
Rekha Pitchumani,
Shayna Frank, and Ethan L. Miller

Center for Research in Storage Systems
UC Santa Cruz

Realistic Request Arrival Generation
In Storage Benchmarks

Key-Value Stores

2

• Vital component of cloud computing
applications and high performance web scale
databases!

• A simple and versatile interface!
• Applicable to both the large distributed stores and

the individual storage nodes!
• A device agnostic interface

Trace Based Evaluation

3

• No key-value workload trace is publicly
available!

• Only published study is that of an in-memory
key-value caching layer, Facebook’s
Memcached deployment!
• Not publicly available!
• Not suitable for all systems

Yahoo! Cloud Serving Benchmark

4

• The standard benchmark of choice for
evaluating key-value systems!
• Used both in the evaluation of large distributed

key value stores, and individual key-value
storage nodes!

• Workload generator offers different mixes of
operations and data sizes, and key
selections based on different distributions!
• But no option to generate realistic request

arrivals - only constant rate and throttled arrivals

Realistic Request Arrivals

5

• Needed for many systems!
• scrubbing, cache de-staging, data migration across

tiers, automatic backups, garbage collection and data
reorganization scheduling in Flash and SMR, tail latency
reduction, load tolerance!

• Temporal characteristics has been ignored by most
benchmarks

YCSB - Real World Problem Evaluation

6

• YCSB used by simply adding and removing clients
generating request at a constant rate!
• Elasticity controller designed to automatically respond to

changes in workload!
• System for achieving datacenter-wide per-tenant

performance isolation and fairness!
• Systems performing live database migration to tolerate

load variations in multi-tenant databases

Arrival Process Models

7

• Existing studies show that disk, filesystem,
network, and web traffic all exhibit some common
temporal properties!
• Such as burstiness, self similarity, long range

dependence, and diurnal activity!
• Classify typically observed temporal patterns into

three kinds of arrival processes!
• Poisson!
• Self similar!
• Envelope-guided

YCSB Client Architecture

8

• A thread-safe workload generator that generates
requests according to user specifications !

• A workload executor to execute the generated requests !
• A database interface layer to connect with and pass

requests to the database!
• A separate thread to collect and report the status.

IV. DESIGN AND IMPLEMENTATION

The Yahoo! Cloud Serving Benchmark is a client program,
written in Java, that is designed to generate requests con-
forming to user-specified workload. YCSB client architecture,
as shown in Figure 2, has a thread-safe workload generator
that generates requests according to user specifications in a
workload configuration file, a workload executor to execute
the generated requests, a database interface layer to connect
with and pass requests to the database, and a separate thread
to periodically collect and report the status. By default, the
workload executor runs a single thread, but is configurable
and can be increased by the user. Each executor thread gets
the request from the thread-safe workload generator and sends
it to the database through its own instance of the database
layer.

Stats

YCSB Client

Client
Threads

W
or

kl
oa

d
G

en
er

at
or

D
B

In
te

rfa
ce

La

ye
r

Workload Executor

Fig. 2. YCSB client architecture. The workload executor drives multiple
threads to send requests generated by the workload generator to the database.

The threads perform back-to-back synchronous IO as
shown in Figure 3a. Each thread sends a request to the
database, waits for the response and immediately sends the
next request once the previous response is received. When
configured to run with multiple threads, the total number
of operations to be performed is equally divided among the
threads and each thread runs its share of operations in the
same synchronous fashion, in parallel. As shown in Figure 3a,
the threads start execution at slightly different times to avoid
hitting the database at the same time, and after that the time
requests are sent depends on previous completions.

R1 R2 R3 R4

R1 R2 R3 R4

R1 R2 R3 R4

Thread 1

Thread 2

Thread N

(a) By default, each thread sends requests, waits for the completion
of the sent request, and immediately sends the next request.

R1 R2 R3 R4

R1 R2 R3 R4

R1 R2 R3 R4

Thread 1

Thread 2

Thread N
1 Millisecond 1 Millisecond

(b) If user specifies a target load resulting in say 2 requests per
millisecond per thread, requests may be delayed depending on whether
2 request per millisecond has been completed.

Fig. 3. YCSB’s request execution process.

To control the load offered to the database, the threads
come with the ability to throttle the rate at which requests are
generated. When a target arrival rate is specified, after every

request the thread monitors the number of requests generated
until then and the elapsed time, and sleeps if necessary to
maintain the target arrival rate. The resulting request execution
process looks as in Figure 3b, in which the user specified target
throughput results in 2 requests per millisecond per thread. If
the target specified is low, the threads could all hit the database
at the same time, but some may not due to timing inaccuracies
resulting from sleep.

TABLE I. ADDITIONAL CONFIGURATION PARAMETERS

Parameters Description

arrivalgenerator Specifies the generator to use. Accepts constant,
poisson, self similar, and diurnal.

ss.bias Specifies bias b in the b-model, used to generate
self similar traffic.

diurnal.modulation Specifies the diurnal cycle modulation.

diurnal.cyclelength Specifies length of the diurnal cycle in minutes.

diurnal.distribution Specifies the distribution to use for the stochastic
variation.

diurnal.distribution.shape Specifies the distribution’s shape parameter.

We have implemented three inter-arrival time generators as
per the three models described in the previous section. Each
YCSB client is designed to have its own inter-arrival time
generator that determines the arrivals for the generated traffic.
For a Poisson process, an exponential distribution is used to
generate the inter-arrival times. For a self similar process, we
implemented the b model and the bias b is user configurable.
For the envelope-guided process, we have implemented a sine
wave function, the shape of which is user configurable, which
is used to determine the request arrivals per second. The actual
inter-arrivals for the envelope-guided process are obtained
from a secondary configurable distribution, such as the Pareto
distribution. The envelope function could take a number of
forms as per the need, and our work could be extended to
include more patterns, as well as more secondary distribution
choices.

