplication scheme High dedup Low security
factor time overheads

Global dedup at chunk-level
√

×
Cross-user dedup at file-level ×

√

Inside-user dedup at chunk-level ×
√

SecDep
√ √

• Cross-user redundant data are mainly from the dupli-
cate files. Previous work SAM [21] and Microsoft’s
study [2], have similar observations. Meanwhile, there
are remaining substantial duplicate chunks inside users.
Therefore, the combination of cross-user file-level and
inside-user chunk-level deduplication can achieve a com-
parable performance of redundancy elimination with the
global chunk-level deduplication, which can be exploited
to implement a more efficient security scheme.

• Cross-user and inside-user deduplication schemes face
different security challenges. Specifically, cross-user d-
eduplication generally requires a secure method with
high overheads, for example, the DupLESS solution [9].
As shown in Figure 1, chunk-level deduplication us-
ing the RSA-OPRF protocol incurs significantly larger
time overheads than file-level deduplication. Moreover,
inside-user deduplication could employ a more efficient
secure method. Motivated by this observation, we em-
ploy different secure policies for cross- and inside-user
deduplication to balance data security and deduplication
performance.

In Table III, global chunk-level deduplication achieves a
high dedup factor, but it brings huge security overheads.
Cross-user file-level and inside-user chunk-level deduplication
provide security with low overheads, but they achieve a
low dedup factor. File-level cross-user deduplication approach
cannot eliminate all redundant data. Comparing with the global
chunk-level deduplication, file-level cross-user deduplication
approach misses to detect some duplicate chunks both among
and inside users. Both of these schemes alone are not suitable
for fine-grained secure deduplication. In order to achieve a
high dedup factor and ensure data security, we propose SecDep
that combines cross-user file-level and inside-user chunk-level
secure deduplication to eliminate more redundant data. SecDep

TABLE IV
ACRONYMS USED IN THIS PAPER

Acronym Description
CE Convergent Encryption
HCE Hash Convergent Encryption
SP Storage Provider
DKS Distributed Key Servers

SSSS(w, t)
Shamir Secret Sharing Scheme
with the parameter w and t

employs server-aided HCE at file-level deduplication and user-
aided CE at chunk-level deduplication to ensure data security,
while significantly reducing security overheads.

III. SYSTEM MODEL & SECURITY GOALS

In this section, we first present the system model of SecDe-
p, a secure and efficient deduplication system with multi-
level key management for cloud backups. Then we state the
threat model and security goals of SecDep. Some important
acronyms used in this paper are listed in Table IV.

A. System Model

As shown in Figure 2, our system SecDep consists of Users,
a Storage Provider (SP), and Distributed Key Servers (DKS).
When a user wants to access the DKS and the SP, his/her
passwords and credentials should be verified at first. Chunks
and chunk-level keys are encrypted and stored on the SP. File-
level keys are securely divided into share-level keys via Shamir
Secret Sharing Scheme (SSSS) [19]. Share-level keys are
stored separately on the DKS. Data stored on the DKS and the
SP are protected by some access control policies. Specifically,
these entities are connected via enterprise network and secure
data transmission among them is ensured by the well-known
secure communication protocol (such as SSL/TLS) [22].

• User. A user is an entity who wants to upload data to
(download data from) the Storage Provider (SP). The user
applies variants of CE to protecting the data chunks and
keys. To resist brute-force attacks and provide data con-
fidentiality, the user accesses the DKS to add secret for
generating the random file-level keys, which is detailed
in subsection IV-B.

• Storage Provider (SP). The storage providers mainly
offer computation and storage services. The SP main-
tains tag indices for chunk-level and file-level duplicate
checking. The SP also stores ciphertexts of chunks and
chunk-level keys, which is detailed in subsection IV-C.

• Distributed Key Servers (DKS). The DKS is built on a
quorum of key servers via Shamir Secret Sharing Scheme
(SSSS) [19] to ensure security of keys. The user splits file
keys into w shares via SSSS (w, t) and any t (≤ w) of
shares can recover file key. Each key server is a stand-
alone entity that adds secret for key generations and stores
users’ key shares, which is detailed in subsection IV-C.

 !"#

$%&#'(")*#&+,-"#.$*/

0,!%#,12%"-)3"4)$"+"#! 03$

$5'#"67"+"7)8"4!

9:;#4<%"-)=52:8!

9:;#4<%"-)>"%'-'%')

?)=52:867"+"7)8"4!

Fig. 2. The system model of SecDep, which contains three entities. Users
interact with one or more key servers, and backup/restore data from the SP.

B. Threat Model and Security Goals

Threat Model. The goal of adversaries is to obtain data
or keys which don’t belong to them. We consider two types
of adversaries: internal adversaries and external adversaries.
i) Internal adversaries try to access the DKS and the SP.
ii) External adversaries only access the DKS and the SP
with communication channels. We assume that both of these
adversaries follow the protocol and access control policies. We
only focus on internal adversaries, because internal adversaries
have much more attack capacities than external adversaries.
The adversary can compromise the SP and collude with users.
The adversary also tries to steal data from the DKS. The
detailed security analysis against adversaries and attacks are
discussed in Section VI.

• Compromising the SP. We assume that the SP is un-
trusted and insecure. The adversary tries to compromise
the SP. The adversary gets the ciphertext of chunks and
chunk-level keys that do not belong to them. For a file
belonging to a specific user, the adversary tries to obtain
the original file via performing brute-force attacks.

• Colluding with users. We assume that the adversary
colludes with some users. The adversary seeks to get data
or keys owned by other legitimate users. The adversary
performs duplicate-faking attacks with these users.

• Stealing data from the DKS. We assume that the
adversary steals key shares from a predefined number
(less than t) of key servers. The adversary tries to recover
the file key or obtain some useful data.

Security Goals. We address problems of data confidentiality
and key security for cross-user fine-grained deduplication-
based cloud backups. Our security goals are listed as below.

• Data confidentiality. We need to assure the security of
encrypted data copies in the SP. Specifically, the data
copies are secure to resist brute-force attacks. We also
protect the integrity of chunks that are uploaded to the
SP and resist duplicate-faking attacks.

TABLE V
NOTATIONS USED IN THIS PAPER

Notation Description
(N, e) Public key of RSA
(N, d) Private key of RSA
F File
B Chunk or block of file
HF File hash for key generation
KF File-level key
TF File tag for duplicate checking
SF Share-level keys
KB Chunk-level or block-level key
TB Chunk or block tag
IsDup Results of file-level duplicate checking
ψ[i] Results of chunk-level duplicate checking
Cdata Ciphertext of chunk
Ckey Ciphertext of chunk-level key
Hash Hash function
HMAC Hash function with a secret parameter

• Security of keys. We need to ensure the security of
chunk-level keys in the SP and avoid single-point-of-
failure of file-level key. Specifically, keys are secure even
if the adversaries collude with key servers (less than t).

In our threat model, we only focus on protecting the data
confidentiality and key security in the SP and the DKS.

