Atlas: Baidu’s Key-value Storage System
for Cloud Data

Songliang Chunbo Lai Ligiong Yang Jason Cong
Shiding Lin Guangyu Sun
Wa»{ne St.ate Zhenyu Hou University of California
University Can Cui Peking University Los Angeles

Baidu Inc.

Cloud Storage Service

d Cloud storage services become increasingly popular.
> Baidu Cloud has over 200 million users and 200PB user data.

3 To be attractive and competitive, they often offer large free
space and price the service modestly.

> Balidu offers 2TB free space for each user.

d The challenge is how to economically provision resources and
also achieve service quality.
> Alarge number of servers, each with local large storage space.
> The data must be reliably stored with a high availability.
> Requests for any data in the system should be served reasonably fast.

Challenges on Baidu’s System

Q The workload
> Request size is capped at 256KB for system efficiency.
> Majority of the requests are for data between 128KB and 256KB.

Distribution of requests on a typical day in 2014.

Request Size (Bytes) | Read (%) | Write (%) | #Read / #Write
[0, 4K] 0.6% 1.2% 1.45
(4K, 16K] 0.5% 1.0% 1.41
(16K, 32K] 0.5% 0.8% 1.67
(32K, 64K] 0.8% 1.2% 1.94
(64K, 128K] 1.3% 1.7% 2.08
(128K, 256K] 96.3% 94.1% 2.84
Sum 100.0% 100.0% 2.78

a The Challenges
> Can the X86 processors be efficiently used?
> Can we use a file system to store data at each server?
> Can we use an LSM-tree-based key-value store to store the data?

Challenge on Processor Efficiency

A The X86 processors (two 4-core 2.4GHz E5620) were
consistently under-utilized

» Less than 20% utilization rate with nine hard disks installed on a server.
> Adding more disks is not an ultimate solution.

O The ARM processor (one 4-core 1.6GHz Cortex A9) can provide
similar 1/O performance.

> The ARM processor is more than 10X cheaper and more energy-efficient.

d Baidu’s customized ARM-based server.

» Each 2U chassis has six 4-core Cortex A9
Processors.

> Each processor comes with four 3TB SATA
disks.
ad However, each processor can support
only 4GB memory.

» On each chassis only 24GB memory available
for accessing data as large as 72TB data.

Challenge on Using a File System

d Memory cannot hold all metadata.
> Most files would be of 128-256KB.
» Access on the storage has little locality.

> More than one disk accesses are often required to access a
file.

d The approach used in Facebook’s Haystack is not
sufficient.
> There are 3.3GB metadata for 16TB 128KB-data.

» System software and buffer cache also compete for 4GB
memory.

Challenge on Using LSM-tree Based Key-value Store

ad LSM-tree-based KV store is designed for storing many small
key-value items, represented by Google's LevelDB.

d The store iIs memory efficient.
» The metadata is only about 320MB for 16TB 128KB-data.

ad However, the store needs constant compaction operations to
sort its data distributed across levels of the store.
> For a store of 7 levels, the write amplification can be over 70.
> Very limited 1/O bandwidth is left for servicing frond-end user requests.

Memory
Lo.o NN
Lo.1 I Level O
Lo.2 I

Challenge on Using LSM-tree Based Key-value Store

ad LSM-tree-based KV store is designed for storing many small
key-value items, represented by Google's LevelDB.

d The store iIs memory efficient.
» The metadata is only about 320MB for 16TB 128KB-data.

ad However, the store needs constant compaction operations to
sort its data distributed across levels for such a small metadata.
> For a store of 7 levels, the write amplification can be over 70.
> Very limited I/O bandwidth is left for servicing frond-end user requests.

Memory
Lo.o NN
o1 - Level O
|] | Lo >

Challenge on Using LSM-tree Based Key-value Store

ad LSM-tree-based KV store is designed for storing many small
key-value items, represented by Google's LevelDB.

d The store iIs memory efficient.
» The metadata is only about 320MB for 16TB 128KB-data.

ad However, the store needs constant compaction operations to
sort its data distributed across levels for such a small metadata.
> For a store of 7 levels, the write amplification can be over 70.
> Very limited I/O bandwidth is left for servicing frond-end user requests.