IA1 IA2 !A3Master Executor

Thread
Pool

R1 R3R2 R4

R1

R2

R3

R4

Fig. 4. Our modifications to the workload executor to facilitate realistic
arrivals. If threads in the pool are unavailable either due to configuration or
slow response, there could be delay as in R4.

We assume that the request sizes are independent of arrival
times, as the only published key-value workload study found
that the request arrivals are not correlated to the request
sizes. Thus, no modifications to YCSB’s workload generator
was necessary. Our changes include new additions to the
configuration parameters, to specify the choice of inter-arrival

Request Execution

9

• By default, threads perform back-to-back
synchronous IO

IV. DESIGN AND IMPLEMENTATION

The Yahoo! Cloud Serving Benchmark is a client program,
written in Java, that is designed to generate requests con-
forming to user-specified workload. YCSB client architecture,
as shown in Figure 2, has a thread-safe workload generator
that generates requests according to user specifications in a
workload configuration file, a workload executor to execute
the generated requests, a database interface layer to connect
with and pass requests to the database, and a separate thread
to periodically collect and report the status. By default, the
workload executor runs a single thread, but is configurable
and can be increased by the user. Each executor thread gets
the request from the thread-safe workload generator and sends
it to the database through its own instance of the database
layer.

Stats

YCSB Client

Client
Threads

W
or

kl
oa

d
G

en
er

at
or

D
B

In
te

rfa
ce

La

ye
r

Workload Executor

Fig. 2. YCSB client architecture. The workload executor drives multiple
threads to send requests generated by the workload generator to the database.

The threads perform back-to-back synchronous IO as
shown in Figure 3a. Each thread sends a request to the
database, waits for the response and immediately sends the
next request once the previous response is received. When
configured to run with multiple threads, the total number
of operations to be performed is equally divided among the
threads and each thread runs its share of operations in the
same synchronous fashion, in parallel. As shown in Figure 3a,
the threads start execution at slightly different times to avoid
hitting the database at the same time, and after that the time
requests are sent depends on previous completions.

R1 R2 R3 R4

R1 R2 R3 R4

R1 R2 R3 R4

Thread 1

Thread 2

Thread N

(a) By default, each thread sends requests, waits for the completion
of the sent request, and immediately sends the next request.

R1 R2 R3 R4

R1 R2 R3 R4

R1 R2 R3 R4

Thread 1

Thread 2

Thread N
1 Millisecond 1 Millisecond

(b) If user specifies a target load resulting in say 2 requests per
millisecond per thread, requests may be delayed depending on whether
2 request per millisecond has been completed.

Fig. 3. YCSB’s request execution process.

To control the load offered to the database, the threads
come with the ability to throttle the rate at which requests are
generated. When a target arrival rate is specified, after every

request the thread monitors the number of requests generated
until then and the elapsed time, and sleeps if necessary to
maintain the target arrival rate. The resulting request execution
process looks as in Figure 3b, in which the user specified target
throughput results in 2 requests per millisecond per thread. If
the target specified is low, the threads could all hit the database
at the same time, but some may not due to timing inaccuracies
resulting from sleep.

TABLE I. ADDITIONAL CONFIGURATION PARAMETERS

Parameters Description

arrivalgenerator Specifies the generator to use. Accepts constant,
poisson, self similar, and diurnal.

ss.bias Specifies bias b in the b-model, used to generate
self similar traffic.

diurnal.modulation Specifies the diurnal cycle modulation.

diurnal.cyclelength Specifies length of the diurnal cycle in minutes.

diurnal.distribution Specifies the distribution to use for the stochastic
variation.

diurnal.distribution.shape Specifies the distribution’s shape parameter.

We have implemented three inter-arrival time generators as
per the three models described in the previous section. Each
YCSB client is designed to have its own inter-arrival time
generator that determines the arrivals for the generated traffic.
For a Poisson process, an exponential distribution is used to
generate the inter-arrival times. For a self similar process, we
implemented the b model and the bias b is user configurable.
For the envelope-guided process, we have implemented a sine
wave function, the shape of which is user configurable, which
is used to determine the request arrivals per second. The actual
inter-arrivals for the envelope-guided process are obtained
from a secondary configurable distribution, such as the Pareto
distribution. The envelope function could take a number of
forms as per the need, and our work could be extended to
include more patterns, as well as more secondary distribution
choices.

IA1 IA2 !A3Master Executor

Thread
Pool

R1 R3R2 R4

R1

R2

R3

R4

Fig. 4. Our modifications to the workload executor to facilitate realistic
arrivals. If threads in the pool are unavailable either due to configuration or
slow response, there could be delay as in R4.

We assume that the request sizes are independent of arrival
times, as the only published key-value workload study found
that the request arrivals are not correlated to the request
sizes. Thus, no modifications to YCSB’s workload generator
was necessary. Our changes include new additions to the
configuration parameters, to specify the choice of inter-arrival

IV. DESIGN AND IMPLEMENTATION

The Yahoo! Cloud Serving Benchmark is a client program,
written in Java, that is designed to generate requests con-
forming to user-specified workload. YCSB client architecture,
as shown in Figure 2, has a thread-safe workload generator
that generates requests according to user specifications in a
workload configuration file, a workload executor to execute
the generated requests, a database interface layer to connect
with and pass requests to the database, and a separate thread
to periodically collect and report the status. By default, the
workload executor runs a single thread, but is configurable
and can be increased by the user. Each executor thread gets
the request from the thread-safe workload generator and sends
it to the database through its own instance of the database
layer.

Stats

YCSB Client

Client
Threads

W
or

kl
oa

d
G

en
er

at
or

D
B

In
te

rfa
ce

La

ye
r

Workload Executor

Fig. 2. YCSB client architecture. The workload executor drives multiple
threads to send requests generated by the workload generator to the database.

