
Atlas: Baidu’s Key-value Storage System
for Cloud Data

Chunbo Lai

Shiding Lin

Zhenyu Hou

Can Cui
Baidu Inc.

Song Jiang

Wayne State

University

Liqiong Yang
Guangyu Sun

Peking University

Jason Cong

University of California

 Los Angeles

Cloud Storage Service

2

 Cloud storage services become increasingly popular.
 Baidu Cloud has over 200 million users and 200PB user data.

 To be attractive and competitive, they often offer large free
space and price the service modestly.
 Baidu offers 2TB free space for each user.

 The challenge is how to economically provision resources and
also achieve service quality.
 A large number of servers, each with local large storage space.

 The data must be reliably stored with a high availability.

 Requests for any data in the system should be served reasonably fast.

Challenges on Baidu’s System

3

 The Challenges
 Can the X86 processors be efficiently used?

 Can we use a file system to store data at each server?

 Can we use an LSM-tree-based key-value store to store the data?

Distribution of requests on a typical day in 2014.

 The workload
 Request size is capped at 256KB for system efficiency.

 Majority of the requests are for data between 128KB and 256KB.

Challenge on Processor Efficiency

4

 The X86 processors (two 4-core 2.4GHz E5620) were
consistently under-utilized
 Less than 20% utilization rate with nine hard disks installed on a server.

 Adding more disks is not an ultimate solution.

 The ARM processor (one 4-core 1.6GHz Cortex A9) can provide
similar I/O performance.
 The ARM processor is more than 10X cheaper and more energy-efficient.

 Baidu’s customized ARM-based server.

 Each 2U chassis has six 4-core Cortex A9
processors.

 Each processor comes with four 3TB SATA
disks.

 However, each processor can support
only 4GB memory.
 On each chassis only 24GB memory available

for accessing data as large as 72TB data.

Challenge on Using a File System

5

Memory cannot hold all metadata.
 Most files would be of 128-256KB.

 Access on the storage has little locality.

 More than one disk accesses are often required to access a
file.

The approach used in Facebook’s Haystack is not
sufficient.
 There are 3.3GB metadata for 16TB 128KB-data.

 System software and buffer cache also compete for 4GB
memory.

Memory

Challenge on Using LSM-tree Based Key-value Store

6

 LSM-tree-based KV store is designed for storing many small
key-value items, represented by Google’s LevelDB.

 The store is memory efficient.
 The metadata is only about 320MB for 16TB 128KB-data.

 However, the store needs constant compaction operations to
sort its data distributed across levels of the store.
 For a store of 7 levels, the write amplification can be over 70.

 Very limited I/O bandwidth is left for servicing frond-end user requests.

Memory

Challenge on Using LSM-tree Based Key-value Store

7

 LSM-tree-based KV store is designed for storing many small
key-value items, represented by Google’s LevelDB.

 The store is memory efficient.
 The metadata is only about 320MB for 16TB 128KB-data.

 However, the store needs constant compaction operations to
sort its data distributed across levels for such a small metadata.
 For a store of 7 levels, the write amplification can be over 70.

 Very limited I/O bandwidth is left for servicing frond-end user requests.

Memory

Challenge on Using LSM-tree Based Key-value Store

8

 LSM-tree-based KV store is designed for storing many small
key-value items, represented by Google’s LevelDB.

 The store is memory efficient.
 The metadata is only about 320MB for 16TB 128KB-data.

 However, the store needs constant compaction operations to
sort its data distributed across levels for such a small metadata.
 For a store of 7 levels, the write amplification can be over 70.

 Very limited I/O bandwidth is left for servicing frond-end user requests.

Value Key

Reducing Compaction Cost

9

 In a KV item, value is usually much larger than the key.

 Values are not necessary to be involved in compactions.

 Move and place the values in a fixed-size container (block),
and replace the values with pointers in KV items.

 Memory

?

? ? ? ?

Pointer
Value Key

Reducing Compaction Cost

10

 In a KV item, value is usually much larger than the key.

 Values are not necessary to be involved in compactions.

 Move and place the values in a fixed-size container (block),
and replace the values with pointers in KV items.

 Memory

Patch(64MB)

Reducing Compaction Cost

11

 In a KV item, value is usually much larger than the key.

 Values are not necessary to be involved in compactions.

 Move and place the values in a fixed-size container (block),
and replace the values with pointers in KV items.

 Memory

Patch(64MB)

Reducing Compaction Cost

12

 In a KV item, value is usually much larger than the key.

 Values are not necessary to be involved in compactions.

 Move and place the values in a fixed-size container (block),
and replace the values with pointers in KV items.

