

GreenCHT: A Power-Proportional Replication Scheme for Consistent Hashing based Key Value Storage Systems

Authors: Nannan Zhao, Jiguang Wan, Jun Wang and Changsheng Xie

> Presented by: Nannan Zhao Email: nnzhaocs@hotmail.com

Outline

- 1. Current energy issues with key value storage systems and server energy consumption
- 2. Traditional replication scheme for consistent hashing
- 3. GreenCHT design and implementation
- 4. Conclusions

Current energy issues with key value storage systems

Key value storage systems

Dynamo at Amazon, Cassandra at Facebook, and Voldemort at LinkedIn

••• •••

- □ Consistent Hash Table (CHT)
 - High Scalability
 - Load balance
 - Simplify the lookup operations

The server energy conservation has become a priority

- □ With the increase in the sheer volume of the digital data, storage and server demands are on a rapid increase.
- Server energy cost constitutes a significant part of a data center 'power bill

Traditional replication under consistent hashing

Figure 1 Traditional replication under consistent hashing

The traditional replication strategy prevents subsets of nodes from powering down without violating data availability¹.

[1] D. Harnik, D. Naor, and I. Segal, "Low Power Mode in Cloud Storage Systems,"

5 June 2015

Figure 2 Tiering and power modes with a replication factor of 3

Availability

 \square allows $\frac{(R-t)N}{R}$ of the nodes to be powered down

3

Different power modes

□ sustain different workload levels

Multi-tier replication

Nodes / Virtual nodes in different tiers

Table 1 multi-tier replication

Object x	Successor_1
Tier 0	r1
Tier 1	r2
Tier 2	r3

Figure 3

Scalability

 \Box when a server *n* joins or leaves the system, certain objects will be migrated between server n and its successor in the same tier.

Log-store

Table 2 log-replicas allocation

Object x	Successor_1	Successor_2	Successor_3	•••	Successor_R
Tier 0	r1	-	-	-	-
Tier 1	r2	Log-r1	-	-	-
Tier 2	r3	Log-r1	Log-r2	-	-
				•••	
Tier (R-1)	rR	Log-r1	Log-r2		Log-r(R-1)

Availability and Reliability

□ All the writes to standby replicas are offloaded to log-store, which exists in active nodes in higher tiers.

Parallelism of writes

 \Box Replicas and log-replicas are stored in different nodes.

Scalability

□ When a node enters or leaves, certain objects will be migrated between the node and its successor in the same tier. It won't influence other nodes.

Implementation

Power mode scheduler

- Track the load
 - □ Hour
- Predict the load
 - □ ARMAX model
- Choose the power mode

$$\Box \mathbf{P} = \left[\frac{L_{predict}}{L_{tier}}\right]$$

GreenCHT Prototype

GreenCHT was prototyped on Sheepdog, which was chosen for its open source code and its consistent hashing based data distribution and replication mechanism.

Figure 4

GreenCHT Prototype

- We implemented our multi-tier replication scheme on Sheepdog
 - □ 1. modify its original data distribution and replication algorithm.
 - □ 2. the power mode scheduler runs in the user space to schedule nodes to be powered-down and powered-up

Figure 5

Evaluation

Power savings

Conclusion

Compared with CHT:

□ GreenCHT saves significant energy

Meanwhile, GreenCHT ensures various properties of CHT:

- □ Data availability
- □ Scalability
- □ Reliability
- □ Load balance
- □ Maintains a good performance

Thanks Q&A