
Classifying Data to Reduce
Data Movement in

Shingled Write Disks
Stephanie N. Jones, Ahmed Amer*,

Darrell D. E. Long, Ethan L. Miller,
Rekha Pitchumani, Christina R. Strong

University of California Santa Cruz,
*Santa Clara University

1

Shingled Write Disks

❖ Layers tracks like shingles on a roof
• Takes advantage of the fact that the

read head is smaller than the write head

❖ Problems
• A write can destroy data on subsequent

tracks
• No more random writes and in-place

updates

2

1 2

Write
Track
Width

3 4 5

2

Shingled Write Disks

❖ Layers tracks like shingles on a roof
• Takes advantage of the fact that the

read head is smaller than the write head

❖ Problems
• A write can destroy data on subsequent

tracks
• No more random writes and in-place

updates

2

1 2

Write
Track
Width

3 4 5

Read
Track
Width

1

2

Shingled Write Disks

❖ Layers tracks like shingles on a roof
• Takes advantage of the fact that the

read head is smaller than the write head

❖ Problems
• A write can destroy data on subsequent

tracks
• No more random writes and in-place

updates

2

1 2 3 4 5

Read
Track
Width

1

2

Shingled Write Disks

❖ Layers tracks like shingles on a roof
• Takes advantage of the fact that the

read head is smaller than the write head

❖ Problems
• A write can destroy data on subsequent

tracks
• No more random writes and in-place

updates

2

1 2 3 4 5

Read
Track
Width

1

k = 3

1

2

Problem

❖ Band compaction is necessary for reclaiming space in SMR disks

❖ But, how do you approach band compaction?

❖ Our work focuses on minimizing long term data movement over
the life of a shingled disk
• We use write heat as a metric to reduce this long term data movement

❖ Simulated LFS with a block-based API

3

3

Why Do You Need to Classify
Data?

❖ Perform band compaction less often

❖ Moving fewer blocks when doing band compaction
• Improves system responsiveness
• Reduces overall system activity

4

4

Band Compaction

❖ Our experiments cover 4-band compaction
• Simulate the effect of compaction in a space-constrained system
• On-demand

❖ Pseudo-code for multiple band compaction:
• Read all live data in the multiple bands
• Sort in ascending order by block write heat
• Write live data to one of the bands read from
• If band is full and there is still live data

• Write to another of the bands read from

5

5

Heuristics

❖ Developed and tested three heuristics
• Empty (Greedy)
• Cold-weight

❖ Only cold-weight considers write heat when classifying data
blocks

6

6

Empty (Greedy)

❖ Write to all segments in the log

❖ When you reach the log’s tail
• Prioritize writing to any empty segment

❖ If there are no empty segments
• Select the segment with the least live data

7

7

Cold-Weight

8

%free + %cold + %hot = 1

8

Cold-Weight

9

%free + %cold + %hot = 1

%free + (wcold × %cold) + (whot × %hot)

9

Cold-Weight

10

%free + %cold + %hot = 1

%free + (wcold × %cold) + (whot × (1 - %free - %cold))

%free + (wcold × %cold) + (whot × %hot)

10

Cold-Weight

10

%free + %cold + %hot = 1

%free + (wcold × %cold) + (whot × (1 - %free - %cold))

%free + (wcold × %cold) + (whot × %hot)

10

Cold-Weight

11

%free + %cold + %hot = 1

%free + (wcold × %cold) + (whot × (1 - %free - %cold))

%free + (wcold × %cold) + whot - (whot x %free) - (whot x %cold)

%free + (wcold × %cold) + (whot × %hot)

11

Cold-Weight

11

%free + %cold + %hot = 1

%free + (wcold × %cold) + (whot × (1 - %free - %cold))

%free + (wcold × %cold) + whot - (whot x %free) - (whot x %cold)

%free + (wcold × %cold) + (whot × %hot)

11

Cold-Weight

12

%free + %cold + %hot = 1

%free + (wcold × %cold) + (whot × (1 - %free - %cold))

%free x (1 - whot) + %cold x (wcold - whot)

%free + (wcold × %cold) + whot - (whot x %free) - (whot x %cold)

%free + (wcold × %cold) + (whot × %hot)

12

Cold-Weight

12

%free + %cold + %hot = 1

%free + (wcold × %cold) + (whot × (1 - %free - %cold))

%free x (1 - whot) + %cold x (wcold - whot)

%free + (wcold × %cold) + whot - (whot x %free) - (whot x %cold)

%free + (wcold × %cold) + (whot × %hot)

12

Cold-Weight

12

%free + %cold + %hot = 1

%free + (wcold × %cold) + (whot × (1 - %free - %cold))

%free x (1 - whot) + %cold x (wcold - whot)

%free + (wcold × %cold) + whot - (whot x %free) - (whot x %cold)

%free + (wcold × %cold) + (whot × %hot)

12

Cold-Weight

12

%free + %cold + %hot = 1

%free + (wcold × %cold) + (whot × (1 - %free - %cold))

%free x (1 - whot) + %cold x (wcold - whot)

%free + (wcold × %cold) + whot - (whot x %free) - (whot x %cold)