IV. DESIGN OF SECDEP

A. Overview of SecDep

In this section, we introduce our scheme, SecDep, which
employs User-Aware Convergent Encryption (UACE) and
Multi-Level Key management (MLK) approaches. First,
UACE performs cross-user deduplication at file-level that
encrypts files with the server-aided CE key (see subsection
IV-B). Meanwhile, UACE performs inside-user deduplication
at chunk level that encrypts chunks with the user-aided CE
key (see subsection IV-B). Second, MLK encrypts chunk-level
keys with the corresponding file-level key and splits file-level
key into secure key shares via Shamir Secret Sharing Scheme,
and sends them to the Distributed Key Servers (see subsection
IV-C). Third, we will introduce some discussion and analysis
on the role of the Distribute Key Servers (see subsection IV-C).
Finally, we describe the workflow of the backup and restore
protocols of SecDep in details (see subsection IV-D).

B. User-Aware Convergent Encryption

In order to resist brute-force attacks and reduce computa-
tion (time) overheads, UACE combines cross-user file-level
and inside-user chunk-level secure deduplication, and exploits
different secure policies for better performance.

In general, (1) UACE firstly performs cross-user file-level
Hash Convergent Encryption (HCE) when each user backups
their files. For each file, the user computes a file-level key and
file tag via server-aided HCE. The user sends file tag to the SP
and searches file tag in the global file-tag index, and then the
SP returns the file deduplication results to the user. (2) If it is
not a duplicate file, it will be divided into several data chunks.
The CE keys and tags of these chunks will be computed by

User(Client) Distributed Key

Server(DKS)Key Generation

Tag Generation

KF = GenKey(P, HF)

x = HF r
e mod N

Blind message x

 y = x
d
mod N

Signature y
z = y r

-1
mod N

HF = Hash (P, F), Select r randomly

Verify HF = zd mod N

TF = GenTag (P, KF)

TF = Hash (P, KF)

and KF = z

(a) Cross-user file-level hash convergent encryption

User(Client) Storage

Provider(SP)Key Generation

Tag Generation

KB = GenKey (P, salt, B)

HB = Hash (P, salt, B)

KB = HMACsalt (P, B)

TB = GenTag (P, KB, B)

Chunk tags {TB} Duplicate

Checking

Response of duplicate

Send chunks {CB}
 Receive and

store cipher chunks
CB = Encry (P, KB, B)

CB = Encry (P, KB, B)

TB = Hash (P, CB)

Storage

(b) Inside-user chunk-level convergent encryption

Fig. 3. UACE: A User-Aware Convergent Encryption algorithm.

performing user-aided Convergent Encryption (CE). The user
then sends the chunk tags to the SP. The SP will check whether
the chunk tags are existed in the tag index of this user, and
return the duplicate-checking results to the user. Then the user
encrypts all the unique chunks and sends ciphertexts of chunks
to the SP. To facilitate understanding, the notations used in this
paper are listed in TABLE IV.

Cross-user file-level Hash Convergent Encryption
(HCE): As shown in Figure 3(a), cross-user file-level hash
convergent encryption mainly consists of two steps, i.e., key
and tag generations. Specifically, it encrypts data by the server-
aided HCE where the CE keys are added secret by a key-server
via an oblivious PRF protocol. The oblivious PRF protocol
can be built from deterministic blind signatures [9, 23] and
we adopt RSA-OPRF scheme, which is based on RSA blind
signatures [24].

• GenKey(P , HF) is the key generation function. The
public RSA exponent e is fixed. The key generation
uses e to get (N , d) such that e · d ≡ 1 mod ϕ(N),
where modulus N is the product of two distinct primes
of roughly equal length and N < e. Then the public key
(N , e) and private key (N , d) are returned. For each input
file F , the user chooses a random number r ∈ N, gains
HF via computing hash of F and sends x = HF · re mod
N to the DKS. The DKS computes y using the equation
y = xd mod N and sends y back. The user just calculates
z = y · r−1 mod N . The user could also verify whether
or not HF ≡ zd mod N . Hence, z is the file-level key.

• GenTag(P , KF) is the tag generation function of HCE
that takes public parameter P and file key KF as inputs.
File tag could be implemented by TF = Hash(P , KF).

The main reason why CE suffers from brute-force attacks
is that CE is deterministic and thus keyless [9]. We used a
random secret to make the file-level key randomly to protect
against brute-force attacks. In order to support cross-user
deduplication, users need a key server to add a global secret
to ensure the randomness of the file-level keys. As long as the
server-aided CE key is kept securely, the adversaries cannot
break the confidentiality of data. The message sent to DKS is
blinded by the random number selected by user themselves.
DKS and the adversaries cannot get the file hash even if they
obtain the median values.

Inside-user chunk-level convergent encryption: The user
encrypts and deduplicates chunks inside user via user-aided
CE. As shown in Figure 3(b), if it is not a duplicate file, UACE
will perform inside-user chunk-level deduplication where the
key generations are aided by users via adding secret infor-
mation. The secret information, also called “salt”, is kept
secure by the user. Then we will introduce key generation,
tag generation, and storage of non-duplicate chunks.

• GenKey(P , salt, B) is the key generation function that
takes public parameter P , a secret information salt and
chunk B as inputs. (1) The user calculates chunk hash
value HB = Hash(P , B). (2) The user computes the
chunk-level key via KB = HMACsalt(P , K), and HMAC
could be implemented by HMAC-SHA256. “Salt” is the
secret provided by the user.

• GenTag(P , KB , B) is the tag generation algorithm that
takes P , KB and B as inputs. (1) The user encrypts chunk
and gets the chunk ciphertext CB via Encry(P , KB , B)
−→ CB . (2) The user gets chunk tag TB via Hash(P ,
CB) −→ TB . (3) The user sends chunk tag to Storage
Provider (SP) for duplicate checking. The SP searches
the chunk tag in chunk-tag index and returns chunk-level
deduplication results to the user.

• Storage of non-duplicate chunks. (1) The user encrypts
the unique chunks with their CE chunk-level keys by
Encry(P , KB , B) −→ CB . (2) The user sends all chunk
ciphertext CB to the SP. The SP receives CB and writes
them to storage devices.

As mentioned above, UACE combines cross-user file-level
and inside-user chunk-level secure deduplication, and exploits
different secure polices, namely, server-aided HCE among
users and user-aided CE inside users to ensure data & key
security with low overheads.

Discussions: UACE provides a reasonable trade-off between
dedup factor and data security. Then we discuss the reasons
why UACE achieves a high dedup factor and significantly
reduces time overheads without compromising data security.

(1) Cross-user redundant data are mainly from duplicate
files. Hence, cross-user file-level deduplication could eliminate
most of the duplicate data among multiple users. UACE
combines cross-user file-level and inside-user chunk-level d-
eduplication. UACE eliminates duplicate data both among and
inside users, which achieves a high dedup factor.