The threads perform back-to-back synchronous IO as
shown in Figure 3a. Each thread sends a request to the
database, waits for the response and immediately sends the
next request once the previous response is received. When
configured to run with multiple threads, the total number
of operations to be performed is equally divided among the
threads and each thread runs its share of operations in the
same synchronous fashion, in parallel. As shown in Figure 3a,
the threads start execution at slightly different times to avoid
hitting the database at the same time, and after that the time
requests are sent depends on previous completions.

R1 R2 R3 R4

R1 R2 R3 R4

R1 R2 R3 R4

Thread 1

Thread 2

Thread N

(a) By default, each thread sends requests, waits for the completion
of the sent request, and immediately sends the next request.

R1 R2 R3 R4

R1 R2 R3 R4

R1 R2 R3 R4

Thread 1

Thread 2

Thread N
1 Millisecond 1 Millisecond

(b) If user specifies a target load resulting in say 2 requests per
millisecond per thread, requests may be delayed depending on whether
2 request per millisecond has been completed.

Fig. 3. YCSB’s request execution process.

To control the load offered to the database, the threads
come with the ability to throttle the rate at which requests are
generated. When a target arrival rate is specified, after every

request the thread monitors the number of requests generated
until then and the elapsed time, and sleeps if necessary to
maintain the target arrival rate. The resulting request execution
process looks as in Figure 3b, in which the user specified target
throughput results in 2 requests per millisecond per thread. If
the target specified is low, the threads could all hit the database
at the same time, but some may not due to timing inaccuracies
resulting from sleep.

TABLE I. ADDITIONAL CONFIGURATION PARAMETERS

Parameters Description

arrivalgenerator Specifies the generator to use. Accepts constant,
poisson, self similar, and diurnal.

ss.bias Specifies bias b in the b-model, used to generate
self similar traffic.

diurnal.modulation Specifies the diurnal cycle modulation.

diurnal.cyclelength Specifies length of the diurnal cycle in minutes.

diurnal.distribution Specifies the distribution to use for the stochastic
variation.

diurnal.distribution.shape Specifies the distribution’s shape parameter.

We have implemented three inter-arrival time generators as
per the three models described in the previous section. Each
YCSB client is designed to have its own inter-arrival time
generator that determines the arrivals for the generated traffic.
For a Poisson process, an exponential distribution is used to
generate the inter-arrival times. For a self similar process, we
implemented the b model and the bias b is user configurable.
For the envelope-guided process, we have implemented a sine
wave function, the shape of which is user configurable, which
is used to determine the request arrivals per second. The actual
inter-arrivals for the envelope-guided process are obtained
from a secondary configurable distribution, such as the Pareto
distribution. The envelope function could take a number of
forms as per the need, and our work could be extended to
include more patterns, as well as more secondary distribution
choices.

IA1 IA2 !A3Master Executor

Thread
Pool

R1 R3R2 R4

R1

R2

R3

R4

Fig. 4. Our modifications to the workload executor to facilitate realistic
arrivals. If threads in the pool are unavailable either due to configuration or
slow response, there could be delay as in R4.

We assume that the request sizes are independent of arrival
times, as the only published key-value workload study found
that the request arrivals are not correlated to the request
sizes. Thus, no modifications to YCSB’s workload generator
was necessary. Our changes include new additions to the
configuration parameters, to specify the choice of inter-arrival

• Throttling for a target load of 2 requests per
millisecond per thread

Original Arrivals

10

time generators, and shape parameters for specific generators,
and modifications to the workload executor, to utilize the inter-
arrival times generated by specified inter-arrival generators.
The additional parameters we introduced and their descriptions
are listed in Table I

We noticed that, even with nanosleep and big-resolution
timers, sleep does not always wake up as instructed and
gives rise to lot of timing inaccuracies. Busy wait of all
available threads is also out of the question, due to the
high CPU overhead. We redesigned the workload executor,
as shown in Figure 4, to facilitate generating bursts of IO
activity at specified time intervals. We utilize Java’s thread pool
functionality to have a number of threads active at any given
time. Though the thread pool provides its own task queue and
can pick threads once they are available to serve other tasks,
we found the automatic detection of thread availability to be
slower. So, we maintain our own thread queue, to which we
add a thread once it is done servicing a request, and instruct the
thread pool to execute the first available thread in our queue
when needed. The master workload executor obtains the inter-
arrival times from the inter-arrival generator, busy waits until
the next request is due to be issued, and then issues the request
using the first available thread.

V. EVALUATION

In this section, we evaluate the accuracy and the effec-
tiveness of our generators. After a brief description of our
experimental setup, we generate traffic using a variety of
configurations, and show that the generated traffic conforms to
the specified arrival processes, both visually and empirically,
via illustrations and statistical analysis of the generated traffic.
Finally, we demonstrate the usefulness of realistic arrivals by
evaluating a state-of-the-art key-value embeddable database
library under all three models of request arrivals.

A. Experimental Setup

The evaluation was done on a Fedora 21 linux machine that
has a quad-core 3.30 GHz Intel(R) Core(TM) i5-3550 proces-
sor with a 128 KB L1 cache, 1 MB L2 cache, and a 6 MB L3
cache, and 16 GB of RAM. For the application demonstration,
the database evaluated was an embeddable database and to be
able to connect and communicate with YCSB, LevelDB [12]
was used with the MapKeeper [32] server. Both the YCSB
client and Mapkeeper server was run on the same machine.
The database was stored on a separate dedicated 160 GB single
platter Seagate SATA disk drive running ext4 filesystem.

B. Realistic Arrival Visualization

For evaluating the arrival characteristics of the generated
traffic, we ran the YCSB client against the YCSB’s placeholder
database, the basic database. The basic database receives all
requests, does nothing, optionally injects delays, and reports a
successful completion. We modified it slightly, to log the re-
quests received with a timestamp. Throughout this subsection,
all our experiments specified a target request rate of 10,000
operations per second, for better visual comparison of the
different traffic generated.