%free + (wcold × %cold) + (whot × %hot)

X

12

Cold-Weight

13

%free + %cold + %hot = 1

%free + (wcold × %cold) + (whot × (1 - %free - %cold))

%free x (1 - whot) + %cold x (wcold - whot)

%free + (wcold × %cold) + whot - (whot x %free) - (whot x %cold)

%free + %cold × ()wcold − whot
1 − whot

%free + (wcold × %cold) + (whot × %hot)

13

Cold-Weight

❖ Everything can be expressed as a weight on the cold percentage

❖ Write to all segments in the log

❖ When you reach the log’s tail
• Prioritize writing to any empty segment

❖ If there are no empty segments
• Select the segment with the highest value using the formula

14

%free + %cold × ()wcold − whot

1 − whot

14

Why do Cold-Weight?

❖ If you don’t put a weight on the cold blocks, they will have equal
importance to free blocks

❖ Which can lead you to pick mostly full segments

15

C C C C C C

C H H H

C H

%free + %cold

0.25 + 0.75 = 1.0

0.5 + 0.125 = 0.625

0.75 + 0.125 = 0.875

15

Why do Cold-Weight?

❖ If you don’t put a weight on the cold blocks, they will have equal
importance to free blocks

❖ Which can lead you to pick mostly full segments

15

C C C C C C

C H H H

C H

%free + %cold

0.25 + 0.75 = 1.0

0.5 + 0.125 = 0.625

0.75 + 0.125 = 0.875

15

Cold Weight Example

❖ Assume we have chosen to weight the cold blocks by 0.5
❖ We end up picking the mostly free segment using the weighting

16

C C C C C C

C H H H

C H

%free + (%cold × 0.5)

0.25 + (0.75 × 0.5) = 0.625

0.5 + (0.125 × 0.5) = 0.5625

0.75 + (0.125 × 0.5) = 0.8125

16

Cold Weight Example

❖ Assume we have chosen to weight the cold blocks by 0.5
❖ We end up picking the mostly free segment using the weighting

16

C C C C C C

C H H H

C H

%free + (%cold × 0.5)

0.25 + (0.75 × 0.5) = 0.625

0.5 + (0.125 × 0.5) = 0.5625

0.75 + (0.125 × 0.5) = 0.8125

16

Cooling + Write Buffer

❖ Data blocks are cooled during segment cleaning
• All live blocks in the segments selected for cleaning have their heat counts

reset to the lowest value

❖ In order to more accurately separate hot and cold data before it is
written to disk, we use a 2-segment sized write buffer

❖ When the write buffer is full, we determine if it has more hot or
cold data

❖ If it has more hot data than cold we write out the hottest data to
the current segment

17

17

Data Sets

❖ Used the MSR Cambridge data sets
• Project, Source1 servers

18

Project Source

Number of Write Requests 2,496,935 2,170,271

Total Data Written 26 GB 31 GB

Total Unique Data
(live at the end of the trace) 9.5 GB 4.4 GB

Total Data Written Only Once 7.5 GB 3.6 GB

18

Data Sets

❖ Used the MSR Cambridge data sets
• Project, Source1 servers

18

Project Source

Number of Write Requests 2,496,935 2,170,271

Total Data Written 26 GB 31 GB

Total Unique Data
(live at the end of the trace) 9.5 GB 4.4 GB

Total Data Written Only Once 7.5 GB 3.6 GB

18

Data Sets

❖ Used the MSR Cambridge data sets
• Project, Source1 servers

18

Project Source

Number of Write Requests 2,496,935 2,170,271

Total Data Written 26 GB 31 GB

Total Unique Data
(live at the end of the trace) 9.5 GB 4.4 GB

Total Data Written Only Once 7.5 GB 3.6 GB

18

Data Sets

❖ Used the MSR Cambridge data sets
• Project, Source1 servers

18

Project Source

Number of Write Requests 2,496,935 2,170,271

Total Data Written 26 GB 31 GB

Total Unique Data
(live at the end of the trace) 9.5 GB 4.4 GB

Total Data Written Only Once 7.5 GB 3.6 GB

18

Data Sets

❖ Used the MSR Cambridge data sets
• Project, Source1 servers

18

Project Source

Number of Write Requests 2,496,935 2,170,271

Total Data Written 26 GB 31 GB

Total Unique Data
(live at the end of the trace) 9.5 GB 4.4 GB

Total Data Written Only Once 7.5 GB 3.6 GB

18

Project Results

19

Experiment Blocks Moved % Difference

Empty/Greedy 2,378,357 -

Cold Weight 10% 2,193,595 7.77%

Cold Weight 20% 2,206,924 7.21%

Cold Weight 30% 2,082,264 12.45%

Cold Weight 40% 2,142,427 9.92%

Cold Weight 50% 2,345,437 1.38%

19

Project Results

20

Experiment Blocks Moved % Difference

Empty/Greedy 2,378,357 -

Cold Weight 10% 2,193,595 7.77%

Cold Weight 20% 2,206,924 7.21%

Cold Weight 30% 2,082,264 12.45%

Cold Weight 40% 2,142,427 9.92%

Cold Weight 50% 2,345,437 1.38%

20

Distribution Graphs

❖ Green is free, blue is cold, red is hot
❖ We keep cold segments fuller
❖ We have less cold data because we’ve needed to compact fewer segments

