
Blurred Persistence in

Transactional Persistent Memory

Youyou Lu, Jiwu Shu, Long Sun

Tsinghua University

Overview

• Problem: high performance overhead in ensuring storage
consistency of persistent memory

• Our Goal: to propose a software solution to reduce
transactional overhead for persistent memory

• Key Idea: Blurred Persistence
– Allow the volatile (uncommitted) data to be persisted

–-> XIL (Execution in Log)

• By reorganizing the memory log

– Allow the to-be-persisted (checkpointed) data to stay volatile
–-> VCBP (Volatile Checkpoint and Bulk Persistence)

• Leveraging the persistent copies

• Maintaining the overwrite order

• Results: improves system performance by 56.3% to 143.7%

Outline

• Introduction and Background

• Opportunities and Challenges

• Our Approach: Blurred Persistence

• Evaluation

• Conclusion

Volatile Memory

Persistent Memory

Disk Storage

Volatile Memory

CPU

Cache

Disk Storage

Non-volatile Memory

CPU

Cache

• The volatility-persistence boundary moves up

Disk-based Storage Persistent Memory

Storage consistency

– Atomicity and durability

– A storage system can recover to a consistent state

after unexpected system crashes

Disk-based Storage Persistent Memory

What if an
uncommitt
ed block is
evicted?

Transactional Persistent Memory

• Separated memory areas

Execution

Area
Data Area Log Area

Problems

• High transactional overhead

– Data copies between memory areas

– Forced persistence using flush and barrier commands

• Clflush and mfence can add extra 250ns latency

• Root cause: white box vs. black box

Disk Storage

Volatile Memory

CPU
Cache

Non-volatile Memory

CPU
Cache

Disk Storage

White Box

Black Box

Disk-based Storage Persistent Memory

Outline

• Introduction and Background

• Opportunities and Challenges

• Our Approach: Blurred Persistence

• Evaluation

• Conclusion

Existing Solutions

Hardware Software

Ordering Overhead Reduction

Persistence Overhead Reduction

• Epoch [SOSP’09]

• Strand Consistency

[ISCA’14]

• LOC [ICCD’14]

• Kiln [MICRO’13]

• WSP [ASPLOS’12]
• Blurred Persistence

• Mnemosyne (TornBit)

[ASPLOS’09]

Persistence

Ordering
Support

Commit w/o

commit record

Observations and Opportunities

Execution

Area
Data Area Log Area

Execution

Area
Data Area Log Area

• Volatile copies

– Remove duplicated in

the execution area

– > execution in log

• Persistent copies
– No need to force persistence

if the data block has another
persistent copy

– > volatile checkpoint

Key Ideas

• Blurred Persistence
– Allow the volatile (uncommitted) data to be persisted

– –> XIL (Execution in Log)

• What if a system crash? How to identify the
uncommitted data?

– Allow the to-be-persisted (checkpointed) data to stay
volatile

– –> VCBP (Volatile Checkpoint with Bulk Persistence)

• How to provide durability? How to identify the not-
committed data?

• How to keep the write order?

Outline

• Introduction and Background

• Opportunities and Challenges

• Our Approach: Blurred Persistence

• Evaluation

• Conclusion

1. Execution in Log (XIL)

• Execution in Log

– Reduce data copies in the execution area

Execution

Area
Data Area Log Area

Execution

Area
Data Area Log Area

• Challenge: How to identify the uncommitted data

that are persisted after system crashes?

– Cause: hardware cache eviction of the CPU cache

• Log Holes

– Uncommitted data blocks: allocated but not written

D D D C D A D

0 0 0 0 0 0 0 0 0 0 0

• Solution: Memory Log Reorganization
– Identify the non-written blocks

• TornBit technique borrowed from Mnemosyne[ASPLOS’11]

– Identify the uncommitted blocks that are written

• Consecutively allocate log records for each transaction

– For multi-thread applications, each thread is allocated with a
private log, but the head of the private log is globally visible

• Add descriptive metadata in the commit/abort record

– e.g., a backpointer to the commit record of the last committed
transaction

D D D C D A D

1 1 1 1 1 1 1

2. Volatile Checkpoint with Bulk Persistence (VCBP)

• Volatile Checkpoint
– make the committed data visible

• Bulk Persistence
– ensure the durability property (after log truncation)

Execution

Area
Data Area Log Area

Execution

Area
Data Area Log Area

• Challenges:
– (1) Volatile checkpoint: committed data are volatile?

– (2) Bulk persistence: uncommitted data are forced persisted

• Solutions:
– (1) leverage the persistent copies in the log area

– (2) make the uncommitted data identifiable in persistent
memory

• If in execution area, it is OK (all data in execution area
are discarded even if they are evicted to memory)

• If in log area, using XIL techniques

• Data area does not have uncommitted data, but need to
keep the persistence order of a concurrently-updated
block

• Another Challenge: overwrite order of a

concurrently-updated data block from multiple

transactions

A B C

A B B C

Outline

• Introduction and Background

• Opportunities and Challenges

• Our Approach: Blurred Persistence

• Evaluation

• Conclusion

Experimental Setup

• Blurred-Persistence Persistent Memory (BPPM)
– Software transactional memory (TinySTM) + persistence

support

– Intel STM compiler

• Evaluated Systems
– Baseline (BASE), Mnemosyne (MNE), No Persistence (NP)

– BP(XIL), BP(VCBP), BPPM

• Workloads
- Data array swaps, hash table, red-black tree, B+ tree,

- Key-value store

Overall Performance

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

SPS Hash RBTree B+Tree KVStore Gmean

T
ra

n
s
a

c
ti
o

n
 T

h
ro

u
g

h
p

u
t

 (
tx

s
/s

)

BASE
MNE

BP(XIL)
BP(VCBP)

BPPM
NP

Sensitivity to Memory Latency

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

35 95 150 1000 2000

T
ra

n
s
a

c
ti
o

n
 T

h
ro

u
g

h
p

u
t

 (
tx

s
/s

)

Memory Latency (ns)

BASE
MNE

BP(XIL)
BP(VCBP)

BPPM

Sensitivity to Transaction Idle Time

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

90% 50% 10% 5% 0%

T
ra

n
s
a

c
ti
o

n
 T

h
ro

u
g

h
p

u
t

 (
tx

s
/s

)

Percentage of Idle Time

BASE
MNE-SYNC

MNE-ASYNC
BPPM

NP

Outline

• Introduction and Background

• Opportunities and Challenges

• Our Approach: Blurred Persistence

• Evaluation

• Conclusion

Overview

• Blurred Persistence: a general software solution to
reduce transactional overhead in persistent memory

• Two Techniques:
– Execution in Log (XIL): Allow the volatile (uncommitted) data

to be persisted

• By reorganizing the memory log

– Volatile Checkpoint with Bulk Persistence (VCBP): Allow the
to-be-persisted (checkpointed) data to stay volatile

• Leveraging the persistent copies

• Maintaining the overwrite order

• Results: improves system performance by 56.3% to 143.7%

Blurred Persistence in

Transactional Persistent Memory

Youyou Lu

Tsinghua University

Email: luyouyou@tsinghua.edu.cn

