
SoftWrAP: A Lightweight Framework 

for Transactional Support of Storage 

Class Memory

Ellis Giles

Rice University

Houston, Texas

erg@rice.edu

Kshitij Doshi

Intel Corp.

Portland, OR

kshitij.a.doshi@intel.com

Peter Varman

Rice University

Houston, Texas

pjv@rice.edu

Massive Storage Systems and Technologies Conference, 2015



Motivation

• In Memory Databases (IMDB) & Caches

– Main Memory Databases – MMDB

– solidDB, Oracle TimesTen, CSQL, Memcached

– Fast Access Speeds

– Lack Durability (ACID) or must log to disk with 

long recovery times

• New Graph Databases, Neo4j, Graph 500 

• Ideally, with byte-addressable persistent 

storage, applications could operate at in-

memory access speeds without having to 

log to disk.



SCM

Memory

• Fast

• Byte Addressable

• Volatile

• DRAM –Refreshed

Storage Class Memory
• Fast

• Byte Addressable

• Non-Volatile

• Examples:

• PCM

• ReRAM

• ST-MRAM

Storage

• Non-Volatile

• Slow

• Block-Based

Storage Technology

*Figure Adapted from: M. K. Qureshi, V. Srinivasa, and J. A. Rivers, “Scalable high performance main memory 

system using phase-change memory technology,” ISCA’09.



Storage Class Memory 

Storage Class Memory (SCM):

• Byte-Addressable

• Persistent

• High-Speed

• Will sit alongside DRAM

• Near DRAM Speed

• Higher Density

• 1+ TB on the Main Memory Bus

• Can Replace Disks

• Gives Rise To New Applications 
(no longer slow, block based 

persistence)

• Sounds Great!

• 1,000x write 

endurance 

over FLASH

• 50-100x less 

latency

• 1/10th the 

energy



Problem

CACHE HIERARCHY

PERSISTENT 

MEMORY

B                  2

C 0

A                         1   

Durability of writes (even a single write) are not 

guaranteed.

A=1 is only in cache hierarchy and not in 

memory.

C 0

D 0

A 0

STORE A, 1

Transaction

D 0

B                         0   
B 0



Problem

CACHE HIERARCHY

PERSISTENT 

MEMORY

B                  2

C 0

A                         1   

Durability of writes are not guaranteed.

A=1 is now only in a store buffer and not memory.

Unfortunate side effect of also invalidating cache entry.

C 0

D 0

A 0

STORE A, 1

CLFLUSH A

Transaction

D 0

B                         0   
B 0

A

1

Store

Buffer

Invalidate



Problem

CACHE HIERARCHY

PERSISTENT 

MEMORY

B                  2

C 0

A                         1   

Durability of a store, A=1 now in persistent memory.

C 0

D 0

A 1

STORE A, 1

CLWB A

PCOMMIT

Transaction

D 0

B                         0   
B 0

Store

Buffer

Fortunately, 2/2015

Intel ISA Manual

Introduces:

CLWB – write back

PCOMMIT – persistent commit - $$$

Problem solved?

What about multiple stores?



Problem

Write Storm

(Still must be Atomic)
Can’t allow updates SCM until Commit

Start Commit Complete

Writes Must      

be Atomic

Or crash 

during Write 

Storm would 

leaved data 

inconsistent.

Reduces 

window of 

vulnerability.

STORE A, 1
CLWB PCOMMIT

STORE B, 2
CLWB PCOMMIT

STORE C, 3
CLWB PCOMMIT

STORE D, 4
CLWB PCOMMIT

Transaction

STORE A, 1

STORE B, 2

STORE C, 3

STORE D, 4

Flush & Commit

Transaction

CRASH!!

Data Is 

Inconsistent

Option 1: Option 2:



Problem

B                         2       

CACHE HIERARCHY

PERSISTENT 

MEMORY

B                  2

C 3

A                         1   

EVICTED

Another problem, even before Flush & 

Commit, random cache evictions can 

leave persistent memory in an 

inconsistent state.

C 0

D 0

A 0

STORE A, 1

STORE B, 2

STORE C, 3

STORE D, 4

Flush & Commit

CRASH!!

Transaction

D 0



Undo Log

• One Solution:

– Copy old value before writing new value

• Recovery from failure use undo log

• Copy-On-Write

• Copy a=0, Write a=5

Must flush and 

commit copy before 

writing new value.

Synchronous copy 

on each write.



Atomic Writes to SCM

Write Storm

(Still must be Atomic)
Can’t allow updates SCM until Commit

Start Commit Complete

Writes Must      

be Atomic

Re-Do Log 

Asynchronous writes into SCM

Synch 

Copy

Commit Complete

Copy-On-Write

Or

Undo Log

Asynchronous writes into SCM

Commit Complete

Ideal Method:

- Asynchronous Writes to SCM

- Speed

- Only small delay at end to 

ensure all are written.

- No front-end changes



SoftWrAP Approach
Software-based

Write-Aside

Persistence

- Aliasing catches 

cache evictions.

