MinCounter: An Efficient Cuckoo Hashing
Scheme for Cloud Storage Systems

Yuanyuan Sun, Yu Hua, Dan Feng, Ling Yang,
,'_ Pengfei Zuo, Shunde Cao

Wuhan National Laboratory for Optoelectronics

Huazhong University of Science and Technology




i Outline

= Motivations and Backgrounds
= Design and Implementations
= Performance Evaluation

= Conclusion



L Index for Big Data

= Large amounts of data (IDC)

o 1.8ZB in 2011, 4.4ZB in 2013

n 447ZB , 5.2TB for each user in 2020
s Ind 447B

2S

| storage

2011 2013



i Hashing-based Index Structures

= Hashing-based data structures have been
widely used in constructing the index.
= Advantages
= Constant-scale addressing complexity
= Fast query response
= \Weaknesses
= Low space utilization
= High-latency risk of handling hashing collisions

= Cuckoo hashing



i Cuckoo Hashing Scheme

s Uses d hash tables and d hash functions
= Random selection
= "Kicking-out" operation

blb € d |Table1

v
\ /
\ /
\ /
/

a Table2




i Advantages in Cuckoo Hashing

= Handle hash collisions
= Moving the items among hash tables

s Ensure a more even distribution
= d hash tables and d hash functions

= Constant-scale query time complexity
= O(1)
= Improve space utilization



L Challenges in Cuckoo Hashing

= Intensive migration operations

= Endless loops
= Reconstruct hash tables

b C d |Table1

a @ f Table2




i MinCounter

= Allocating a counter for each bucket to
record kicking-out times

= Selecting the bucket with the minimum
counter to kick out

= Avoiding busy routes and selecting the
"cold" buckets
= Infrequently accessed

= Alleviate the occurrence of endless loops In
data insertion process



i Data Structure

m Focusonthecasesof d >3

= Insertion failure: kicking-out times 1s more
than a threshold

Tablel

Counters

Table2

Counters

Table3

Counters




Tablel

Counters

Table2

Counters

Table3

Counters




L Evaluation dataset

= Bag of Words
= Four text collections in the form of bags-of-words
= About 10 million items in total

= Taking advantage of the union of docID and wordID as
keys of items

= http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

Text collectons - Total _W(Million)

KOS blog entries 3,430 6,906
NIFS full papers 1,500 12,419 0.8
Enron emails 39,861 28,102 3.8

NYTimes news articles 300,000 102,660 5.0



i Evaluation Metrics

= Utilization ratio of hash tables
= Occupied buckets / all buckets
= Space efficiency

= Total kicking-out times during insertion operations
= Insertion latency

= The kicking-out thresholds: 50, 80, 100 and 120

= The initial rate of hash tables: size of hash table / size of
dataset

= Initial rate 1.1: high collision rate
= Initial rate 2.04: low collision rate



O MinCounter50

RandomWalk50

RandomWalk80
RandomWalk100

0O MinCounter80
B MinCounter100
B MinCounterl20

B RandomWalk120

f hash tables

10 0

t

10N ra

1zat

s

NNNNNNNNNNNNAN

Util

+

) wy =~ )
o ™ S o
= o

oyl uonezIN)

paper email article

blog

= MinCounter obtains 5%-10% utilization improvement, compared
with RandomWalk scheme.



i Total kicking-out times(Rate = 1.1)

N _ RandomWalk — N _ MinCounter

DR
N RandomWalk

60
c\c 50 P O T=50
'
2
=0T 0 T=80
P
m L
2
2 = T=100
® 20 -
>
10 mT=120

<

blog paper email article

= MinCounter reduces almost 50% total kicking-out times
(R=1.1).



Total kicking-out times(Rate = 2.04)

OMinCounter E@RandomWalk =+~—MinCounter vs RandomWalk

10000 35

S Q
~ \
(=]
g 5 4 F
? S 1000 S
SN = -Ea
= Q 33 8
2 S
S = 100 o0
L =
=2 Z 32 B
7 ]
p— Q ﬁ
S L 10 <))
= E 35
- = 9
= I 30 &

blog paper email article

= MinCounter reduces more than 31% total kicking-out nunbers
(R=2.04).



]L Conclusion

= Endless loops and high insertion latency

s MinCounter selects the “cold” buckets to kick out

= Alleviate hash collisions
= Decrease insertion latency

= Substantially decreases the total kicking-out times
and improves the utilization ratio of hash tables.

s We release the source code of MinCounter in GitHub.
https.//github.com/syy804123097/MinCounter




Thanks & Questions



i Challenges in Cuckoo Hashing

= Intensive kicking out when inserting items

= Endless loops
= Reconstruct hash tables

b C Tablel

a d @ Table2