(2) To resist brute-force attacks, cross-user and inside-user

Chunk-level:

File-level:

Share-level:

 key KF

 K0 K1 Kn

 S0 S1Sw

SSSS (w, t)

SP

KS0 KS1 KSw

Encry (KF, Ki)

DKS

KF

File F
GenKey (P, F)

Chunk-level keys

(encrypted)

 B0 B1 Bn

GenKey (P, salt, Bi)

Chunking

Fig. 4. MLK: A Multi-Level Key management approach for secure
deduplication, which contains keys at file-level, chunk-level and share-level.
SSSS (w, t) is that Shamir Secret Sharing Scheme takes w, t as inputs.

deduplication face different security challenges. Sharing keys
or secret among users does not work due to user compromise.
However, we add “secret” information to convergent keys to
resist brute-force attacks. UACE uses server-aided HCE at file-
level and user-aided CE at chunk-level deduplication to enable
security and deduplication.

(3) UACE is time-efficient and reduces computation over-
heads significantly compared with chunk-level DupLESS ap-
proach (see Subsection VII-D). The key and tag generations
of chunk-level DupLESS approach brings a large amount
of computation overhead. On the contrary, UACE exploits
efficient key and tag generations in both file-level and chunk-
level deduplication. Specifically, UACE uses user-aided CE
with lower overheads at chunk-level deduplication via adding
secret by users themseleves. In addition, UACE adopts HCE
at file level to generate file keys and tags, which offers better
performance than CE.

C. Multi-Level Key Management

Existing convergent key management approaches have vari-
able limitations. The main problem is that key space overhead
will increase with the number of sharing users or secret
shares [12]. In order to reduce key space overheads and ensure
key security, we propose a Multi-Level Key management
approach (MLK). As shown in Figure 4, we have a three-
level hierarchy, including file-level, chunk-level, and share-
level keys.

• File-level: For each input file F , MLK generates the file-
level key KF by GenKey(P , HF).

• Chunk-level: For a non-duplicate file F , it will be
divided into chunks {Bi}(i = 1, 2, ...). Then, each chunk
Bi is assigned a key Ki by GenKey(P , KF , Ki). MLK
encrypts {Ki} with KF by Encry(P , KF , Ki). The
ciphertext of chunk-level keys will be sent to the SP.

• Share-level: As for file key KF , MLK splits it into secure
share-level keys {Sj}(j = 1, 2, ..., w) by Shamir Secret
Sharing Scheme (w, t). And MLK distributes {Sj} to
Distributed Key Servers (DKS) through secure channel.
Each key server stores and ensures security of share-level
keys.

The state-of-the-art key management approaches incur large
key space overheads. For example, the key space of Master
key increases linearly as a function of the number of sharing
users [12]. Dekey’s key space increases as a function of
the number of shares. However, MLK uses file-level key to
encrypt chunk-level keys so that it avoids key space overheads
increasing linearly with the number of sharing users. For this
reason , MLK also reduces time overheads for computing keys
(see subsection VII-E).

Existing key management approaches also suffer from a
single point of failure risk [12]. Specifically, if the single key
server fails or the master key is compromised by adversaries,
all users’ data will be leaked or corrupted. To solve this
problem, MLK splits file-level key into secure share-level via
Shamir Secret Sharing Scheme and sends secure share-level
keys to the Distributed Key Servers. MLK also backups chunk-
level keys to the SP. As a result, MLK ensures key security
and addresses the problem of single-point-of-failure.

Role of the DKS: . The function of the DKS are twofold,
namely, aiding secret information to generate random file-level
keys, and storing share-level keys. (1) To resist brute-force
attacks, key servers aid the users to generate file-level keys by
adding secret information via RSA-OPRF [9]. Users do not
trust the DKS completely. Key servers do not know the file
hash HF and file key KF because the user blinds the above
data. (2) In order to ensure key security and avoid single-
point-of-failure of file-level keys, MLK splits file-level keys
into share-level keys and sends them to the DKS via a secure
channel.

D. The Workflow of SecDep

System Setup. The system setup in SecDep initializes some
parameters of Convergent Encryption (CE) and Shamir Secret
Sharing Scheme (SSSS). The parameter 1λ is initialized to
generate a public parameter P via P = Setup(1λ). The number
of key servers is w. The parameter (w, t) of Shamir Secret
Sharing Scheme is initialized with the number of key servers.
The private key (N , d) and public key(N , e) are generated and
securely distributed to the DKS and users. Each user has to
generate a secret “salt” and keep it secure. Figure 5 describes
the workflow of SecDep. We will show the backup and restore
protocols as follows.

Backup protocol. The DKS has obtained RSA private key
(N , d) [25]. Public key (N , e) has been published to users.

S1: For each input file F , the user generates file hash HF =
Hash(P , F) of file F. Then the user generates file key KF

= GenKey(P , HF), which is aided by a key server. Next,
the user generates the file tag TF = GenTag(P , KF), and
sends TF to the SP.

S2: The SP receives file tag TF and checks it whether it exists
in the file-tag index or not. If so, the SP will set IsDup =
“Yes” and set a pointer to file recipe of file F . Otherwise,
the SP sets IsDup = “No” and returns results to the user.

S3: The user receives the IsDup result. If IsDup = “Yes”, the
user only needs to update file metadata and the backup

Input

file F

1.Generate file-level key KF and file

tag by server-aided HCE

3.Receive IsDup. Divide file F into

chunks, perform chunk-level dedup

2.Is F duplicate?

Sending IsDup.

Y

N

4.Generate chunk-level keys and chunk

tags by user-aided CE

5. Are chunks

duplicate?

6.Encrypt chunks with chunk-

level keys, encrypt these keys

with KF, write them to recipe

3.Get t share-level keys

from the DKS, recover

KF with SSSS (w, t)

2. Obtain chunks and

file recipe from the

SP

4. Decrypt chunk-level

keys with KF , decrypt

chunks with chunk-level

keys, recover file F

Restore

7. Send file recipe to the SP, split

KF into share-level keys, send them

to the DKS

Y

Restore

request

1. Verify user

identity, get

metadata of file F
 Update

metadata

N

Fig. 5. The workflow of SecDep, including backup and restore protocols. SSSS(w, t) represents Shamir Secret Sharing Scheme (w, t).

process ends. If IsDup = “No”, the user performs inside-
user chunk-level deduplication.

S4: For chunk-level deduplication (i) the user divides F into
chunks {Bi} (i = 1, 2, ...) via content-defined chunking
algorithm. (ii) For each Bi, the user generates the chunk-
level key KBi = GenKey(P , salt, Bi). (iii) The user uses
KBi to encrypt the chunk, CBi = Encry(P , KBi , Bi). (iv)
The user generates chunk tag TBi = GenTag(P , CBi) and
sends TBi to the SP for checking duplicate chunks.

S5: All chunk tag {TBi} will be sent to the SP and searched
on chunk-tag index. For each chunk Bi (i = 1, 2, ...), if
it is a duplicate chunk, the SP sets ψ[i] = 1. Otherwise,
sets ψ[i] = 0.

