Reducing CPU and network overhead for
small I/O requests in network storage
protocols over raw Ethernet

Pilar Gonzalez-Férez and Angelos Bilas

FORTH

“Institute of Computer Science

31" International Conference on Massive Storage Systems and Technology
MSST 2015
June 5", Santa Clara, California

Motivation

Small I/0O requests limited by host I/O path overhead J

@ Small I/O requests are important for a large number of workloads
@ Most files are 4kB or smaller
o Metadata requests are typically small and ~ 50% of the I/Os

@ Storage devices, specially HDDs, dominate all /0O overheads
e Techniques for improving throughput focused on large requests

@ NVM technologies exhibit performance similar to DRAM
@ Device overhead of small I/Os a few microseconds
@ Bottleneck shifts from device to host I/O stack

@ Most systems today use some form of networked storage
o Ethernet NICs have improved significantly latency as well

Our goal
Reduce host-level overhead for small I/O requests

Motivation

[Yelelelele)

che Semantics

Tyche is an in-house network storage protocol over raw Ethernet that
achieves high throughput without any hardware support (MssT14]

Connection-oriented protocol over raw Ethernet that can be deployed in
existing infrastructures

Create and present a local view of a remote storage device (NBD-like)
Support any existing file system

Transparent bundling of multiple NICs (tested up to 6)

Reliable delivery

Provide RDMA-like operations without any hardware support

Copy reduction via page remapping in the I/O path

NUMA affinity management

Storage-specific packet processing

Pre-allocation of memory

Motivation

00000

Tyche Design

Tyche achieves up to 6.7GB/s by using six 10Gbit/s NICS without
hardware support msstia

Send path (Initiator) Receive path (Target)

Kernel Space

 Filesystem Block storage device

Tyche [T buffers for Tyche [MTMbuffers for
requests requests
block layer o o blocklayer o o
z .
Tyche network Qtx_ring 2 Tyche network O not_ring
layer g layer O rx_ring
[y
Ethernet Driver 3 Ethernet Driver

SIDINSP
[eaisAyd

Motivation
008000

However ...

small I/O requests

Tyche still exhibits low throughput and low network link utilization for J

Link utilization (%)

120

40 ¢

20

FIO - Read requests

4B — 32KB e 128kB - - -
8KB

64kB - - NBD-4kB - -

60 -/

Eemi

816 32

outstanding I/O requests

64 128

Link utilization

Motivation

[e]e]e] Yele)

Tyche provides up to 5x the
link utilization of NBD, but
Tyche achieves only up to
56% for 4kB requests,
while up to 90% for 8kB
requests

Therefore, our goal is . ..

@ We analyze the host CPU overheads in the networked I/O path

@ We find that small I/O requests are limited by:
o Context switch overhead

o Network packet processing

@ We reduce overheads and increase throughput for small 1/0
requests:

o Low I/O concurrency = Context switches

o High I/0O concurrency = Dynamic batching of requests

Motivation

Q00080

@ Motivation

@ Overhead Analysis

© Reducing Context Switches

© Adaptive Batching

n
c
9
%)
=
&)
c
o
&)

» AL

2 x
e

=

Experimental Testbed

@ Two nodes 4-core Intel Xeon E5520 @2.7GHz
o Initiator: 12GB DDR-IIl DRAM
o Target: 48GB DDR-1lIl DRAM, but 36GB used as ramdisk
@ 1 Myri10ge card each node, connected back to back
@ Cent0S 6.3
@ Tyche implemented in Linux kernel 2.6.32
@ Benchmark: FIO
o Direct I/O, 4kB requests
@ Queue depth: single thread with 1 outstanding request

Overhead Analysis

[YeleJe)

End-to-end Overhead Analysis

Initiator Target Overheads measured

Application User space @ Total

In/Out Kernel g %
csou Ramdisk §»§ @ Tyche Send Path: Ty-IS,
- 1/O request| TY'TS

B I/O request Ty-IR F A E
""""" 2 @ Tyche Receive Path:
P oo | 8 Ty-IR, Ty-TR
S esree() - cswo) oskee() @ Context switches:
Ty-IS @E TS @E %’ CS-WQ, CS-Rec,
@; @3 z CS-IRQ
@E g?) ® Ramdisk)

1anp

Overheads computed

@ In/Out Kernel
@ Link+NIC

R
(@]
[e]
@
T
Q Z
z
I
%
:
=
Z
3
@
(9]
@
T (w)
O (=
O
JEVENE]