21

21

Pre-Population

❖ We extended the MSR traces by randomly reordering each trace

❖ We have initially tested our implementation using 2 levels of pre-
population: 50% and 100% pre-population

❖ We cut the write requests into groups of 10 timesteps
• A timestep is one second

❖ 10 timesteps is at least 10 seconds
• It could be longer if there is inactivity in the trace

❖ Each level of pre-population is a different random ordering

22

22

Pre-Population: Timesteps

23

20.3 W 200
21.1 W 201
24.8 W 202
25.2 W 203
25.7 W 205
25.9 W 206
26.4 W 207
50.0 W 300
54.5 W 400
58.6 W 250
60.7 W 111

❖ Let’s break these up into a group of 3 timesteps
❖ The first column is timestamp information in seconds
❖ Each distinct second is a timestep

Timestamp LBA

23

Pre-Population: Timesteps

24

20.3 W 200
21.1 W 201
24.8 W 202
25.2 W 203
25.7 W 205
25.9 W 206
26.4 W 207
50.0 W 300
54.5 W 400
58.6 W 250
60.7 W 111

❖ Let’s break these up into a group of 3 timesteps
❖ The first column is timestamp information in seconds
❖ Each distinct second is a timestep

24

50% Pre-population Project
Results

25

Experiment Blocks Moved % Difference

Empty/Greedy 71,568,329 -

Cold Weight 10% 70,985,425 0.81%

Cold Weight 20% 68,478,899 4.32%

Cold Weight 30% 71,966,567 -0.56%

Cold Weight 40% 89,102,638 -24.50%

Cold Weight 50% 3,729,860,479 -5,111%

25

50% Pre-population Project
Results

26

Experiment Blocks Moved % Difference

Empty/Greedy 71,568,329 -

Cold Weight 10% 70,985,425 0.81%

Cold Weight 20% 68,478,899 4.32%

Cold Weight 30% 71,966,567 -0.56%

Cold Weight 40% 89,102,638 -24.50%

Cold Weight 50% 3,729,860,479 -5,111%

26

Distribution Graphs:
50% Pre-population

❖ Green is free, blue is cold, red is hot
❖ We keep cold segments fuller
❖ We have less cold data because we’ve needed to compact fewer segments

27

27

100% Pre-population Project
Results

28

Experiment Blocks Moved % Difference

Empty/Greedy 72,702,645 -

Cold Weight 10% 66,031,282 9.18%

Cold Weight 20% 68,707,085 5.50%

Cold Weight 30% 70,874,379 2.51%

Cold Weight 40% 84,283,621 -15.93%

Cold Weight 50% 12,547,962,187 -17,159%

28

100% Pre-population Project
Results

29

Experiment Blocks Moved % Difference

Empty/Greedy 72,702,645 -

Cold Weight 10% 66,031,282 9.18%

Cold Weight 20% 68,707,085 5.50%

Cold Weight 30% 70,874,379 2.51%

Cold Weight 40% 84,283,621 -15.93%

Cold Weight 50% 12,547,962,187 -17,159%

29

Distribution Graphs:
100% Pre-population

❖ Green is free, blue is cold, red is hot
❖ We keep cold segments fuller
❖ We have less cold data because we’ve needed to compact fewer segments

30

30

Separating During Band
Compaction

❖ We still have about 5-10% of segments that contain a mix of hot and cold

❖ Why?
• This happens because we can write hot data to a band that has been returned by

band compaction that is full of cold data

❖ This is immediate future work and we will explore two possibilities
• Hot and cold bands
• Hot, cold, and “was hot” bands

❖ Incoming hot data will go to the hot band, cold data and compacted data
will go to the cold band
• “Was hot” will be specifically for data that was hot and is now cold due to

compaction

31

31

Future Work: Cost-Benefit

❖ Using the formula and definitions from Rosenblum’s dissertation
• u is the utilization of a segment (how full it is)
• age is the most recent modify time of any block in a segment

❖ Write to all segments in the log

❖ When you reach the log’s tail
• Prioritize writing to any empty segment

❖ If there are no empty segments
• Select the segment with the highest value using the cost-benefit formula

32

cost
benefit
⎯⎯⎯⎯⎯ = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

free space generated × age of data
cost =

(1 − u) × age
1 + u

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

32

Future Work: Dynamic Weighting

❖ We have promising results with setting static weights
• They are set at the start of the experiment and are unchanging

❖ We can improve on these results by manipulating the weight on
the cold data

❖ Our current design will change the weight on code by looking at
the overall heat of the data on disk
• If it’s more hot than cold than the weight on cold is more important

33

33

Conclusions

❖ Don’t use “how hot is this?”, use “how cold is this?”

❖ Weighting is very important, don’t assign equal weights to cold
and free

34

34

Thank you! Questions?
snjones@cs.ucsc.edu

35

35