S6: If ψ[i] = 0, the user uploads the ciphertext of chunk CBi

to the SP. And the user needs to create a file recipe for
efficiently restoring the file after deduplication. The user
uses file-level key KF to encrypt chunk-level keys CKBi

= Encry(P , KF , KBi). Meantime, the user also writes
the corresponding ciphertext of chunk-level keys to the
file recipe and sends the file recipe to the SP.

S7: If ψ[i] = 1, the user updates file recipe. The user splits
file-level key KF into w different share-level keys {Sj}
by SSSS (w, t) [19] and distributes them to the DKS.
The DKS receives and stores share-level keys {Sj} (j =
1, 2, ..., w).

Restore protocol. When the user wants to restore a file, the
user has to send a request and file name to the SP.
S1: The SP receives the restore request and verifies the user’s

identity. If it fails, the SP rejects user’s request.
S2: If it passes, the SP will read and send all these correspond-

ing chunks and file recipe to the user. The user receives
file recipe and all ciphertext of chunks.

S3: The user sends the restore request to t different key
servers randomly for obtaining share-level keys. Each key
server verifies the identity of the user. And the key servers
read the share-level keys {Sj} and send them to user
via a secure channel. The user receives key shares and
combines them to recover file key KF via SSSS(w, t).

S4: The user gets the file recipe and file-level key. The
user decrypts and obtains each chunk-level key KBi =
Decry(P , KF , CKBi

). For each chunk CBi (i=1, 2, ...), the
user decrypts chunks Bi = Decry(P , KBi , CBi). Finally,
the file F is recovered.

V. IMPLEMENTATION DETAILS

We have implemented our prototype SecDep based on User-
Aware Convergent Encryption (UACE) and Multi-Level Key
management (MLK) approaches. As shown in Figure 2 in
Section III, SecDep consists of client, the Storage Provider
(SP), and Distributed Key Servers (DKS). They are used as the
three key entities of our system model. The client takes user’s
identity credentials and requests as inputs. We use hash and
encryption functions based on OpenSSL library, for example,
SHA-256 and AES-256 [22], also used in DupLESS [9]
and Dekey [12]. SecDep performs cross-user file-level and
inside-user chunk-level deduplication. Client implements the
following functions,namely, chunking algorithm, file-/chunk-
level key/tag generation, and encryption. Our Storage Provider
(SP) maintains file-tag and chunk-tag indices for duplicate
checking. The SP stores file recipe, chunks, and chunk-level
keys. Each key server in the DKS can receive and store key
shares. We will describe the chunking, index management, and
container management in details as follows.

A. Chunking

We implement both cross-user file-level and inside-user
chunk-level deduplication. As for chunk-level deduplication,
we implement both Fix-Sized and Content-Defined Chunking
algorithms, where Content-Defined Chunking (CDC) [26] is
default. The average chunk size are configured to 2KB, 4KB,
and 8KB respectively, which will be evaluated in Section VII.

B. Index Management

In order to perform deduplication, the SP has to maintain
the indices of file and chunk tags. The user computes the
tags of files and chunks, and uploads them to the SP for
duplicate-checking. Specifically, SecDep rents a co-locating
Virtual Machine (VM) and a cloud storage backend to support
duplicate checking and data storage [27]. To support efficient
cross-user file-level deduplication and inside-user chunk-level
deduplication, SecDep manages indices of file and chunk tags
by employing the wildly used locality-based deduplication
indexing scheme [28, 29].

First, the file-tag index holds file tag entries for different
users. Each entry of a file is identified by the file name and
tag. The entry stores a reference to the file recipe, which
consists of tags and sizes of the chunks in sequence. Second,

the chunk-tag index holds chunk tag entries inside users. Each
chunk entry is identified by its tag and keeps a reference to
the container that stores the physical chunk. SecDep does not
have to maintain a global chunk tag index among users but
just several individual inside-user chunk tag indices.

C. Container Management & Storage Protocol

During a backup, the chunks that need to be written are
aggregated into containers to preserve the locality of the
backup stream. The default container size is 4MB. SecDep
supports backup and restore protocols that are detailed in
subsection IV-D. After users delete expired backups, chunks
become invalid (not referenced by any backup) and must be
reclaimed. The simplest reference counting technique [30] is
used to support deletion and garbage collection in SecDep.
The more sophisticated garbage collection schemes will be
considered into SecDep as our future work [31].

VI. SECURITY DISCUSSION

SecDep is designed to ensure data confidentiality and key
security for cross-user fine-grained deduplication-based system
for cloud backups. In SecDep, we consider two types of
adversaries, that is, external adversary and internal adversary.
However, we only focus on internal adversary because SecDep
could resist the external attacks by authentication [12]. We
assume that the following technologies are secure, such as
Shamir Secret Sharing Scheme [19] and symmetric encryption.
We analyze data confidentiality and security of keys in the
case the adversary compromises the SP, colludes with users, or
steals data from key servers. Thus we present security analysis
of SecDep in a multi-tiered way.

A. Security of Data

In the case that the adversary tries to compromise the SP
or collude with users, SecDep could resist brute-force attacks
and duplicate-faking attacks to ensure data security, including
the confidentiality and integrity.

The adversary tries to obtain the content of files from
other legitimate users. The adversary may compromise the
SP to get the chunks on the SP and perform brute-force
attacks. Specifically, the adversary obtains the ciphertexts of
target chunks from a specific file. The adversary knows that
the chunks are from a specific set |S|. For each chunk, the
adversary encrypts it to get the ciphertext and compares it
with the target chunk. Then the adversary gets the original
file. However, SecDep can still ensure data confidentiality. All
users’ data that are uploaded to the SP, have been encrypted
with chunk-level keys. The chunk-level keys are generated by
adding secret via user-aided CE. In general, it is difficult to
break the confidentiality of users’ data because the adversary
doesn’t know the secret.

The adversary colludes with some users and performs
duplicate-faking attacks [18, 20] to the data on the SP, which
compromises the integrity of users’ data. Specifically, the
adversary and these colluders may upload their data to the
deduplication-based system for cloud backups. They upload

TABLE VI
WORKLOAD CHARACTERISTICS OF FOUR REAL-WORLD DATASETS.

Characteristics One-set Inc-set Full-set FSLhomes
Number of users 11 6 19 7

Total size 491GB 224.4GB 2.5TB 14.5TB
Total files 2.5M 0.59M 11.3M 64.6M

Total chunks 50.5M 29.4M 417M 1703.3M
Avg. chunk size 10KB 8KB 6.5KB 8KB

Dedup factor 1.7 2.7 25 38.6

the correct tags, but replace the chunks with the wrong data.
To address this problem, SecDep can compute the hash value
of the ciphertext of chunks. Then the user compares hash value
with its’ tag to resist duplicate-faking attacks.

B. Security of Keys

The adversary tries to obtain the keys, and recover other
users’ data. Specifically, (1) the adversary gets chunk-level
keys by compromising the SP. However, chunk-level keys are
encrypted by file-level key via symmetric encryption. SecDep
can ensure the security of chunk-level keys as long as file-
level keys are stored securely. (2) The adversary tries to get
share-level keys from key servers and recover the file-level key,
which is very difficult. This is because the share-level keys in
SecDep are securely distributed in several key servers by using
the known Shamir Secret Sharing Scheme (SSSS) [19].