Figure 5 shows YCSB’s original behavior when executed
with 1, 4, and 8 threads. We can see from the bottom graph that

Fig. 5. Original YCSB request arrival pattern for a target rate of 10,000
operations per second.

the arrival rate mostly remains between 9990-10010 operations
per second, and the minor variations are typically a result
of sleep inaccuracies. The top two graphs zoom in on a
small interval of time, 60 seconds and 100 milliseconds. The
arrivals at the millisecond interval, the topmost graph, shows
the number of arrivals oscillating, and is particularly evident
in the single threaded case. This is because the basic database
does nothing and returns immediately and the client thread
performs all IO at a time and then sleeps. But having multiple
threads smoothes them out as different threads are executing
and sleeping at different times.

Fig. 6. Traffic generated by our modified workload executor for a target
rate of 10,000 operations per second, configured with a constant and Poisson
request arrival process.

Figure 6 illustrates the traffic generated when configured
with a constant arrival process and a Poisson arrival process by
our modified workload executor. The constant arrival process
illustrates how our framework is not subject to the sleep related
inaccuracies seen in the original YCSB, and is able to send
requests at generated intervals precisely. As discussed earlier,
the Poisson process may look bursty at smaller time scales,

Modified Workload Executor

11

• Assume that the request sizes are independent of arrival
times!

• To facilitate generating bursts of IO activity at specified time
intervals

IV. DESIGN AND IMPLEMENTATION

The Yahoo! Cloud Serving Benchmark is a client program,
written in Java, that is designed to generate requests con-
forming to user-specified workload. YCSB client architecture,
as shown in Figure 2, has a thread-safe workload generator
that generates requests according to user specifications in a
workload configuration file, a workload executor to execute
the generated requests, a database interface layer to connect
with and pass requests to the database, and a separate thread
to periodically collect and report the status. By default, the
workload executor runs a single thread, but is configurable
and can be increased by the user. Each executor thread gets
the request from the thread-safe workload generator and sends
it to the database through its own instance of the database
layer.

Stats

YCSB Client

Client
Threads

W
or

kl
oa

d
G

en
er

at
or

D
B

In
te

rfa
ce

La

ye
r

Workload Executor

Fig. 2. YCSB client architecture. The workload executor drives multiple
threads to send requests generated by the workload generator to the database.

The threads perform back-to-back synchronous IO as
shown in Figure 3a. Each thread sends a request to the
database, waits for the response and immediately sends the
next request once the previous response is received. When
configured to run with multiple threads, the total number
of operations to be performed is equally divided among the
threads and each thread runs its share of operations in the
same synchronous fashion, in parallel. As shown in Figure 3a,
the threads start execution at slightly different times to avoid
hitting the database at the same time, and after that the time
requests are sent depends on previous completions.

R1 R2 R3 R4

R1 R2 R3 R4

R1 R2 R3 R4

Thread 1

Thread 2

Thread N

(a) By default, each thread sends requests, waits for the completion
of the sent request, and immediately sends the next request.

R1 R2 R3 R4

R1 R2 R3 R4

R1 R2 R3 R4

Thread 1

Thread 2

Thread N
1 Millisecond 1 Millisecond

(b) If user specifies a target load resulting in say 2 requests per
millisecond per thread, requests may be delayed depending on whether
2 request per millisecond has been completed.

Fig. 3. YCSB’s request execution process.

To control the load offered to the database, the threads
come with the ability to throttle the rate at which requests are
generated. When a target arrival rate is specified, after every

request the thread monitors the number of requests generated
until then and the elapsed time, and sleeps if necessary to
maintain the target arrival rate. The resulting request execution
process looks as in Figure 3b, in which the user specified target
throughput results in 2 requests per millisecond per thread. If
the target specified is low, the threads could all hit the database
at the same time, but some may not due to timing inaccuracies
resulting from sleep.

TABLE I. ADDITIONAL CONFIGURATION PARAMETERS

Parameters Description

arrivalgenerator Specifies the generator to use. Accepts constant,
poisson, self similar, and diurnal.

ss.bias Specifies bias b in the b-model, used to generate
self similar traffic.

diurnal.modulation Specifies the diurnal cycle modulation.

diurnal.cyclelength Specifies length of the diurnal cycle in minutes.

diurnal.distribution Specifies the distribution to use for the stochastic
variation.

diurnal.distribution.shape Specifies the distribution’s shape parameter.

We have implemented three inter-arrival time generators as
per the three models described in the previous section. Each
YCSB client is designed to have its own inter-arrival time
generator that determines the arrivals for the generated traffic.
For a Poisson process, an exponential distribution is used to
generate the inter-arrival times. For a self similar process, we
implemented the b model and the bias b is user configurable.
For the envelope-guided process, we have implemented a sine
wave function, the shape of which is user configurable, which
is used to determine the request arrivals per second. The actual
inter-arrivals for the envelope-guided process are obtained
from a secondary configurable distribution, such as the Pareto
distribution. The envelope function could take a number of
forms as per the need, and our work could be extended to
include more patterns, as well as more secondary distribution
choices.

IA1 IA2 !A3Master Executor

Thread
Pool

R1 R3R2 R4

R1

R2

R3

R4

R1

R2

Fig. 4. Our modifications to the workload executor to facilitate realistic
arrivals. If threads in the pool are unavailable either due to configuration or
slow response, there could be delay as in R4.

We assume that the request sizes are independent of arrival
times, as the only published key-value workload study found
that the request arrivals are not correlated to the request
sizes. Thus, no modifications to YCSB’s workload generator
was necessary. Our changes include new additions to the
configuration parameters, to specify the choice of inter-arrival

Poisson Process

12

• A simple and widely used stochastic process for
modeling arrival times!

• Requests can be modeled as a poisson process if
the request inter-arrival times are truly
independent and exponentially distributed!