- Fast path through 

cache hierarchy

- Re-Do Log for 

atomicity

wrapOpen();

wrapStore(a, 5);

….

c = wrapLoad(b);

wrapClose();

Transaction



SoftWrAP Approach

 Aliasing & Redo Log

 Fast foreground   

path through the 

cache hierarchy 

using alias location.

 Asynchronous 

conduit to persistent 

memory log using 

streaming stores.
 mm_stream_si32

 MOVNTI

 Bypass cache

 Approach decouples 

concurrency control    

from persistence.

wrapOpen()

Creates Log

wrapStore(x, val)

Streams location x and 

value to log

Writes x to Alias Table

wrapLoad(x)

Load x from alias table

or SCM if not present

wrapClose()

Close log & PCOMMIT

//  Can process table.



SoftWrAP Architecture



SCM Emulation

• Simulation:

• Provided only In-Order execution.

• Single instruction issue

• Results depend on model of the 

cache and memory subsystem

• Multi-threading scheduling

• SoftWrAP Could benefit from Out-Of-

Order execution.

• Tested SoftWrAP on HW DRAM 

Interposer/Tracer at Intel.

• Analysis showed additional features: 

DRAM based provided better speedup, 

pre-fetching, etc..

• Validated writes proceeding to memory.

SCM Emulation:

- Streaming stores go into a software 

emulated write buffer and to DRAM.

- Running software on HW and DRAM

Tunable SCM Model:



Global Alias Table

Address Value Size

W 5 4

X -1 4

Y 7 4

Z 8 8

A 5 4

… … …

Hash(W)

Data Object

Address Value Size

… … …

… … …

M 1 8

Z 3 8

N 1024

… … …

Hash Table A

State: Retiring

Hash Table B

State: Active

- Double Buffered

(2 Hash Tables)

- Concurrent 

Retirement

- Supports primitives 

and object types

- Reads check both 

tables (if non-empty)

- 5 States for the Alias 

Table.

- Locks on state 

change for retirement 

and open/closeWrap.



Performance Model
- Tw is SCM write time and Talias is hash or alias time

- Ts is overhead to perform persistent memory sync (CPUID) and PCOMMIT

- One log entry for a 4-byte integer requires 4-bytes + 8-byte address = 12 

bytes

- Write combining cache lines of 64 bytes of contiguous log entries and 1 write 

for log management.

- Commit a group of n writes to SCM:



Response Time

n=10 writes

Tw = 1μs

Response

Time

Foreground 

12n/64 

writes and 

aliasing is 

faster than 

n direct 

writes to 

SCM.

Large array, groups of 10 stores to random locations in the array, varying arrival 

rate of incoming transactions.  Processing of alias table, size 16k, in background.



Alias Table Analysis

N=10 writes

Tw = 1μs

Arrival rate = 

50k wraps per 

second

Small tables 

that fit in L1 

cache perform 

best.  Too small 

causes too 

many table 

switches. 

Maximum throughput (wraps per second) for various of alias table sizes in double 

buffered implementation.



Transaction Size

Response time for various transaction sizes with arrival rate of 1,000 wraps

per second, alias table size of max 8k entries, and SCM Tw=1μs.

Block Copy:

- All N items in 

1k cont. block

- Data structure 

allows for a 

pointer flip to 

new block.



Data Reuse

Maximum throughput for various percentage of data reuse across transactions

with size n=10, alias table size of max 8k entries, and SCM Tw=1μs

- Cache hits in 

alias table 

results in faster 

loads and 

stores.

- *Retirement of 

only one copy of 

reused variable 

required.



SQLite / TPC-C

• Created two VFS.  One native to SCM and one using 

SoftWrAP (can also model Undo-Log, Non-Atomic).

• A: SCM VFS uses SCM

journal (r/w bytes)

• B: SoftWrAP handles 

consistency

• TPC-C is an Online Transaction Processing Benchmark.  

Comprised of 9 tables and a number of transactions

• PY-TPCC is modified and executed to save SQL 

statements for TPC-C benchmark to file.

• SQLite is executed with VFS under test and generated 

TPC-C SQL statement file.



SQLite SCM TPC-C

Throughput in Transactions Per Second for the TPC-C Benchmark with SQLite.

SoftWrAP has similar performance to Non-Atomic.

Tw = 1us



Conclusions and Forward Work

• Looking at additional aliasing mechanisms and 

enhancements such as compiler integrations.

• Evaluation on hardware when available.

• SoftWrAP is a fast, straightforward approach to ensuring 

transactional support for writing byte-addressed persistent 

data without any hardware changes.

• It provides a fast path through the cache hierarchy while 

utilizing a background path to persist groups of stores to 

SCM atomically.

• SoftWrAP decouples concurrency control from persistence.

• Being released as open source software.

• SoftWrAP has promising results that approach the 

performance of persistence methods that don’t guarantee 

consistency and outperform Undo-Log approaches.



Questions?

Thank You!

Supported by NSF Grant CCF 1439075 and Intel SSG.