C. Security of SecDep

As mentioned above, the adversary can’t obtain other users’
data if it only compromises the SP, colludes with users or steals
data from key servers. Then we discuss the security of SecDep
if the adversary tries to compromise the SP or collude with
users.

In the best case, the adversary compromises the SP, but
cannot access to the DKS. All data and metadata stored in
the SP is encrypted with random keys, including file recipe.
The adversary cannot know the content of other users’ data
even if it performs brute-force attacks. In the semi-best
case, the adversary has compromised some users and have
been authorized access to DKS. SecDep can still ensure data
security. Although adversary can perform brute-force attacks
on chunks via CE, he/she can’t break the encryption key due
to not knowing the user’s secret. In the worst case, if the
adversary has obtained some users’ secret and other users’
ciphertexts of chunks, SecDep can still ensure security for
unpredictable data that are not falling into a known set. For the
worst case that adversary attacks the predictable data within
a known set, SecDep makes the worst case rarely occur by
further protecting tags and file metadata [9].

VII. PERFORMANCE EVALUATION

A. Experimental Setup

In order to evaluate the performance of SecDep, We conduct
the experiments using machines equipped with an Intel(R)
Xeon(R) E5606@2.13GHZ 8 Core CPU, 16GB RAM, and
installed with Ubuntu 12.04 LTS 64-bit Operation System.

16K 64K 256K1024K 4M 16M 64M 256M1024M

0
50
100
150
200
250
300
350
400

Ba
ck

up
 ti

m
e

(s
ec

)

File size

 Baseline
 DupLESS-file
 SecDep
 DupLESS-chunk

(a) Different file size with non duplicates

16K 64K 256K1024K 4M 16M 64M 256M1024M

0

50

100

150

200

250

300

Ba
ck

up
 ti

m
e

(s
ec

)

File size

 Baseline
 DupLESS-file
 SecDep
 DupLESS-chunk

(b) Different file size with full duplicates

0 1000 2000 3000 4000 5000
0

300

600

900

1200

1500

1800

2100

Ba
ck

up
 ti

m
e

(s
ec

)

Number of files

 Baseline
 DupLESS-file
 SecDep
 DupLESS-chunk

(c) Number of files

Fig. 6. The upload time comparison among Baseline, DupLESS-file, SecDep, and DupLESS-chunk on different sizes and numbers of files.

Baseline-2K SecDep-2K DupLESS_chunk-2K
0

100

200

300

400

500

C
um

ul
at

iv
e

tim
e

(s
ec

)

Schemes

 Encryption
 Search
 Tag
 Key

(a) Average chunk size of 2KB

Baseline-4K SecDep-4K DupLESS_chunk-4K
0

40

80

120

160

200

240
C

um
ul

at
iv

e
tim

e
(s

ec
)

Schemes

 Encryption
 Search
 Tag
 Key

(b) Average chunk size of 4KB

Baseline-8K SecDep-8K DupLESS_chunk-8K
0

25

50

75

100

125

150

C
um

ul
at

iv
e

tim
e

(s
ec

)

Schemes

 Encryption
 Search
 Tag
 Key

(c) Average chunk size of 8KB

Fig. 7. The time breakdown comparison among Baseline, SecDep, and DupLESS-chunk with different average chunk sizes.

These machines are connected with 100Mbps Ethernet net-
work. We implement a research prototype to evaluate and
compare the performance of different schemes, including
Baseline, DupLESS-file, DupLESS-chunk, and SecDep. Base-
line is a basic chunk-level deduplication system without any
security mechanisms. DupLESS-file and DupLESS-chunk are
implementing secure DupLESS [9] schemes at file and chunk
levels respectively. Note that our evaluation platform is not
a production quality secure deduplication system but rather
a research prototype. Hence, our evaluation results should be
interpreted as an approximate and comparative assessment of
other secure deduplication approaches above, and not be used
for absolute comparisons with other deduplication systems.

We use both of the synthetic datasets and real-world datasets
for evaluation. The synthetic datasets consist of artificial files
filled with random contents and each file is divided into fixed-
sized chunks. Real-world datasets are summarized in Table VI,
including One-set, Inc-set, Full-set and FSLhomes. One-set
was collected from 11 graduate students of a research group
and was reported by Xia et al. [32]. Inc-set was collected
from initial full backups and subsequent incremental backups
of 6 members of a university research group and was reported
by Tan et al. [21]. Full-set consists of 380 full backups of 19
researchers’ PC and is reported by Xing et al. [33]. FSLhomes
is a public dataset reported by Tarasov et al. [34] and can be
downloaded from website [35]. FSLhomes contains snapshots
of students’ home directories, where files consist of source
code, binaries, office documents, and virtual machine images.

In order to compare the performance of the existing secure
deduplication schemes and SecDep, we mainly use dedup
factor, backup time, key space and key protecting time as
the quantitative metrics. Dedup factor is defined as the ratio
of the data sizes before/after deduplication. Backup time
consists of key and tag generations, searching, encryption,
and transferring time. Key space is the key storage overheads.
Key protecting time is the encryption or encoding time for
key management. We observe the impacts of varying sizes
& numbers of files and average chunk sizes on the system
performance.

B. A Sensitivity Study on Size & Number of Files

In this section, we evaluate the impacts of varying file
size on performances of Baseline, DupLESS-file, SecDep, and
DupLESS-chunk. Files are generated with random contents of
size 2i KB for i ∈ {4, 5, ..., 20}, giving us a file-size ranging of
from 16 KB to 1024 MB. To evaluate the impacts of varying
the number of files on backup time, we upload 1000-5000
1MB unique files filled with random contents.

Figure 6(a) shows the results that SecDep significantly
reduces backup time compared with DupLESS-chunk as dis-
cussed in subsection IV-B. When file size is small (i.e., 16KB-
4MB), backup time of these schemes is similar. It is because
key and tag generations account for little part of the whole
time. Starting from 8MB, DupLESS-chunk incurs significantly
higher overheads than others. This is because of modular
exponentiation in RSA-OPRF protocol, which will incur huge

One-set Inc-set Full-set FSLhomes
0

20

40

60

80

100
R

el
at

iv
e

de
du

p
fa

ct
or

 (%
)

 Datasets

 DupLESS-file SecDep DupLESS-chunk

Fig. 8. The comparisons of DupLESS-file, SecDep, and DupLESS-chunk in
terms of relative dedup factor. The Y-axis shows the relative dedup factor to
DupLESS-chunk.

TABLE VII
THE KEY SPACE OVERHEAD COMPARISON AMONG THE

STATE-OF-THE-ART CHUNK-LEVEL KEY MANAGEMENT APPROACHES.