• Most arrivals are correlated, and cannot be
modeled accurately by a poisson process!
• But when many different kinds of independent

workloads are run on a system, the resulting traffic
could look like a poisson process.

Poisson Arrivals

13

time generators, and shape parameters for specific generators,
and modifications to the workload executor, to utilize the inter-
arrival times generated by specified inter-arrival generators.
The additional parameters we introduced and their descriptions
are listed in Table I

We noticed that, even with nanosleep and big-resolution
timers, sleep does not always wake up as instructed and
gives rise to lot of timing inaccuracies. Busy wait of all
available threads is also out of the question, due to the
high CPU overhead. We redesigned the workload executor,
as shown in Figure 4, to facilitate generating bursts of IO
activity at specified time intervals. We utilize Java’s thread pool
functionality to have a number of threads active at any given
time. Though the thread pool provides its own task queue and
can pick threads once they are available to serve other tasks,
we found the automatic detection of thread availability to be
slower. So, we maintain our own thread queue, to which we
add a thread once it is done servicing a request, and instruct the
thread pool to execute the first available thread in our queue
when needed. The master workload executor obtains the inter-
arrival times from the inter-arrival generator, busy waits until
the next request is due to be issued, and then issues the request
using the first available thread.

V. EVALUATION

In this section, we evaluate the accuracy and the effec-
tiveness of our generators. After a brief description of our
experimental setup, we generate traffic using a variety of
configurations, and show that the generated traffic conforms to
the specified arrival processes, both visually and empirically,
via illustrations and statistical analysis of the generated traffic.
Finally, we demonstrate the usefulness of realistic arrivals by
evaluating a state-of-the-art key-value embeddable database
library under all three models of request arrivals.

A. Experimental Setup

The evaluation was done on a Fedora 21 linux machine that
has a quad-core 3.30 GHz Intel(R) Core(TM) i5-3550 proces-
sor with a 128 KB L1 cache, 1 MB L2 cache, and a 6 MB L3
cache, and 16 GB of RAM. For the application demonstration,
the database evaluated was an embeddable database and to be
able to connect and communicate with YCSB, LevelDB [12]
was used with the MapKeeper [32] server. Both the YCSB
client and Mapkeeper server was run on the same machine.
The database was stored on a separate dedicated 160 GB single
platter Seagate SATA disk drive running ext4 filesystem.

B. Realistic Arrival Visualization

For evaluating the arrival characteristics of the generated
traffic, we ran the YCSB client against the YCSB’s placeholder
database, the basic database. The basic database receives all
requests, does nothing, optionally injects delays, and reports a
successful completion. We modified it slightly, to log the re-
quests received with a timestamp. Throughout this subsection,
all our experiments specified a target request rate of 10,000
operations per second, for better visual comparison of the
different traffic generated.

Figure 5 shows YCSB’s original behavior when executed
with 1, 4, and 8 threads. We can see from the bottom graph that

Fig. 5. Original YCSB request arrival pattern for a target rate of 10,000
operations per second.

the arrival rate mostly remains between 9990-10010 operations
per second, and the minor variations are typically a result
of sleep inaccuracies. The top two graphs zoom in on a
small interval of time, 60 seconds and 100 milliseconds. The
arrivals at the millisecond interval, the topmost graph, shows
the number of arrivals oscillating, and is particularly evident
in the single threaded case. This is because the basic database
does nothing and returns immediately and the client thread
performs all IO at a time and then sleeps. But having multiple
threads smoothes them out as different threads are executing
and sleeping at different times.

Fig. 6. Traffic generated by our modified workload executor for a target
rate of 10,000 operations per second, configured with a constant and Poisson
request arrival process.

Figure 6 illustrates the traffic generated when configured
with a constant arrival process and a Poisson arrival process by
our modified workload executor. The constant arrival process
illustrates how our framework is not subject to the sleep related
inaccuracies seen in the original YCSB, and is able to send
requests at generated intervals precisely. As discussed earlier,
the Poisson process may look bursty at smaller time scales,

Self Similar Process

14

• Self similarity means the series looks similar to
itself at different time scales!
• bursts of increased activity and similar looking bursts

at many different time scales!
• Long range dependence means the series is

correlated to not just its immediate past, but also
its distant past!

• Many real life observed workloads are both self
similar and long range dependent!
• WWW traffic, Ethernet local area network (LAN) traffic,

file-system traffic and also in disk-level I/O traffic

B-model

15

• A single characteristic parameter, bias b!
• Split the work recursively into two portions in a

proportion determined by the bias b!
• b closer to 1 generates traffic with high local

irregularity and b = 0.5 results in uniform traffic

2) Self Similar Process: Self similarity means the series
looks similar to itself at different time scales. Self similar
workloads typically include bursts of increased activity, and
similar looking bursts appear at many different time scales. A
poisson process too looks bursty at smaller time scales, as other
processes following a long-tailed distribution do. But when
aggregated and viewed at higher time scales, gets smoothened,
whereas aggregating streams of self similar traffic typically
intensifies the self similarity instead of smoothing it. Long
range dependence means the series is correlated to not just
its immediate past, but also its distant past. So, the ACF of
a long range dependent process decays slowly. Self similarity
and long range dependence, though separate phenomenons, are
typically observed together.

Many real life observed workloads are both self similar
and long range dependent. Self similarity has been observed
in WWW traffic [23], Ethernet local area network (LAN)
traffic [24], file-system traffic [25] and also in disk-level I/O
traffic [26], [27]. Further, researchers investigated a number
of wide-area TCP arrival processes [21], and concluded that
even if the finite arrival process derived from a particular
packet trace does not appear self similar, if it exhibits large-
scale correlations suggestive of long-range dependence then
that process is almost certainly better approximated using a
self similar process than using a Poisson process. Hence, we
believe benchmarks should also provide the facility to model
request arrivals based on a self-similar process.

