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Motivation

Small I/0O requests limited by host I/O path overhead J

@ Small I/O requests are important for a large number of workloads
@ Most files are 4kB or smaller
o Metadata requests are typically small and ~ 50% of the I/Os

@ Storage devices, specially HDDs, dominate all /0O overheads
e Techniques for improving throughput focused on large requests

@ NVM technologies exhibit performance similar to DRAM
@ Device overhead of small I/Os a few microseconds
@ Bottleneck shifts from device to host I/O stack

@ Most systems today use some form of networked storage
o Ethernet NICs have improved significantly latency as well

Our goal
Reduce host-level overhead for small I/O requests
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che Semantics

Tyche is an in-house network storage protocol over raw Ethernet that
achieves high throughput without any hardware support (MssT14]

Connection-oriented protocol over raw Ethernet that can be deployed in
existing infrastructures

Create and present a local view of a remote storage device (NBD-like)
Support any existing file system

Transparent bundling of multiple NICs (tested up to 6)

Reliable delivery

Provide RDMA-like operations without any hardware support

Copy reduction via page remapping in the I/O path

NUMA affinity management

Storage-specific packet processing

Pre-allocation of memory

Motivation
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Tyche Design

Tyche achieves up to 6.7GB/s by using six 10Gbit/s NICS without
hardware support msstia

Send path (Initiator) Receive path (Target)

Kernel Space

 Filesystem Block storage device

Tyche [T buffers for Tyche [MTMbuffers for
requests requests
block layer o o blocklayer o o
z .
Tyche network  Qtx_ring 2 Tyche network O not_ring
layer g layer O rx_ring
[y
Ethernet Driver 3 Ethernet Driver

SIDINSP
[eaisAyd

Motivation
008000



However ...

small I/O requests

Tyche still exhibits low throughput and low network link utilization for J
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Tyche provides up to 5x the
link utilization of NBD, but
Tyche achieves only up to
56% for 4kB requests,
while up to 90% for 8kB
requests




Therefore, our goal is . ..

@ We analyze the host CPU overheads in the networked I/O path

@ We find that small I/O requests are limited by:
o Context switch overhead

o Network packet processing

@ We reduce overheads and increase throughput for small 1/0
requests:

o Low I/O concurrency = Context switches

o High I/0O concurrency = Dynamic batching of requests

Motivation
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@ Motivation

@ Overhead Analysis

© Reducing Context Switches

© Adaptive Batching
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Experimental Testbed

@ Two nodes 4-core Intel Xeon E5520 @2.7GHz
o Initiator: 12GB DDR-IIl DRAM
o Target: 48GB DDR-1lIl DRAM, but 36GB used as ramdisk
@ 1 Myri10ge card each node, connected back to back
@ Cent0S 6.3
@ Tyche implemented in Linux kernel 2.6.32
@ Benchmark: FIO
o Direct I/O, 4kB requests
@ Queue depth: single thread with 1 outstanding request

Overhead Analysis
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End-to-end Overhead Analysis
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4kB Read Requests At Low Concurrency

Total: 73.69us and Throughput: 52.50MB/s )
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4kB Write Requests At Low Concurrency

Total: 73.80us and Throughput: 52.50MB/s )
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rhead of Context Switches

Each context switch costs ~ 4us and up to 27.5% of total overhead J
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A single thread runs network layer tasks and block layer tasks

Initiator

In/Out Kernel

CS-Out
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@ Shared structures to

communicate both layers

are not needed

@ Overhead of receive path
is significantly reduced

@ Total overhead is
reduced by 18%

@ Throughput increases by

22%
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Avoiding Context Switch at th t Send Path

No work queue to send the completion back at the target J

Initiator Target

Application User space

In/Out Kernel
CS-Out

@ No sync with the work
queue threads is needed

@ Overhead of target send
path is also reduced
@ Total overhead is
@3 g; reduced by 22%
@E g@ @ Throughput increases by

45%
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Summary

For 4kB requests, at low concurrency:
@ Total I/0 overhead per I/O request is reduced by 27%

@ Throughput improves by 45%
@ Context switch overhead is reduced by up to 60%
@ Tyche processing is reduced by 56%/61% for reads/writes

Reducing Context Switches
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Problem

Under high concurrency, Tyche still cannot achieve high throughput
for small I/0 requests

Link utilization (%)
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Batch several requests into
a single request message

Batching reduces
@ Number of messages
@ Message processing

@ Number of context
switches
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Batching Request Messages

A batch request message includes I/O requests or I/O completions J

Applications

1/0 requests
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* Initiator has a batch queue and thread
Initiator:

@ Applications enqueue I/O requests
into the batch queue

@ A thread dequeues these requests
and inserts into a batch message

Target:

@ Issues a regular I/O requests per
request in the batch message

@ Batches completions as well

Adaptive Batching

0000000




Batching Data Messages

@ Data of a 4kB request is sent by using a single data packet in a
Jumbo Ethernet frame of 4kB

@ We batch data messages:

o Data for 4kB request messages is sent together in a single data
message

o We use data packets of 8kB

e Jumbo Ethernet frame of 8kB is used

Adaptive Batching
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Dynamic Batching

Problem
Should we send a batch message or wait for more I/O requests?

@ We define N as the number of requests to put in a message

o We calculate N using feedback from achieved (measured)
throughput and available concurrency (current queue depth)

e N is calculated constantly (every second)
o We send a message every N requests or when a timeout occurs

o To avoid local minimum we artificially increase/decrease N fif it
stays constant for some time

Adaptive Batching
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Batching Requests/Responses (no data)

@ Dynamic Tyche-Batch improves link utilization by up to 49.5%
@ Batching achieves up to 80.7% of link utilization
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Batching Data + Requests/Responses

@ Dynamic Tyche-Batch improves link utilization by up to 56.9%

@ Batching achieves up to 88.0% of link utilization
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Batching Requests/Responses (no data): Batch Level

@ Reads: batch level increases as number of requests does
@ Writes: batch level is kept constant up to more than 256 requests
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Mixed Request Sizes

@ 32 threads issue 4kB, every 60s a new thread issues 128kB
@ Batching achieves up to 91.3% of link utilization
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Conclusions

@ We analyze overhead of Tyche wmsstiq
o CPU overhead is up to 65% of total overhead (including OS etc)

@ /O protocol is up to 47% of total overhead (excluding OS etc)

@ At low concurrency: we reduce I/O protocol overhead by up to
61% via reducing context switches

@ At high concurrency: we improve link utilization by up to 57% via
adaptive batching

@ We achieve:

o 14us overhead per I/O request, about 7us on each of initiator/target
(excluding network link)

@ 91% of theoretical maximum of link utilization: 287K out of 315K
IOPS on 10GigE

o No hardware support required

Conclusions 26
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