
MinCounter: An Efficient Cuckoo Hashing

Scheme for Cloud Storage Systems

Wuhan National Laboratory for Optoelectronics

Huazhong University of Science and Technology

Yuanyuan Sun, Yu Hua, Dan Feng, Ling Yang,

Pengfei Zuo, Shunde Cao

Outline

 Motivations and Backgrounds

 Design and Implementations

 Performance Evaluation

 Conclusion

Index for Big Data

 Large amounts of data (IDC)

 1.8ZB in 2011, 4.4ZB in 2013

 44ZB , 5.2TB for each user in 2020

 Index is nontrivial

 Return accurate results for queries

 Real-time

 Improve system performance and storage
efficiency

44ZB

Hashing-based Index Structures

 Hashing-based data structures have been
widely used in constructing the index.

 Advantages
 Constant-scale addressing complexity

 Fast query response

 Weaknesses
 Low space utilization

 High-latency risk of handling hashing collisions

 Cuckoo hashing

Table1

Table2

b c d

a

x

 Uses d hash tables and d hash functions

 Random selection

 "Kicking-out" operation

Cuckoo Hashing Scheme

Table1

Table2

b d

x

a

c Table1

Table2

c d

a

x

b

d = 2

Advantages in Cuckoo Hashing

 Handle hash collisions

 Moving the items among hash tables

 Ensure a more even distribution

 d hash tables and d hash functions

 Constant-scale query time complexity

 O(1)

 Improve space utilization

Challenges in Cuckoo Hashing

 Intensive migration operations

 Endless loops

 Reconstruct hash tables

Table1

Table2

b c

a

x

fe

d Table1

Table2a

x

fe

dcb

MinCounter

 Allocating a counter for each bucket to
record kicking-out times

 Selecting the bucket with the minimum
counter to kick out

 Avoiding busy routes and selecting the
"cold" buckets
 Infrequently accessed

 Alleviate the occurrence of endless loops in
data insertion process

Data Structure

 Focus on the cases of d ≥ 3

 Insertion failure: kicking-out times is more

than a threshold

x

Table1

Table2

Table3

h1(x)

h2(x)

h3(x)

 Cache

Counters

Counters

Counters

If failing

An Example

aa

bb

Table1

Table2

Table3

2020

30

Counters

Counters

Counters18
c

x

19

Evaluation dataset

 Bag of Words

 Four text collections in the form of bags-of-words

 About 10 million items in total

 Taking advantage of the union of docID and wordID as
keys of items

 http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

Text collectons Doc Word Total _W(Million)

KOS blog entries 3,430 6,906 0.4

NIFS full papers 1,500 12,419 0.8

Enron emails 39,861 28,102 3.8

NYTimes news articles 300,000 102,660 5.0

Evaluation Metrics

 Utilization ratio of hash tables

 Occupied buckets / all buckets

 Space efficiency

 Total kicking-out times during insertion operations

 Insertion latency

 The kicking-out thresholds: 50, 80, 100 and 120

 The initial rate of hash tables: size of hash table / size of

dataset

 Initial rate 1.1: high collision rate

 Initial rate 2.04: low collision rate

Utilization ratio of hash tables

 MinCounter obtains 5%-10% utilization improvement, compared

with RandomWalk scheme.

Total kicking-out times(Rate = 1.1)

RandomWalkN

MinCounterNRandomWalkN
DR

_

__

 MinCounter reduces almost 50% total kicking-out times

(R=1.1).

Total kicking-out times(Rate = 2.04)

 MinCounter reduces more than 31% total kicking-out nunbers

(R=2.04).

Conclusion

 Endless loops and high insertion latency

 MinCounter selects the “cold” buckets to kick out

 Alleviate hash collisions

 Decrease insertion latency

 Substantially decreases the total kicking-out times

and improves the utilization ratio of hash tables.

 We release the source code of MinCounter in GitHub.

https://github.com/syy804123097/MinCounter

Thanks & Questions

Challenges in Cuckoo Hashing

 Intensive kicking out when inserting items

 Endless loops

 Reconstruct hash tables

Table1

Table2a

x

b

e

c

d

Table1

Table2

b c

a d e

x