Approach Key space overheads

Single Key Server O = D∗S
k∗DF

Master Key O = D∗S
k

SecDep O = D∗S
k∗DF

+ Nu*w*S
Dekey O = D∗S

k∗DF
* w
t−r

computation and time overheads for chunk-level deduplication.
As shown in Figure 6(b), SecDep incurs less time overheads

compared with DupLESS-chunk when all files are duplicate.
It is because SecDep only performs file-level deduplication
among users, which avoids the time-consuming chunk-level
RSA-OPRF protocol in DupLESS-chunk. We also observe
that SecDep is slightly better than DupLESS-file. It is because
SecDep uses the server-aided HCE in to reduce the encryption
overhead while DupLESS uses the conventional CE.

In Figure 6(c), backup time increases linearly with the
number of files. SecDep is more time-efficient than DupLESS-
chunk regardless of the number of files.

C. A Sensitivity Study on Average Chunk Size

To evaluate the time overhead of some individual step
under different chunk size, we upload a 512 MB unique file
repeatedly but with different chunk sizes, i.e., 2KB, 4KB, and
8KB. The evaluated steps consist of key & tag generations,
index searching, and encryption. Note that data transfer is not
included.

Figure 7(a), 7(b), and 7(c) shows that the cumulative time
is inversely proportional to the average chunk size. And
DupLESS-chunk incurs large time overheads than SecDep.
Figure 7(a) shows that tag generation and key generation
account for 96.5% time overheads. RSA-OPRF is time-
consuming, which is used to generate the server-aided keys
by DupLESS-chunk. Large number of chunks incur huge
computation overheads as discussed in Section II.

In Figure 7(a)-7(c), SecDep consumes 90-96.5% less time
overheads for key and tag generations than DupLESS-chunk.

One-set Inc-set Full-set FSLhomes
0

20

40

60

80

100

R
el

at
iv

e
ba

ck
up

 ti
m

e
(%

)

Datasets

 DupLESS-file SecDep DupLESS-chunk

Fig. 9. The backup time overheads of DupLESS-File, SecDep, and
DupLESS-Chunk on four real-world datasets. The Y-axis shows the relative
backup time to dupless-chunk.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2000

4000

6000

8000

Ke
y

sp
ac

e
(B

yt
es

)

Dedup Factor (DF)

 Single Key Server
 Master key
 SecDep
 Dekey

Fig. 10. The key space overhead per file of Single Key Server, SecDep,
Master Key, and Dekey under dedup factor.

SecDep uses UACE, which employs server-aided HCE on
file-level and user-aided CE on chunk-level deduplication to
balance the deduplication performance and data security.

D. Evaluating SepDep on the Four Real-world datasets

In Figure 8, we evaluate the relative dedup factor of the
four real-world datasets. The normalized dedup factor of
DupLESS-chunk is regarded as 100%, while the real dedup
factor is listed in Table VI. We evaluate the relative backup
time of DupLESS-file, SecDep, and DupLESS-chunk under
these datasets. The backup time of DupLESS-chunk is regard-
ed as 100%. We measure and record the average time of each
individual step, for example, tag and key generations at file-
level and chunk-level, index searching, encryption, and data
transfer. Based on these time, we obtain the backup time of
four real-world datasets.

As shown in Figure 8, SecDep eliminates the majority of
duplicate data, only resulting in a 2.8-7.35% loss of dedup
factor compared with the DupLESS-chunk as discussed in
subsection II-C. It is because SecDep combines cross-user
file-level and inside-user chunk-level deduplication, which
efficiently eliminates most of duplicate data in backup datasets.

Figure 9 suggests that SecDep reduces 52-92% of backup

One-set Inc-set Full-set FSLhomes
0

3

15

30

45
Ke

y
sp

ac
e

(G
B)

Datasets

 Single Key Server
 Master Key
 SecDep
 Dekey

Fig. 11. The key space overheads consumed by the four key management
approaches on the four real-world datasets.

time overheads compared with DupLESS-chunk as discussed
in Section II-C and IV-B. There are two reasons. i) When files
are duplicates, SecDep just performs file-level deduplication
via server-aided HCE, which offers better performance than
DupLESS-file using the conventional CE. ii) SecDep uses
user-aided CE inside users to generate keys, which avoids the
time-consuming RSA-OPRF operations of DupLESS-chunk.

Figure 9 shows that SecDep is more time-efficient than
DupLESS-file. When files are duplicate, SecDep reduces much
more time overheads on key and tag generations compared
with DupLESS-file because HCE offers better system through-
put than CE. SecDep reduces more transfer time compared
with DupLESS-file due to the higher dedup factor.

E. Space & Computation Overheads for Key Management

In this subsection, we evaluate the space and computation
overheads of SecDep’s Multi-Level Key management. First,
we describe the key space overheads (O) of different secure
fine-grained deduplication approaches in Table VII. Then we
evaluate the impacts of varying dedup factor on key space
overheads per file in Figure 10. Finally, we evaluate the space
and computation overheads for key management on the four
real-world datasets in Figures 11 and 12 respectively. The
parameters used in Table VII are defined as follow. D is data
size, Nu is the number of unique file, k is the average chunk
size, S is the size of chunk key, and DF is the dedup factor.
RSSS(w, t, r) [12] and SSSS(w, t) [19] take w, t, and r as
parameters, which are set to 6, 4, and 2 respectively.

In Table VII, the key space of Dekey are w/(t − r)
times of the number of chunk-level keys [12]. SecDep adds
Nu ∗w ∗S shares over the Single Key server approach, which
only accounts a very small fraction of the total key space
overhead. As shown in Figure 10, the key space overheads of
SecDep will be decreased with the deduplication factor and
SecDep adds little key space overheads compared with Single
Key Server approach. Note that the Master Key approach has
the highest key space overheads, which is because that it
always encrypts chunk-level keys with user’ own master key
regardless of whether the files are duplicates or not.

One-set Inc-set Full-set FSLhomes
0

50

200
400
600
800

1000

Ke
y

pr
ot

ec
tin

g
tim

e
(s

ec
)

Datasets

 Single Key Server
 Master key
 SecDep
 Dekey

Fig. 12. The key protecting (i.e., encrypting or encoding) time overheads
consumed by the four key management approaches on four real-world
datasets.

Figure 11 suggests that SecDep reduces 59.5-63.6% and
34.8-96.6% of key space overheads on the four reel-world
datasets compared with Dekey and Master Key approach
respectively. Because SecDep uses MLK, which employs file-
level key to manage chunk-level keys to avoid the key space
overheads increasing with the number of users as discussed in
subsection IV-C.

Figure 12 shows the encryption/encoding time overheads of
different key management approaches on the four real-world
datasets. The Master Key approach incurs large time overheads
while SecDep is time-efficient because SecDep reduces the
amount of encrypting chunk-level keys with using file-level
keys. The results of decrypting and decoding time overheads
are similar to that shown in Figure 12.

In summary, SecDep significantly reduces backup time over-
heads compared with DupLESS-chunk approach based on four
real-world datasets, regardless of the variety of size, number,
and average chunk size. Meanwhile, SecDep also reduces key
space overheads and is more time-efficient on key management
compared with Dekey and Master Key approaches.