Memory
Lo.o I
BN . 5 e Level O
Lo.2 I

Reducing Compaction Cost
a In a KV item, value is usually much larger than the key.

d Values are not necessary to be involved in compactions.

Q Move and place the values in a fixed-size container (block),
and replace the values with pointers in KV items.

Memory

Key « ~~Value
Il k3| Fa| kA

Reducing Compaction Cost
a In a KV item, value is usually much larger than the key.

d Values are not necessary to be involved in compactions.

Q Move and place the values in a fixed-size container (block),
and replace the values with pointers in KV items.

Memory

Patch(64MB)

| A o

I
V

Pointer

10

Reducing Compaction Cost
a In a KV item, value is usually much larger than the key.

d Values are not necessary to be involved in compactions.

Q Move and place the values in a fixed-size container (block),
and replace the values with pointers in KV items.

E Memory

a a a g Patch(64MB)

11

Reducing Compaction Cost
a In a KV item, value is usually much larger than the key.

d Values are not necessary to be involved in compactions.

Q Move and place the values in a fixed-size container (block),
and replace the values with pointers in KV items.

E Memory

Patch(64MB)

12

Reducing Compaction Cost
a In a KV item, value is usually much larger than the key.

d Values are not necessary to be involved in compactions.

Q Move and place the values in a fixed-size container (block),
and replace the values with pointers in KV items.

Memory

H ﬂ a ﬂ ﬂ Patch(64MB)

13

Features of Baidu’s Cloud Storage System (Atlas)
a A hardware and software co-design with customized low-power
servers for high resource utilization

O Separate metadata (keys and offsets) and data (value blocks)
management systems.

d Data are efficiently protected by erasure coding.

Storage of Metadata Storage of Data

Block (64MB)

SEE=
E=

Keys Values H

Big Picture of the Atlas System
=== y PIS (Patch and Index System)

ﬂ E H H H Keys 1| Command Format

I Read Get (UINTI28 key, BYTE* value)

I Write Put (UINTI28 key, BYTE *value)

|

|

|

| | Delete Del (UINT128 key)
I Values ,

|

|

RBS (RAID-like Block System)

|
Block (64MB) :
I Command Format

|

|

! I Wrile Write (UINT64* block_id, BYTE *data)
I Read Read (UINT64 block_1d, UINT32 offset,
| | UINT32 length, BYTE* data)

I I ™ Deletion Delete (UINT64 block_id)

I |

———————————— b 15

Distribution of User Requests

Key hashing

o NN Kevs
| |
|

I

Patch (64MB) :

PIS slice PIS slice

16

A PIS Slice

RBS (RAID-like Block System)

Redundancy for Protecting KV items

Three PIS slice units in a PIS slice

N | Rt
1= !|Namull

BB B
——
BEEEE

Four RS-coded parts 17

The Architecture of Atlas

Use LSM-tree KV Store:
Key = (logical) parts/block

(logical) parts/block

Application

=>» Physical Partservers

N
RBS Master \

Partserver

Shadow
RBS Master

Partserver

18

Serving a Write Request

(4) Obtain 12 + 3

Application

1) Send request to a PIS slice.

(2) Write the KV item in the

PIS

Slice

patch, and acknowledge client;

(3) If the patch is full, convert it intc

partserver IPs a block, and partition and compute
‘/% it into 8+4 parts.

RBS Master

(6) Record (blocklID, list

v

of partserver IPs)

RBS
Partserver

4) Record (key, blockID, offset) into

RBS
Partserver

(5) Write the parts to the partsevers. 1

Serving a Read Request

Application

(1) Send request to a PIS slice.

(4) Get partserver IP for

the block ID

/

(2) If the KV item is in the patch,
return the value;

(3) Otherwise, Get() block ID
and offset from the index.

