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Cloud Storage Service 

2 

 Cloud storage services become increasingly popular.  
 Baidu Cloud has over 200 million users and 200PB user data. 

 

 To be attractive and competitive, they often offer large free 
space and price the service modestly. 
 Baidu offers 2TB free space for each user. 

 

 The challenge is how to economically provision resources and 
also achieve service quality. 
 A large number of servers, each with local large storage space. 

 The data must be reliably stored with a high availability. 

 Requests for any data in the system should be served reasonably fast. 

 

 

   



Challenges on Baidu’s System 
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 The Challenges 
 Can the X86 processors be efficiently used? 

 Can we use a file system to store data at each server? 

 Can we use an LSM-tree-based key-value store to store the data? 

Distribution of requests on a typical day in 2014. 

 The workload 
 Request size is capped at 256KB for system efficiency. 

 Majority of the requests are for data between 128KB and 256KB.  

 

   



Challenge on Processor Efficiency 
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 The X86 processors (two 4-core 2.4GHz E5620) were 
consistently under-utilized  
 Less than 20% utilization rate with nine hard disks installed on a server. 

 Adding more disks is not an ultimate solution.  

 

 The ARM processor (one 4-core 1.6GHz Cortex A9) can provide 
similar I/O performance. 
 The ARM processor is more than 10X cheaper and more energy-efficient. 

 

 

   
 Baidu’s customized ARM-based server. 

 Each 2U chassis has six 4-core Cortex A9 
processors. 

 Each processor comes with four 3TB SATA 
disks. 

 However, each processor can support 
only 4GB memory. 
 On each chassis only 24GB memory available 

for accessing data as large as 72TB data.   

 

 

   



Challenge on Using a File System 
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Memory cannot hold all metadata. 
 Most files would be of 128-256KB.  

 Access on the storage has little locality. 

 More than one disk accesses are often required to access a 
file. 

   

The approach used in Facebook’s Haystack is not 
sufficient.  
 There are 3.3GB metadata for 16TB 128KB-data. 

 System software and buffer cache also compete for 4GB 
memory.   

 

 

 

   



Memory 

Challenge on Using LSM-tree Based Key-value Store 
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 LSM-tree-based KV store is designed for storing many small 
key-value items, represented by Google’s LevelDB.  

 

 The store is memory efficient.  
 The metadata is only about 320MB for 16TB 128KB-data.  
 

  However, the store needs constant compaction operations to 
sort its data distributed across levels of the store.   
 For a store of 7 levels, the write amplification can be over 70. 

 Very limited I/O bandwidth is left for servicing frond-end user requests. 
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Reducing Compaction Cost  

9 

 In a KV item, value is usually much larger than the key.  

 

 Values are not necessary to be involved in compactions.  
 

  Move and place the values in a fixed-size container (block), 
and replace the values with pointers in KV items. 

 

 Memory 
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Features of Baidu’s Cloud Storage System (Atlas)  
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 A hardware and software co-design with customized low-power 
servers for high resource utilization 

 Separate metadata (keys and offsets) and data (value blocks) 
management systems. 

 Data are efficiently protected by erasure coding.   
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Big Picture of the Atlas System  
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PIS (Patch and Index System) 

RBS (RAID-like Block System) 

Patch (64MB) 

Keys 

Values 

Block (64MB) 



Distribution of User Requests  
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Redundancy for Protecting KV items  
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Three PIS slice units in a PIS slice 
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The Architecture of Atlas 
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PIS 
Slice 

PIS 
Slice 

RBS 
Partserver 

RBS 
Partserver 

Application 

Shadow 
RBS Master 

RBS Master 

Use LSM-tree KV Store:  
Key  (logical) parts/block 

(logical) parts/block  
 Physical Partservers 



Serving a Write Request  
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RBS 
Partserver 

RBS 
Partserver 

Application 

RBS Master 

(1) Send request to a PIS slice. 

(4) Obtain 12 + 3 
partserver IPs 

(2) Write the KV item in the 
patch, and acknowledge client; 

Index 

Patch 

(5) Write the parts to the partsevers.  

(3) If the patch is full, convert it into 
a block, and partition and compute 
it into 8+4 parts. 

(4) Record (key, blockID, offset) into 
the index.   

(6) Record (blockID, list  
of partserver IPs)  

PIS 
Slice 



Serving a Read Request  
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RBS 
Partserver 

RBS 
Partserver 

Application 

RBS Master 

(1) Send request to a PIS slice. 

(4) Get partserver IP for 
the block ID  

(2) If the KV item is in the patch, 
return the value; 

Index 

Patch 

(5) Retrieve the value from 
the partserver  

(6) Part recovery is initiated if it is a failure.   

(3) Otherwise, Get() block ID 
and offset from the index. 



Serving Delete/Overwrite Requests 
 KV pairs stored in Atlas are immutable. 

 

 Blocks in Atlas are also immutable. 

 

 A new KV item is written into the system to service a 
delete/overwritten request. 

 

 Space occupied by obsolete items are reclaimed in a garbage 
collection (GC) process. 

 

 Periodically two questions are asked about a block in the RBS 
subsystem, and positive answers to both lead to a GC.  

 

1) Is the block created earlier than a threshold (such as one week ago)? 

2) Is the ratio of valid data in the block smaller than a threshold (such as 80%)? 

 

 

 



Atlas’s Advantages on Hardware Cost and Power   
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 Atlas saves about 70% of hardware cost per GB storage 

 
 Using ARM servers to replace x86 servers 

 Using erasure coding to replace 3-copy replication. 

 

 Power consumption is reduced by about 53% per GB storage. 

 
 The ARM processors are more power efficient. 

 The ARM server racks are more space efficient, reducing energy 
cost for power supply and thermal dissipation. 



Comparison with the Prior System  
 Reference system (pre-Atlas) 

– Similar PIS subsystem. 

– All data are managed solely by the LSM-tree-based KV store.  

 Run on a 12-server X86 cluster.  

 

23 

Atlas’s throughput at one node 

Read : Write = 3:1 All writes 



Atlas on a Customized ARM cluster 

 A cluster of 12 ARM servers. 

 Each hosts multiple PIS slices and RBS partservers.  

 Each server has a 4-core Marvell processor, 4GB 
memory,  four 3TB disks. 

1Gbps full-duplex Ethernet adapter. 

Request size is 256KB. 
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Throughput at One Node with Diff. Request Types  
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All writes All Reads 

Read : Write = 3:1 

More I/O and Network 
bandwidth Consumed  



Latencies with Diff. Request Types  
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All writes All Reads 



Throughput at one Node of a Production System 
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Disk Bandwidth at one Node of a Production System 
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Summary 

 Atlas is an object store using a two-tier design separating 

the managements of keys and values.  

 

 Atlas uses a hardware-software co-design for high cost-

effectiveness and energy efficiency. 

 

 Atlas adopts the erasure coding technique for space-efficient 

data protection. 