Hurst parameter, H, is the exponent that describes the
cumulative expected deviation from the mean after n steps
in a random walk [20]. Higher values of H are the result
of stronger long-range dependence. The Hurst parameter is
often used to quantitatively measure the self similarity of a
time series. H is equal to 0.5 for a Poisson process, and is
in the range 0.5-1 for a self similar process. A variety of
methods exists to estimate the value of H of a time series,
and for a thorough description of the most popular methods
we recommend referring to Feitelson’s book on workload
modeling [20]. We use Selfis [28] to compute the Hurst
parameter of the generated inter-arrivals using five different
estimation methods.

Feitelson also describes in detail a variety of methods
to model self-similarity [20]. In our work, we generate self-
similar traffic using the b-model, a simple model to generate
self similar, bursty traffic for a wide range of time scales [17].
The model requires a single characteristic parameter, bias b.
The idea is to split the entire amount of work recursively into
two portions in a proportion determined by the bias b, similar
to Figure 1. Thus, the total number of operations N is divided
into bN and (1�b)N , and whether the first half of the divided
time-period receives bN operations or (1� b)N operations is
determined randomly. Such recursive work division generates
self similar traffic with high local irregularity, where b closer
to 1 generates traffic with high irregularity and b = 0.5 results
in uniform traffic.

3) Envelope-Guided Process: Gribble et al. showed that
high-level file system events exhibit self similar behavior,
but only for short-term time scales of approximately under a
day [25]. By examining long-term file system trace data, they
showed that high variability and self similar behavior does
not persist across time scales of days, weeks and months, and

1

1 11/2 11/2

b

b2

1-b b(1-b)
(1-b)2

Fig. 1. Multiplicative cascading generation of b-model.

concluded that the file system traffic is well represented by a
self similar process for short time scales, but is unsuitable for
long time scales.

At longer time scales, many workloads exhibit a clear di-
urnal pattern [25], [1]. Karagiannis et al. show that periodicity
can obscure the analysis of a signal giving partial evidence of
long-range dependence [29]. Also, Akgul et al. showed that
periodicity-based anomalies affect Hurst parameter estimation,
causing unreliable H estimates, and if periodic anomalies exist
they should be removed before estimation [30]. The presence
of periodicity could have led to the conclusion by Gribble et al.
that a self similar process is unsuitable for long time scales.

If the traffic is periodic and exhibits a pattern such as a
daily/weekly activity cycle, then the ACF plot of the arrival
process does not decay slowly as it does for a self similar
process. Instead, the ACF oscillates between positive and
negative values, corresponding to the periodicity of the original
time series. The autocorrelation function can clearly extract
and demonstrate periodicity even from much noisier data. As
diurnal cycle is common in storage workloads, it is vital that
benchmarks come with the option to generate such traffic.

The observed self similarity at smaller time scales can also
be attributed to traffic conforming to heavy tailed distributions
such as the Pareto distribution. Heavy tailed distributions can
also result in larger H values similar to the long range depen-
dent process. As summing heavy-tailed random variables does
not average out, but rather leads to a heavy-tailed sum, when
a process composed of heavy-tailed samples is aggregated,
we will get a process with similar statistics. Paxson et al.
showed that ’pseudo self similar’ processes, arrival processes
that appear to some extent self similar, could be produced
by constructing arrivals using Pareto interarrivals, and that the
generated traffic has large-scale correlations and the visual self
similarity property, though the traffic generated is not actually
long-range dependent (and thus not self similar) [21].

Roughan et al. noted that Internet backbone traffic has both
daily and weekly periodic components, as well as a longer-
term trend, and superimposed on top of these components are
shorter time scale stochastic variations [31]. They modeled
such traffic by segmenting the traffic into a regular, predictable
component, and a stochastic component. Our final category,
the envelope-guided process is similar to their approach. A
predictable component such as a sine wave function determines
the arrival rate per time interval, and the actual inter arrivals
are generated from a secondary distribution such as the Pareto
distribution. While the overall arrival rate is determined by an
arrival rate function, the burstiness of the arrivals is determined
by the secondary distribution selected.

Self Similar Arrivals

16

Fig. 7. Self similar traffic generated by our modified workload executor, for
a target rate of 10,000 operations per second, using the b-model configured
with values 0.65 and 0.75.

but when aggregated gets smoothened.

Figure 7 shows self similar arrivals generated using the b-
model. Traffic bursts can be clearly seen at all time scales,
minutes, seconds, and milliseconds, and aggregation does not
smooth the traffic as in the Poisson process, as described
earlier. As noted before, the bias b, which is configurable,
determines the burstiness of the generated traffic. A bias equal
to 0.75 creates more bursts than does a 0.65 bias.

Fig. 8. Envelope-guided arrivals, configured with a diurnal envelope com-
bined with a Pareto stochastic variations, for a target rate of 10,000 operations
per second.

The generated envelope-guided arrivals can be seen Fig-
ure 8. The envelope function here is a diurnal cycle with the
stochastic variations provided via Pareto inter-arrivals. ↵ is
Pareto’s shape parameter and determines the variations intro-
duced in the traffic. As seen in the figure, ↵ = 1.9 generates
bursts at smaller timescales and smoothes out when aggre-
gated, similar to a Poisson process. But ↵ = 1.1 introduces lots
of variations and generates bursts at different timescales. This

traffic with periodicity is not really self similar, but behaves a
like self similar process.

Fig. 9. Auto Correlation Function plot for a sample short workload.

C. Empirical Evaluation of Arrivals

We empirically evaluate the generated request arrival in this
subsection to show that their statistic characteristics hold. We
use both the Auto Correlation Function plot and Hurst param-
eter estimation for the evaluation. For better visualization, we
present the ACF plot of the inter-arrivals generated for a short
duration run, in Figure 9. It can be seen from the figure that,
as described earlier, ACF of the inter-arrivals of the Poisson
traffic quickly reaches near zero and remains close to zero
throughout. But the ACF of the inter-arrivals of the self similar
traffic with a bias 0.65 decays slowly to zero. The periodicity
present in the envelope-guided diurnal traffic is also clearly
visible, even with the presence of stochastic variations. The
ACF plots of the arrivals generated per second for the runs
shown in the previous subsection was also similar.

