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Indirection (Virtualization)

• Indirection: Reference an object with a different name

– Page table

– Flash Translation Layer

– Remapping tables for HDDs, RAID, etc…

• Benefits of indirection

– Simplicity, flexibility, modularity, uniform interface…

Indirection is good. But have we taken it too far?
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• Excess indirection

– Redundant levels of indirection in a system

– e.g., file system on top of SSD

• Cost of excess indirection

– (RAM) space cost for mapping tables

– Performance cost

Too Much Indirection
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Excess indirection is  
redundant and costly! 
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How can we make 
systems work more 

efficiently?



• Remove excess indirection
– Collapsing redundant mappings

– F(Ai) = Bj; G(Bj) = Ck H(Ai) = G(F(Ai)) = Ck

• Example of de-indirection
– Nameless Writes

• Problem of Nameless Writes

– Major changes to FSs, devices, and I/O interface

– Have to perform de-indirection for all writes

De-indirection
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FSDV - File System De-virtualizer
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FSDV - File System De-virtualizer

• Idea: change file system pointers to physical addr

– Walk through file system structures

– Change pointers to device physical addresses

• Benefits

– Dynamically remove indirection

– Small changes to file systems and devices

– Work with current I/O interface
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FSDV Process
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Implementation

• FSDV implemented as user-level tool

– Implemented using fsck as code base

• Changes in ext3 and OS block layer

– Total lines of code: 201

– Total lines of code for Nameless Writes: 4370

• Changes in emulated SSD

– Based on page-level FTL

– Supports for FSDV 

– Dynamic mapping table
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Mapping Table Size Reduction

• FileServer workload
– 2G file system, 2000 files, avg file size 1MB

– Repeat the workload each 1 min, offline FSDV invoked in b/w
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Mapping Table Size Reduction

• FileServer and Impressions workloads
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FSDV Performance Overhead

• Foreground I/O throughput compare to a scheme with 
great performance but huge mapping table space
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Summary

• Tool to de-virtualize file system pointers

• Dynamically reduce SSD mapping table size

• Small overhead to foreground I/Os

• Small file system and device changes

• Can integrate into current I/O interface
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Thank you !
Questions ?

yiyingzhang@cs.ucsd.edu