Overhead Analysis

[e] YeJe)

4kB Read Requests At Low Concurrency

Total: 73.69us and Throughput: 52.50MB/s)

Initiator Target

Applicaﬁon_ _ Userspace _ _ _ _ _ _ _ Overhead

Inoutkemel KeTnel space - 3e
Ccs-Out Ramdisk 88 s %
e = _f_ffﬂ_uis_'l__ - VO kernel 1319 17.9
E ---------- D: Work TR % Ty-ls 2 ’ 75
Message ueue \5\7
bufers cs-ree([) cswo() ’ cs-rec(]) ; Ty-TR 3.00 20.0
Ty-IS @3 TS @? ‘g Ty-TS 4.00
@E gE s Ty-IR 5.00
@E @? Cs-waQ 4.00
C H G D, sm CS-Rec 8.00 27.3
e G & w3 | csdR@ 815
CRON_Nework o Ramdisk 1.00 1.4
(queue depth=1) Link+NIC 2460 334

Overhead Analysis
000

4kB Write Requests At Low Concurrency

Total: 73.80us and Throughput: 52.50MB/s)

Initiator Target

Applicaﬁon_ _ Userspace _ _ _ _ _ _ _ Overhead

InOutKemel Kernel space - 3e
Ccs-Out Ramdisk 88 s %
e = _f_ffﬂ_uis_'l__ - VO kernel 12.80 17.3
E ---------- D: Work TR % Ty-ls 4 ’ 75
Message ueue \5\7
bufers cs-ree([) cswo() ’ cs-rec(]) ; Ty-TR 5.00 20.3
A @3 TS @? ‘;3"' Ty-TS 3.00
@E gE s Ty-IR 2.25
@3 @? CS-wQ 4.00
C H G D, sm CS-Rec 8.00 27.3
e G & w5 | csdR@ 813
CRON_Nework o Ramdisk 1.00 1.4
(queue depth=1) Link+NIC 24.87 33.7

Overhead Analysis
000e

© Reducing Context Switches

rhead of Context Switches

Each context switch costs ~ 4us and up to 27.5% of total overhead J

Initiator Target
Application Userspace __ _ _ _ _

- = ____?erFel?paae___— 20 . .
o emel Ramaisk g2 Two threads just performing
CS-Out mn%)

v - context switches:
I/O request o F A
%N [% --------- E @ Same NUMA node: 2.5us
---------- Ty-TR .
[y [S ¢ @ Different node: Sus
Dufers o Rec cswo() cs-Rec(] ’

g
»
FE

Overhead from saving,
restoring processor
registers, pipeline flush,
caches ...

Jongmin et.al., Transactions on Storage 11(2), 2015

19fe) yiomiaN 19/e] yo0ig

D ¢

il
))

‘
®
0O
@
5 o
o Lz
O
Janp
IEMETE]

Network

Reducing Context Switches

9000

A single thread runs network layer tasks and block layer tasks

Initiator

In/Out Kernel

CS-Out
4

L eve—
B l I/O request
Message

buffers

Application

Jake| yiomiaN 19Ae) 00ig

1aMLp

@ Shared structures to

communicate both layers

are not needed

@ Overhead of receive path
is significantly reduced

@ Total overhead is
reduced by 18%

@ Throughput increases by

22%

Jauiaylg

Reducing Context Switches

Avoiding Context Switch at th t Send Path

No work queue to send the completion back at the target J

Initiator Target

Application User space

In/Out Kernel
CS-Out

@ No sync with the work
queue threads is needed

@ Overhead of target send
path is also reduced
@ Total overhead is
@3 g; reduced by 22%
@E g@ @ Throughput increases by

45%

v

L eve—
B l I/O request Ty-IR
Message

buffers

Jake| yiomiaN 19Ae) 00ig

1aMLp
Jeussylg

Reducing Context Switches

Summary

For 4kB requests, at low concurrency:
@ Total I/0 overhead per I/O request is reduced by 27%

@ Throughput improves by 45%
@ Context switch overhead is reduced by up to 60%
@ Tyche processing is reduced by 56%/61% for reads/writes

Reducing Context Switches

oooe

@ Adaptive Batching

Problem

Under high concurrency, Tyche still cannot achieve high throughput
for small I/0 requests

Link utilization (%)