Table II shows the results of the Hurst parameter estimation
for the arrivals visualized in the previous subsection. We
present the estimations for both a short duration inter-arrival
time series picked from the beginning of the entire run, and
the entire run’s arrivals per second time series. As mentioned
earlier, we use the tool Selfis [28] to estimate H using five
different methods, namely the Aggregate Variance method, R/S
plot, Periodogram, the Abry-Veitch Estimator, and the Whittle
Estimator, and detailed descriptions of the various methods
can be found in Feitelson’s book on workload modeling [20].
As seen in the table, there are variations among the values
estimated by the different methods, hence the approach of
using different methods for the estimation.

The general practice is to declare a process as self similar
if most methods result in a Hurst estimation of above 0.5, and
if most estimate it close to 0.5, a Poisson process. The results
show that the arrivals generated for both the Poisson and self
similar process are indeed Poisson and self similar, when seen
at both scales. When seen as a whole, the diurnal process also
results in higher Hurst estimates owing to high variability in
the process.

Envelope-Guided Process

17

• At longer time scales, many workloads exhibit a
clear diurnal pattern!
• But may exhibit self similar properties at smaller time

scales!
• Overall arrival rate determined by an envelope

arrival rate function and burstiness determined by
a secondary distribution selected!
• ‘Pseudo self similar’ processes using Pareto inter-

arrivals

Envelope-Guided Arrivals

18

Fig. 7. Self similar traffic generated by our modified workload executor, for
a target rate of 10,000 operations per second, using the b-model configured
with values 0.65 and 0.75.

but when aggregated gets smoothened.

Figure 7 shows self similar arrivals generated using the b-
model. Traffic bursts can be clearly seen at all time scales,
minutes, seconds, and milliseconds, and aggregation does not
smooth the traffic as in the Poisson process, as described
earlier. As noted before, the bias b, which is configurable,
determines the burstiness of the generated traffic. A bias equal
to 0.75 creates more bursts than does a 0.65 bias.

Fig. 8. Envelope-guided arrivals, configured with a diurnal envelope com-
bined with a Pareto stochastic variations, for a target rate of 10,000 operations
per second.

The generated envelope-guided arrivals can be seen Fig-
ure 8. The envelope function here is a diurnal cycle with the
stochastic variations provided via Pareto inter-arrivals. ↵ is
Pareto’s shape parameter and determines the variations intro-
duced in the traffic. As seen in the figure, ↵ = 1.9 generates
bursts at smaller timescales and smoothes out when aggre-
gated, similar to a Poisson process. But ↵ = 1.1 introduces lots
of variations and generates bursts at different timescales. This

traffic with periodicity is not really self similar, but behaves a
like self similar process.

Fig. 9. Auto Correlation Function plot for a sample short workload.

C. Empirical Evaluation of Arrivals

We empirically evaluate the generated request arrival in this
subsection to show that their statistic characteristics hold. We
use both the Auto Correlation Function plot and Hurst param-
eter estimation for the evaluation. For better visualization, we
present the ACF plot of the inter-arrivals generated for a short
duration run, in Figure 9. It can be seen from the figure that,
as described earlier, ACF of the inter-arrivals of the Poisson
traffic quickly reaches near zero and remains close to zero
throughout. But the ACF of the inter-arrivals of the self similar
traffic with a bias 0.65 decays slowly to zero. The periodicity
present in the envelope-guided diurnal traffic is also clearly
visible, even with the presence of stochastic variations. The
ACF plots of the arrivals generated per second for the runs
shown in the previous subsection was also similar.

Table II shows the results of the Hurst parameter estimation
for the arrivals visualized in the previous subsection. We
present the estimations for both a short duration inter-arrival
time series picked from the beginning of the entire run, and
the entire run’s arrivals per second time series. As mentioned
earlier, we use the tool Selfis [28] to estimate H using five
different methods, namely the Aggregate Variance method, R/S
plot, Periodogram, the Abry-Veitch Estimator, and the Whittle
Estimator, and detailed descriptions of the various methods
can be found in Feitelson’s book on workload modeling [20].
As seen in the table, there are variations among the values
estimated by the different methods, hence the approach of
using different methods for the estimation.

The general practice is to declare a process as self similar
if most methods result in a Hurst estimation of above 0.5, and
if most estimate it close to 0.5, a Poisson process. The results
show that the arrivals generated for both the Poisson and self
similar process are indeed Poisson and self similar, when seen
at both scales. When seen as a whole, the diurnal process also
results in higher Hurst estimates owing to high variability in
the process.

AutoCorrelation Function

19

• ACF of a poisson
process is usually low
and close to zero even
at lag 1!

• ACF of a long range
dependent process
decays slowly!

• If the traffic is periodic,
ACF oscillates
corresponding to the
periodicity of the
original time series

Fig. 7. Self similar traffic generated by our modified workload executor, for
a target rate of 10,000 operations per second, using the b-model configured
with values 0.65 and 0.75.

but when aggregated gets smoothened.

Figure 7 shows self similar arrivals generated using the b-
model. Traffic bursts can be clearly seen at all time scales,
minutes, seconds, and milliseconds, and aggregation does not
smooth the traffic as in the Poisson process, as described
earlier. As noted before, the bias b, which is configurable,
determines the burstiness of the generated traffic. A bias equal
to 0.75 creates more bursts than does a 0.65 bias.

Fig. 8. Envelope-guided arrivals, configured with a diurnal envelope com-
bined with a Pareto stochastic variations, for a target rate of 10,000 operations
per second.

