
MinCounter: An Efficient Cuckoo Hashing

Scheme for Cloud Storage Systems

Wuhan National Laboratory for Optoelectronics

Huazhong University of Science and Technology

Yuanyuan Sun, Yu Hua, Dan Feng, Ling Yang,

Pengfei Zuo, Shunde Cao

Outline

 Motivations and Backgrounds

 Design and Implementations

 Performance Evaluation

 Conclusion

Index for Big Data

 Large amounts of data (IDC)

 1.8ZB in 2011, 4.4ZB in 2013

 44ZB , 5.2TB for each user in 2020

 Index is nontrivial

 Return accurate results for queries

 Real-time

 Improve system performance and storage
efficiency

44ZB

Hashing-based Index Structures

 Hashing-based data structures have been
widely used in constructing the index.

 Advantages
 Constant-scale addressing complexity

 Fast query response

 Weaknesses
 Low space utilization

 High-latency risk of handling hashing collisions

 Cuckoo hashing

Table1

Table2

b c d

a

x

 Uses d hash tables and d hash functions

 Random selection

 "Kicking-out" operation

Cuckoo Hashing Scheme

Table1

Table2

b d

x

a

c Table1

Table2

c d

a

x

b

d = 2

Advantages in Cuckoo Hashing

 Handle hash collisions

 Moving the items among hash tables

 Ensure a more even distribution

 d hash tables and d hash functions

 Constant-scale query time complexity

 O(1)

 Improve space utilization

Challenges in Cuckoo Hashing

 Intensive migration operations

 Endless loops

 Reconstruct hash tables

Table1

Table2

b c

a

x

fe

d Table1

Table2a

x

fe

dcb

MinCounter

 Allocating a counter for each bucket to
record kicking-out times

 Selecting the bucket with the minimum
counter to kick out

 Avoiding busy routes and selecting the
"cold" buckets
 Infrequently accessed

 Alleviate the occurrence of endless loops in
data insertion process

Data Structure

 Focus on the cases of d ≥ 3

 Insertion failure: kicking-out times is more

than a threshold

x

Table1

Table2

Table3

h1(x)

h2(x)

h3(x)

 Cache

Counters

Counters

Counters

If failing

An Example

aa

bb

Table1

Table2

Table3

2020

30

Counters

Counters

Counters18
c

x

19

Evaluation dataset

 Bag of Words

 Four text collections in the form of bags-of-words

 About 10 million items in total

 Taking advantage of the union of docID and wordID as
keys of items

 http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

Text collectons Doc Word Total _W(Million)

KOS blog entries 3,430 6,906 0.4

NIFS full papers 1,500 12,419 0.8

Enron emails 39,861 28,102 3.8

NYTimes news articles 300,000 102,660 5.0

Evaluation Metrics

 Utilization ratio of hash tables

 Occupied buckets / all buckets

 Space efficiency

 Total kicking-out times during insertion operations

 Insertion latency

 The kicking-out thresholds: 50, 80, 100 and 120

 The initial rate of hash tables: size of hash table / size of

dataset

 Initial rate 1.1: high collision rate

 Initial rate 2.04: low collision rate

Utilization ratio of hash tables

 MinCounter obtains 5%-10% utilization improvement, compared

with RandomWalk scheme.

Total kicking-out times(Rate = 1.1)

RandomWalkN

MinCounterNRandomWalkN
DR

_

__ 


 MinCounter reduces almost 50% total kicking-out times

(R=1.1).

Total kicking-out times(Rate = 2.04)

 MinCounter reduces more than 31% total kicking-out nunbers

(R=2.04).

Conclusion

 Endless loops and high insertion latency

 MinCounter selects the “cold” buckets to kick out

 Alleviate hash collisions

 Decrease insertion latency

 Substantially decreases the total kicking-out times

and improves the utilization ratio of hash tables.

 We release the source code of MinCounter in GitHub.

https://github.com/syy804123097/MinCounter

Thanks & Questions

Challenges in Cuckoo Hashing

 Intensive kicking out when inserting items

 Endless loops

 Reconstruct hash tables

Table1

Table2a

x

b

e

c

d

Table1

Table2

b c

a d e

x