120

a0
20 |

FIO - Read requests

4B —
8KB

32KB -
64KB - -

128kB - - -
NBD-4kB - -

—
/

816 32

64

128

outstanding I/0 requests

Batch several requests into
a single request message

Batching reduces
@ Number of messages
@ Message processing

@ Number of context
switches

Adaptive Batching

00000000

Batching Request Messages

A batch request message includes I/O requests or I/O completions J

Applications

1/0 requests

%D

@

Batch queue 3
R
E Batch message
_3
tx ring < g
TR
=
NIC tx ring z

>00|q 8Y2AL

BaUoAL

YIomIaN

* Initiator has a batch queue and thread
Initiator:

@ Applications enqueue I/O requests
into the batch queue

@ A thread dequeues these requests
and inserts into a batch message

Target:

@ Issues a regular I/O requests per
request in the batch message

@ Batches completions as well

Adaptive Batching

0000000

Batching Data Messages

@ Data of a 4kB request is sent by using a single data packet in a
Jumbo Ethernet frame of 4kB

@ We batch data messages:

o Data for 4kB request messages is sent together in a single data
message

o We use data packets of 8kB

e Jumbo Ethernet frame of 8kB is used

Adaptive Batching

Q0800000

Dynamic Batching

Problem
Should we send a batch message or wait for more I/O requests?

@ We define N as the number of requests to put in a message

o We calculate N using feedback from achieved (measured)
throughput and available concurrency (current queue depth)

e N is calculated constantly (every second)
o We send a message every N requests or when a timeout occurs

o To avoid local minimum we artificially increase/decrease N fif it
stays constant for some time

Adaptive Batching

Q0080000

Batching Requests/Responses (no data)

@ Dynamic Tyche-Batch improves link utilization by up to 49.5%
@ Batching achieves up to 80.7% of link utilization

Link utilization (%)

Link utilization (%)

0 T L L L
3264 128 256

ot ling /0 requests

512

Read requests

Write requests

FI1O, 4kB requests, 1, 2, ..., and 128 threads, and 4 outstanding I/O per thread

Batching Data + Requests/Responses

@ Dynamic Tyche-Batch improves link utilization by up to 56.9%

@ Batching achieves up to 88.0% of link utilization

Link utilization (%)

3264 128 256
outstanding I/0 requests

Read requests

FI1O, 4kB requests, 1, 2, ..., and 128 threads, and 4 outstanding I/O per thread

512

Link utilization (%)

100 [

NOB s
DyB

3264 128 256
outstanding I/O requests

Write requests

512

v

Adaptive Batching

Q0000800

Batching Requests/Responses (no data): Batch Level

@ Reads: batch level increases as number of requests does
@ Writes: batch level is kept constant up to more than 256 requests

80 DyB === B-2 s=ss: B8 wiw B-64 i 80 DyB == B2 B-8 B-64 i

60 S
= 40 = 40
]]
3 : 5 ;

20 ¢ 20 ¢

0 - 0 T

3264 128 256 512
outstanding I/0 requests # outstanding I/O requests
Read requests Write requests
FI1O, 4kB requests, 1, 2, ..., and 128 threads, and 4 outstanding |/O per thread
v

Adaptive Batching

Q00000 eo

Mixed Request Sizes

@ 32 threads issue 4kB, every 60s a new thread issues 128kB
@ Batching achieves up to 91.3% of link utilization

100 | 2B NoB 100 |28 NoB
g | 2 w ‘
c c
2 o
3 T v
3 5
£ x
£ £
= 20 = 20
0 0
o), 7 y/ 7.
> R % % % % % B B % B %
Time (s) Time (s)
Read requests Write requests
v

Adaptive Batching

Q000000 e

Conclusions

@ We analyze overhead of Tyche wmsstiq
o CPU overhead is up to 65% of total overhead (including OS etc)

@ /O protocol is up to 47% of total overhead (excluding OS etc)

@ At low concurrency: we reduce I/O protocol overhead by up to
61% via reducing context switches

@ At high concurrency: we improve link utilization by up to 57% via
adaptive batching

@ We achieve:

o 14us overhead per I/O request, about 7us on each of initiator/target
(excluding network link)

@ 91% of theoretical maximum of link utilization: 287K out of 315K
IOPS on 10GigE

o No hardware support required

Conclusions 26

Reducing CPU and network overhead for small I/0

requests in network storage protocols over raw
Ethernet
Pilar Gonzalez-Férez and Angelos Bilas

pilar@ditec.um.es bilas@ics.forth.gr

F 4
£ nanostreams "dNESU‘S“ oo

Institute of Computer Science

