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L Index for Big Data

= Large amounts of data (IDC)

o 1.8ZB in 2011, 4.4ZB in 2013

n 447ZB , 5.2TB for each user in 2020
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i Hashing-based Index Structures

= Hashing-based data structures have been
widely used in constructing the index.
= Advantages
= Constant-scale addressing complexity
= Fast query response
= \Weaknesses
= Low space utilization
= High-latency risk of handling hashing collisions

= Cuckoo hashing



i Cuckoo Hashing Scheme

s Uses d hash tables and d hash functions
= Random selection
= "Kicking-out" operation
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i Advantages in Cuckoo Hashing

= Handle hash collisions
= Moving the items among hash tables

s Ensure a more even distribution
= d hash tables and d hash functions

= Constant-scale query time complexity
= O(1)
= Improve space utilization



L Challenges in Cuckoo Hashing

= Intensive migration operations

= Endless loops
= Reconstruct hash tables
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i MinCounter

= Allocating a counter for each bucket to
record kicking-out times

= Selecting the bucket with the minimum
counter to kick out

= Avoiding busy routes and selecting the
"cold" buckets
= Infrequently accessed

= Alleviate the occurrence of endless loops In
data insertion process



i Data Structure

m Focusonthecasesof d >3

= Insertion failure: kicking-out times 1s more
than a threshold
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L Evaluation dataset

= Bag of Words
= Four text collections in the form of bags-of-words
= About 10 million items in total

= Taking advantage of the union of docID and wordID as
keys of items

= http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

Text collectons - Total _W(Million)

KOS blog entries 3,430 6,906
NIFS full papers 1,500 12,419 0.8
Enron emails 39,861 28,102 3.8

NYTimes news articles 300,000 102,660 5.0



i Evaluation Metrics

= Utilization ratio of hash tables
= Occupied buckets / all buckets
= Space efficiency

= Total kicking-out times during insertion operations
= Insertion latency

= The kicking-out thresholds: 50, 80, 100 and 120

= The initial rate of hash tables: size of hash table / size of
dataset

= Initial rate 1.1: high collision rate
= Initial rate 2.04: low collision rate
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= MinCounter obtains 5%-10% utilization improvement, compared
with RandomWalk scheme.



i Total kicking-out times(Rate = 1.1)
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= MinCounter reduces almost 50% total kicking-out times
(R=1.1).



Total kicking-out times(Rate = 2.04)
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= MinCounter reduces more than 31% total kicking-out nunbers
(R=2.04).



]L Conclusion

= Endless loops and high insertion latency

s MinCounter selects the “cold” buckets to kick out

= Alleviate hash collisions
= Decrease insertion latency

= Substantially decreases the total kicking-out times
and improves the utilization ratio of hash tables.

s We release the source code of MinCounter in GitHub.
https.//github.com/syy804123097/MinCounter




Thanks & Questions



i Challenges in Cuckoo Hashing

= Intensive kicking out when inserting items

= Endless loops
= Reconstruct hash tables
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