The generated envelope-guided arrivals can be seen Fig-
ure 8. The envelope function here is a diurnal cycle with the
stochastic variations provided via Pareto inter-arrivals. ↵ is
Pareto’s shape parameter and determines the variations intro-
duced in the traffic. As seen in the figure, ↵ = 1.9 generates
bursts at smaller timescales and smoothes out when aggre-
gated, similar to a Poisson process. But ↵ = 1.1 introduces lots
of variations and generates bursts at different timescales. This

traffic with periodicity is not really self similar, but behaves a
like self similar process.

Fig. 9. Auto Correlation Function plot for a sample short workload.

C. Empirical Evaluation of Arrivals

We empirically evaluate the generated request arrival in this
subsection to show that their statistic characteristics hold. We
use both the Auto Correlation Function plot and Hurst param-
eter estimation for the evaluation. For better visualization, we
present the ACF plot of the inter-arrivals generated for a short
duration run, in Figure 9. It can be seen from the figure that,
as described earlier, ACF of the inter-arrivals of the Poisson
traffic quickly reaches near zero and remains close to zero
throughout. But the ACF of the inter-arrivals of the self similar
traffic with a bias 0.65 decays slowly to zero. The periodicity
present in the envelope-guided diurnal traffic is also clearly
visible, even with the presence of stochastic variations. The
ACF plots of the arrivals generated per second for the runs
shown in the previous subsection was also similar.

Table II shows the results of the Hurst parameter estimation
for the arrivals visualized in the previous subsection. We
present the estimations for both a short duration inter-arrival
time series picked from the beginning of the entire run, and
the entire run’s arrivals per second time series. As mentioned
earlier, we use the tool Selfis [28] to estimate H using five
different methods, namely the Aggregate Variance method, R/S
plot, Periodogram, the Abry-Veitch Estimator, and the Whittle
Estimator, and detailed descriptions of the various methods
can be found in Feitelson’s book on workload modeling [20].
As seen in the table, there are variations among the values
estimated by the different methods, hence the approach of
using different methods for the estimation.

The general practice is to declare a process as self similar
if most methods result in a Hurst estimation of above 0.5, and
if most estimate it close to 0.5, a Poisson process. The results
show that the arrivals generated for both the Poisson and self
similar process are indeed Poisson and self similar, when seen
at both scales. When seen as a whole, the diurnal process also
results in higher Hurst estimates owing to high variability in
the process.

• Autocorrelation is the cross-correlation of a time
series with itself!

Demonstration

20

• LevelDB!
• Log-Structured Merge Tree-based embeddable KV

database engine!
• Periodic background compaction process both

cleans and reorganizes data!
• Run on a dedicated 160GB single platter

Seagate disk!
• MapKeeper server for communication

LevelDB

21

(a) Semilog plot of observed latencies over the duration of the experiment.

(b) Normalized cumulative histogram of the observed latencies under various arrival patterns.

Fig. 10. Latencies measured while running a 1 KB random insert workload against LevelDB, tested under various arrival models, demonstrates the effects of
realistic request arrivals.

VI. FUTURE WORK

We believe storage benchmarks for today’s high perfor-
mance storage systems are in need of features in addition to
what we described in this work. In this section, we describe
briefly the future directions we would like to take.

1) Scaled-up Realistic Request Arrivals: We have imple-
mented realistic arrivals in a single YCSB client. To be
able to generate requests at an arrival rate high enough for
modern high performance storage systems, a single client is not

sufficient even with a high number of threads. The approach
recommended by YCSB is to use multiple clients at a same
time for higher loads.

To generate higher loads in a realistic fashion, our work
could be used in a user generative model, where each client
chooses a model representative of a distinctive user who shares
the underlying storage system with other users. For example,
to generate realistic requests in a multi-tenant cloud storage
system, each client would model a distinct tenant’s access

LevelDB

22

(a) Semilog plot of observed latencies over the duration of the experiment.

(b) Normalized cumulative histogram of the observed latencies under various arrival patterns.

Fig. 10. Latencies measured while running a 1 KB random insert workload against LevelDB, tested under various arrival models, demonstrates the effects of
realistic request arrivals.

VI. FUTURE WORK

We believe storage benchmarks for today’s high perfor-
mance storage systems are in need of features in addition to
what we described in this work. In this section, we describe
briefly the future directions we would like to take.

1) Scaled-up Realistic Request Arrivals: We have imple-
mented realistic arrivals in a single YCSB client. To be
able to generate requests at an arrival rate high enough for
modern high performance storage systems, a single client is not

sufficient even with a high number of threads. The approach
recommended by YCSB is to use multiple clients at a same
time for higher loads.

To generate higher loads in a realistic fashion, our work
could be used in a user generative model, where each client
chooses a model representative of a distinctive user who shares
the underlying storage system with other users. For example,
to generate realistic requests in a multi-tenant cloud storage
system, each client would model a distinct tenant’s access

Future Work

23

• Scaled-up Realistic Request Arrivals!
• User generative model - each client chooses a model

representative of a distinctive user of the shared storage
system!

• Multi-client co-ordinated request arrivals would be better!
• Content Generation!

• Realistic content with configurable levels of duplicity and
compressibility!

• Realistic variable length key content!
• Correlation In Request Sizes!

• Study if truly uncorrelated to arrival rate

Conclusion

24

• Workload’s temporal characteristics are a big
influencer on the system behavior!

• We presented three categories of arrival process
models that all benchmarks should provide!
• Poisson!
• Self similar!
• Envelope-guided!

• We have implemented the models in YCSB and
demonstrate the effect using database evaluation

Thank You

25

Rekha Pitchumani!
!

rekhap@soe.ucsc.edu!
!

http://www.ssrc.ucsc.edu/person/rpitchumani.html

mailto:rekhap@soe.ucsc.edu
http://www.ssrc.ucsc.edu/person/rpitchumani.html