 Memory

Patch(64MB)

Reducing Compaction Cost

13

 In a KV item, value is usually much larger than the key.

 Values are not necessary to be involved in compactions.

 Move and place the values in a fixed-size container (block),
and replace the values with pointers in KV items.

 Memory

Patch(64MB)

Features of Baidu’s Cloud Storage System (Atlas)

14

 A hardware and software co-design with customized low-power
servers for high resource utilization

 Separate metadata (keys and offsets) and data (value blocks)
management systems.

 Data are efficiently protected by erasure coding.

Memory
Block (64MB)

Storage of Metadata

Keys Values

Storage of Data

Big Picture of the Atlas System

15

PIS (Patch and Index System)

RBS (RAID-like Block System)

Patch (64MB)

Keys

Values

Block (64MB)

Distribution of User Requests

16

Patch (64MB)

PIS slice

Keys

Values

Patch (64MB)

Keys

Values

PIS slice

……

Atalas Clients
(Applications)

Key hashing Key hashing

Redundancy for Protecting KV items

17

Three PIS slice units in a PIS slice

R
B

S
(R

A
ID

-l
ik

e
B

lo
ck

 S
ys

te
m

)

Block (64MB)

Patch (64MB)

Keys

Values A
 P

IS
 S

lic
e

… Eight
8MB-parts

Four RS-coded parts

The Architecture of Atlas

18

PIS
Slice

PIS
Slice

RBS
Partserver

RBS
Partserver

Application

Shadow
RBS Master

RBS Master

Use LSM-tree KV Store:
Key  (logical) parts/block

(logical) parts/block
 Physical Partservers

Serving a Write Request

19

RBS
Partserver

RBS
Partserver

Application

RBS Master

(1) Send request to a PIS slice.

(4) Obtain 12 + 3
partserver IPs

(2) Write the KV item in the
patch, and acknowledge client;

Index

Patch

(5) Write the parts to the partsevers.

(3) If the patch is full, convert it into
a block, and partition and compute
it into 8+4 parts.

(4) Record (key, blockID, offset) into
the index.

(6) Record (blockID, list
of partserver IPs)

PIS
Slice

Serving a Read Request

20

RBS
Partserver

RBS
Partserver

Application

RBS Master

(1) Send request to a PIS slice.

(4) Get partserver IP for
the block ID

(2) If the KV item is in the patch,
return the value;

Index

Patch

(5) Retrieve the value from
the partserver

(6) Part recovery is initiated if it is a failure.

(3) Otherwise, Get() block ID
and offset from the index.

Serving Delete/Overwrite Requests
 KV pairs stored in Atlas are immutable.

 Blocks in Atlas are also immutable.

 A new KV item is written into the system to service a
delete/overwritten request.

 Space occupied by obsolete items are reclaimed in a garbage
collection (GC) process.

 Periodically two questions are asked about a block in the RBS
subsystem, and positive answers to both lead to a GC.

1) Is the block created earlier than a threshold (such as one week ago)?

2) Is the ratio of valid data in the block smaller than a threshold (such as 80%)?

Atlas’s Advantages on Hardware Cost and Power

22

 Atlas saves about 70% of hardware cost per GB storage

 Using ARM servers to replace x86 servers

 Using erasure coding to replace 3-copy replication.

 Power consumption is reduced by about 53% per GB storage.

 The ARM processors are more power efficient.

 The ARM server racks are more space efficient, reducing energy
cost for power supply and thermal dissipation.

Comparison with the Prior System
 Reference system (pre-Atlas)

– Similar PIS subsystem.

– All data are managed solely by the LSM-tree-based KV store.

 Run on a 12-server X86 cluster.

23

Atlas’s throughput at one node

Read : Write = 3:1 All writes

Atlas on a Customized ARM cluster

 A cluster of 12 ARM servers.

 Each hosts multiple PIS slices and RBS partservers.

 Each server has a 4-core Marvell processor, 4GB
memory, four 3TB disks.

1Gbps full-duplex Ethernet adapter.

Request size is 256KB.

24

Throughput at One Node with Diff. Request Types

25

All writes All Reads

Read : Write = 3:1

More I/O and Network
bandwidth Consumed

Latencies with Diff. Request Types

26

All writes All Reads

Throughput at one Node of a Production System

27
Reads

write

Disk Bandwidth at one Node of a Production System

28
Reads

write

Summary

 Atlas is an object store using a two-tier design separating

the managements of keys and values.

 Atlas uses a hardware-software co-design for high cost-

effectiveness and energy efficiency.

 Atlas adopts the erasure coding technique for space-efficient

data protection.