RBS Master (5) Retrieve the value from

the pariserver
RBS] | | | | | | | | | | || RBS
Partserver Partserver

(6) Part recovery is initiated if it is a failure. 20

Serving Delete/Overwrite Requests
a KV pairs stored in Atlas are immutable.

d Blocks in Atlas are also immutable.

ad A new KV item is written into the system to service a
delete/overwritten request.

d Space occupied by obsolete items are reclaimed in a garbage
collection (GC) process.

d Periodically two questions are asked about a block in the RBS
subsystem, and positive answers to both lead to a GC.

1) Is the block created earlier than a threshold (such as one week ago)?
2) Is the ratio of valid data in the block smaller than a threshold (such as 80%)?

Atlas’s Advantages on Hardware Cost and Power

Q Atlas saves about 70% of hardware cost per GB storage

» Using ARM servers to replace x86 servers
» Using erasure coding to replace 3-copy replication.

ad Power consumption is reduced by about 53% per GB storage.

» The ARM processors are more power efficient.

» The ARM server racks are more space efficient, reducing energy
cost for power supply and thermal dissipation.

22

Comparison with the Prior System

1 Reference system (pre-Atlas)
— Similar PIS subsystem.
— All data are managed solely by the LSM-tree-based KV store.

J Run on a 12-server X86 cluster.

Atlas’s throughput at one node

~+Atlas -=-pre-Atlas ——Aatlas_-=-pre-Atlas

256KB 128KB 64KB 32KB 16KB 4KB 256KB 128KB 64KB 39KB 16KB

value size value size

All writes Read : Write = 3:1

4KB

23

Atlas on a Customized ARM cluster

A cluster of 12 ARM servers.
U Each hosts multiple PIS slices and RBS partservers.

d Each server has a 4-core Marvell processor, 4GB
memory, four 3TB disks.

J1Gbps full-duplex Ethernet adapter.
(J Request size is 256KB.

24

Throughput at One Node with Diff. Request Types

200 200
150 More 1/O and Network 150
2 bandwidth Consumed "
o 100 E- 100
50 /JH—/’_H_J 50
0 0
1 2 3 4 5 & 7 8 8 10 5 10 15 20 25 30 35 40 45 50 55 60
Number of Threads Mumber of Threads
All writes All Reads
200
150

> Read : Write = 3:1

10 20 30 40 50 &0

Number of Threads

25

Latencies with Diff. Request Types

120 120

100 100
Z 80 g &0
& 60 z 60
5 5
% 40 M :

20 20

0 0 .
1 2 3 4 5 6 7 & 9 10 5 10 15 20 25 30 35 40 45 50 55 60
Number of Threads Mumber of Threads

All writes All Reads

26

Throughput at one Node of a Production System

hil
40

w30

a
£ 20
Lo

u

0000 200000 £-00:00 0000 S:00:00 10:00:00 1290000 14:00-00 16:00:00 1800400 20:00:00 22-00-00 23:55:59
tirme
write
50
40
v 30
2
= 2
10
(1]
CECNO 2Dy 4l B0 H O{ECHD TOlOoOD 12Dl 1300 TémOHECHD 100 Sl 2200 245895

time

Reads

27

Disk Bandwidth at one Node of a Production System

L 53] =
= = =

Disk Bandwidth(MB/s)
I
=

30

20 -

10

0

0:00:00 2:00:00 4:00:00 &:00:00 2:00:00 10:00:00 12:00:00 14:00:00 16:00:00 18:00:00 20:00:00 22:00:00 23:59:59
time

write

wnooom e
o o o

Disk Bandwidth(MB/s)
Fey
=

30

i L]
20 T 3 14 Tk] |

\ ! ; X
¥
10 i
0
Qo000 200000 A4:00:00 &00:00 30000 10:00:00 12:00400 14:00:00 16:00:00 18:00:00 20:00:00 2200400 23:59:59
time

Reads

28

Summary

Q Atlas is an object store using a two-tier design separating
the managements of keys and values.

Q Atlas uses a hardware-software co-design for high cost-
effectiveness and energy efficiency.

Q Atlas adopts the erasure coding technigue for space-efficient
data protection.