VIII. RELATED WORK

Data deduplication techniques could be classified into two
types based on the granularity: file-level and chunk-level.
Many papers [2, 36] present performance comparison between
file-level and chunk-level deduplication methods, which sug-
gests cross-user redundant data are mainly from duplicate files.
Tan et al. [21] propose SAM, which combines the global file-
level deduplication and local chunk-level deduplication, which
makes a trade-off between the deduplication efficiency and
indexing overheads.

Recently, data confidentiality for deduplication-based cloud
storage systems is gaining increasing attention [37]. Douceur
et al. [10] propose and formalize convergent encryption to
enable deduplication and encryption, which uses its content
hash as a key to encrypt data via a deterministic encryption
scheme. Storer et al. [20] adopt convergent encryption and
explore secure data deduplication based on the authenticated
and anonymous model. Bellare et al. [18] put forward that

convergent encryption is subject to brute-force attacks because
of deterministic and keyless problems. They formalize this
primitive as message-locked encryption [18] and develop
DupLESS [9] system which uses convergent encryption for
file-level deduplication storage while keys are obtained from
a key server via RSA-OPRF protocol [9]. Stanek et al. [38]
present a scheme that guarantees different security level for
popular and unpopular data.

Meanwhile, key management for secure deduplication is
also gaining attention recently. Generally, customers have
to backup their convergent keys for the security concerns.
Hence, fine-grained key management approach becomes a
challenge due to large number of chunks. Storer et al. [20]
and ClouDedup [13] propose that they will send and store
convergent keys to a key server. However, DupLESS requires
that each user uses a Master Key to encrypt convergent keys
and sends ciphertext of keys to cloud storage. Li et al. propose
Dekey [12] that splits chunk-level key into key shares via
RSSS [14, 15]. However, they do not discuss key space
overheads and evaluate their approach with the real-world
datasets.

To resist attacks that access files based on a small hash
value, Harnik et al. [39] introduce “proofs of ownership”
(PoWs) for deduplication system. PoWs is a protocol using
Merkel Hash Tree and erasure code that lets users prove to a
server whether or not they hold the file. Xu et al. [40] propose
a secure client-side deduplication scheme with efficient min-
entropy in a bounded leakage setting. Pietro et al. [41]
introduce s-PoW, an efficient and secure PoW scheme that
outputs a proof with each bit selected at a random position
of the file. Ng et al. [42] presents a new PoW scheme for
encrypted data on private data deduplication, but they do not
consider the key space overheads.

IX. CONCLUSION

In this paper, we study the problems of data confidentiality
and key security for cross-user fine-grained deduplication
in cloud backup systems. We observe that state-of-the-art
secure deduplication methods either suffer from brute-force
attacks, or incur large computation (time) overheads, and key
management approaches incur large key space overheads. We
design SecDep, which exploits redundant data distribution on
cross-user file-level and inside-user chunk-level to perform
different security policies, to make a trade-off between the
data security and deduplication performance.

In general, SecDep mainly consists of two modules: User-
Aware Convergent Encryption algorithm (UACE) and Multi-
Level Key management (MLK) approaches. (1) UACE uses
server-aided HCE at file-level and user-aided CE at chunk-
level to resist brute-force attacks. Moreover, UACE uses an
efficient user-aided CE approach at fine-grained deduplication
to reduce computation overheads. Four real-world datasets
driven experimental results show that UACE reduces 52-92%
of time overheads at the expense of only losing 2.8-7.35%
of dedup factor compared with the state-of-the-art DupLESS

approach. (2) MLK encrypts chunk-level keys by file-level key,
which avoids key space increasing with the number of sharing
users. Meanwhile, MLK splits file-level key into share-level
keys via Shamir Secret Sharing Scheme and sends them to
the Distributed Key Servers, which ensures key security and
avoids single-point-of-failure. Our evaluation results suggest
that MLK reduces 59.5-63.6% and 34.8-96.6% of key space
overheads than the state-of-the-art Dekey and Master key
approaches, respectively.

ACKNOWLEDGMENTS

This work was partly supported by the National Basic Re-
search 973 Program of China under Grant No.2011CB302301;
NSFC No. 61025008, 61173043, 61232004, and 6140050892;
863 Project 2013AA013203; Fundamental Research Funds for
the Central Universities, HUST, under Grant No. 2014QNR-
C019; Director Fund of WNLO. This work was also supported
by Key Laboratory of Information Storage System, Ministry of
Education, China. The authors are also grateful to anonymous
reviewers and our shepherd, James Hughes, for their feedback
and guidance.

REFERENCES

[1] “The Digital Universe of Opportunities: Rich
Data and the Increasing Value of the Internet
of Things,” http://www.emc.com/leadership/digital-
universe/2014iview/executive-summary.htm, April 2014,
EMC Digital Universe with Research & Analysis by IDC.

[2] D. Meyer and W. Bolosky, “A study of practical deduplication,”
in Proceedings of the USENIX Conference on File and Storage
Technologies. San Jose, CA, USA: USENIX Association,
February 2011, pp. 229–241.

[3] G. Wallace, F. Douglis, H. Qian, and et al, “Characteristics of
backup workloads in production systems,” in Proceedings of the
Tenth USENIX Conference on File and Storage Technologies
(FAST’12). San Jose, CA: USENIX Association, February
2012, pp. 1–14.

[4] A. El-Shimi, R. Kalach, A. Kumar, and et al, “Primary data
deduplication-large scale study and system design,” in Pro-
ceedings of the 2012 conference on USENIX Annual Technical
Conference. Boston, MA, USA: USENIX Association, June
2012, pp. 1–12.

[5] “Dropbox,” http://www.dropbox.com/, 2015.
[6] “Spideroak,” https://www.spideroak.com/, 2015.
[7] “Mozy,” http://www.mozy.com/, 2015.
[8] S. Quinlan and S. Dorward, “Venti: A new approach to archival

storage.” in Proceedings of the 1st USENIX Conference on
File and Storage Technologies (FAST’02). erkeley, CA, USA:
USENIX Association, January 2002, pp. 89–101.

[9] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Dupless: server-
aided encryption for deduplicated storage,” in Proceedings of
the 22nd USENIX Security Symposium. Washington, DC, USA:
USENIX Association, August 2013, pp. 1–16.

[10] J. R. Douceur, A. Adya, W. J. Bolosky, and et al, “Reclaim-
ing space from duplicate files in a serverless distributed file
system,” in Proceedings of the 22nd International Conference
on Distributed Computing Systems. Vienna, Austria: IEEE
Computer Society Press, July 2002, pp. 617–624.

[11] M. Naor and O. Reingold, “Number-theoretic constructions
of efficient pseudo-random functions,” Journal of the ACM
(JACM), vol. 51, no. 2, pp. 231–262, 2004.

[12] J. Li, X. Chen, M. Li, J. Li, P. P. Lee, and W. Lou, “Secure
deduplication with efficient and reliable convergent key man-
agement,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 25, no. 6, pp. 1615–1625, 2014.

