
Removing the Costs and Retaining the Benefits
of Flash-Based SSD Virtualization with FSDV

Yiying Zhang

Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau

Indirection (Virtualization)

• Indirection: Reference an object with a different name

– Page table

– Flash Translation Layer

– Remapping tables for HDDs, RAID, etc…

• Benefits of indirection

– Simplicity, flexibility, modularity, uniform interface…

Indirection is good. But have we taken it too far?

2

B

A
A->B

C->D

…

• Excess indirection

– Redundant levels of indirection in a system

– e.g., file system on top of SSD

• Cost of excess indirection

– (RAM) space cost for mapping tables

– Performance cost

Too Much Indirection

3

B

A

C

Excess indirection is
redundant and costly!

4

How can we make
systems work more

efficiently?

• Remove excess indirection
– Collapsing redundant mappings

– F(Ai) = Bj; G(Bj) = Ck H(Ai) = G(F(Ai)) = Ck

• Example of de-indirection
– Nameless Writes

• Problem of Nameless Writes

– Major changes to FSs, devices, and I/O interface

– Have to perform de-indirection for all writes

De-indirection

5

B

A

C

FSDV - File System De-virtualizer

6

FSDV

File System

Device
Virtualization

Layer

Device
Storage

Normal I/O
Simple
Commands

FSDV - File System De-virtualizer

• Idea: change file system pointers to physical addr

– Walk through file system structures

– Change pointers to device physical addresses

• Benefits

– Dynamically remove indirection

– Small changes to file systems and devices

– Work with current I/O interface

7

FSDV Process

8

LBA PBA

L1 P1

L2 P2

L3 P3

Original version

New version

Logical Pointer

Physical Pointer

L1 L2

L3

L1L2P1P2

L3…P3…

P1P2

P3…

P1 P2

P3

FS

Device

LBA PBA

Inode

Indirect
Block

Data
Block

Device
Indirection

Layer

Implementation

• FSDV implemented as user-level tool

– Implemented using fsck as code base

• Changes in ext3 and OS block layer

– Total lines of code: 201

– Total lines of code for Nameless Writes: 4370

• Changes in emulated SSD

– Based on page-level FTL

– Supports for FSDV

– Dynamic mapping table
9

Mapping Table Size Reduction

• FileServer workload
– 2G file system, 2000 files, avg file size 1MB

– Repeat the workload each 1 min, offline FSDV invoked in b/w

10

0

2

4

6

8

10

12

0 60 120 180

M
ap

p
in

g
Ta

b
le

 S
iz

e
(M

B
)

Time (sec)

No FSDV

With FSDV

FSDV dynamically reduces mapping

table size by 75% - 96%

Mapping Table Size Reduction

• FileServer and Impressions workloads

11

0

2

4

6

8

10

F1 F2 F3 F4 F5 I1

M
ap

p
in

g
Ta

b
le

 S
iz

e
(M

B
)

Remaining Data IndirectBlock Inode

FSDV Performance Overhead

• Foreground I/O throughput compare to a scheme with
great performance but huge mapping table space

12

0

200

400

600

800

1000

No FSDV With FSDV

Th
ro

u
gh

p
u

t
(M

B
/s

)

Summary

• Tool to de-virtualize file system pointers

• Dynamically reduce SSD mapping table size

• Small overhead to foreground I/Os

• Small file system and device changes

• Can integrate into current I/O interface
13

14

Thank you !
Questions ?

yiyingzhang@cs.ucsd.edu