[13] P. Puzio, R. Molva, M. Onen, and S. Loureiro, “Cloudedup:
secure deduplication with encrypted data for cloud storage,”
in Proceedings of the 5th International Conference on Cloud
Computing Technology and Science. Bristol, UK: IEEE
Computer Society Press, December 2013, pp. 363–370.

[14] G. R. Blakley and C. Meadows, “Security of ramp schemes,” in
Proceedings of the 1985 Advances in Cryptology (CRYPTO’84).
Heidelberg, Berlin: Springer, 1985, pp. 242–268.

[15] A. De Santis and B. Masucci, “Multiple ramp schemes,” In-
formation Theory, IEEE Transactions on, vol. 45, no. 5, pp.
1720–1728, July 1999.

[16] L. P. Cox, C. D. Murray, and B. D. Noble, “Pastiche: Making
backup cheap and easy,” ACM SIGOPS Operating Systems
Review, vol. 36, no. SI, pp. 285–298, 2002.

[17] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: the least-authority
filesystem,” in Proceedings of the 4th ACM international work-
shop on Storage security and survivability. Alexandria, VA,
USA: ACM Association, October 2008, pp. 21–26.

[18] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked
encryption and secure deduplication,” in Proceedings of Ad-
vances in Cryptology–EUROCRYPT 2013. Athens: Springer,
May 2013, pp. 296–312.

[19] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612–613, 1979.

[20] M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller,
“Secure data deduplication,” in Proceedings of the 4th ACM
international workshop on Storage Security and Survivability.
Alexandria, Virginia, USA: ACM Association, October 2008,
pp. 1–10.

[21] Y. Tan, H. Jiang, D. Feng, and et al, “SAM: A Semantic-
Aware Multi-Tiered Source De-duplication Framework for
Cloud Backup,” in Proceedings of the 39th International Con-
ference on Parallel Processing (ICPP’10). San Diego, CA,
USA: IEEE Computer Society Press, September 2010, pp. 614–
623.

[22] “Openssl project,” https://www.openssl.org/, 2015.
[23] J. Camenisch, G. Neven et al., “Simulatable adaptive oblivious

transfer,” in Proceedings of the 27th Advances in Cryptology-
EUROCRYPT. Santa Barbara, CA, USA: Springer, August
2007, pp. 573–590.

[24] D. Chaum, “Blind signatures for untraceable payments,” in Pro-
ceedings of the 1983 ACM Advances in cryptology. Springer,
1983, pp. 199–203.

[25] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[26] M. O. Rabin, Fingerprinting by random polynomials. Center
for Research in Computing Techn., Aiken Computation Labo-
ratory, Univ., 1981.

[27] M. Li, C. Qin, P. P. Lee, and J. Li, “Convergent dispersal: toward
storage-efficient security in a cloud-of-clouds,” in Proceedings
of the 6th USENIX conference on Hot Topics in Storage and File
Systems (HotStorage’14). Philadelphia, PA, USA: USENIX
Association, June 2014, pp. 1–1.

[28] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk
bottleneck in the data domain deduplication file system.” in
Proceedings of the 6th USENIX Conference on File and Storage
Technologies (FAST’08). San Jose, CA, USA: USENIX
Association, February 2008, pp. 1–14.

[29] W. Xia, H. Jiang, D. Feng, and Y. Hua, “Similarity and locality

based indexing for high performance data deduplication,” IEEE
Transactions on Computers, 2015, vol. 64, no. 4, pp. 1162–
1176, 2015.

[30] P. Strzelczak, E. Adamczyk, U. Herman-Izycka, J. Sakowicz,
L. Slusarczyk, J. Wrona, and C. Dubnicki, “Concurrent deletion
in a distributed content-addressable storage system with global
deduplication.” in Proceedings of the 11th USENIX Conference
on File and Storage Technologies (FAST’13). San Jose, CA,
USA: USENIX Association, February 2013, pp. 161–174.

[31] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, F. Huang,
and Q. Liu, “Accelerating restore and garbage collection in
deduplication-based backup systems via exploiting historical
information,” in Proceedings of the 2014 USENIX Annual
Technical Conference (USENIX ATC’14). Philadelphia, PA,
USA: USENIX Association, June 2014, pp. 181–192.

[32] W. Xia, H. Jiang, D. Feng, and Y. Hua, “Silo: a similarity-
locality based near-exact deduplication scheme with low ram
overhead and high throughput,” in Proceedings of the 2011
USENIX conference on USENIX annual technical conference.
Portland, OR, USA: USENIX Association, June 2011, pp. 285–
298.

[33] Y. Xing, Z. Li, and Y. Dai, “Peerdedupe: Insights into the
peer-assisted sampling deduplication,” in Proceedings of the
2010 IEEE Tenth International Conference on Peer-to-Peer
Computing (P2P). Delft, Netherlands: IEEE Computer Society
Press, August 2010, pp. 1–10.

[34] V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuenning,
and E. Zadok, “Generating realistic datasets for deduplication
analysis.” in Proceedings of the 2012 USENIX Annual Technical
Conference (ATC’12). Boston, MA, USA: USENIX Associa-
tion, June 2012, pp. 261–272.

[35] “Fsl traces and snapshots public archive,” http://tracer.
filesystems.org/traces/fslhomes/2014/, 2014.

[36] C. Policroniades and I. Pratt, “Alternatives for detecting redun-
dancy in storage systems data.” in Proceedings of the 2004
USENIX Annual Technical Conference (ATC’04). Boston, MA,
USA: USENIX Association, June 2004, pp. 73–86.

[37] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and
E. Weippl, “Dark clouds on the horizon: Using cloud storage
as attack vector and online slack space.” in Proceedings of the
20th USENIX Security Symposium. San Francisco, CA, USA:
USENIX Association, August 2011, pp. 1–11.

[38] J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl, “A secure
data deduplication scheme for cloud storage,” Technical Report,
Tech. Rep., 2013.

[39] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs
of ownership in remote storage systems,” in Proceedings of
the 18th ACM conference on Computer and communications
security (CCS’11). Chicago, Illinois, USA: ACM Association,
October 2011, pp. 491–500.

[40] J. Xu, E.-C. Chang, and J. Zhou, “Weak leakage-resilient client-
side deduplication of encrypted data in cloud storage,” in Pro-
ceedings of the 8th ACM SIGSAC symposium on Information,
computer and communications security. Hangzhou, China:
ACM Association, May 2013, pp. 195–206.

[41] R. Di Pietro and A. Sorniotti, “Boosting efficiency and security
in proof of ownership for deduplication,” in Proceedings of the
7th ACM Symposium on Information, Computer and Communi-
cations Security. Seoul, Republic of Korea: ACM Association,
May 2012, pp. 81–82.

[42] W. K. Ng, Y. Wen, and H. Zhu, “Private data deduplication
protocols in cloud storage,” in Proceedings of the 27th Annual
ACM Symposium on Applied Computing. Riva del Garda
(Trento), Italy: ACM Association, March 2012, pp. 441–446.

