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Motivation

Small I/O requests limited by host I/O path overhead

Small I/O requests are important for a large number of workloads
Most files are 4kB or smaller

Metadata requests are typically small and ' 50% of the I/Os

Storage devices, specially HDDs, dominate all I/O overheads
Techniques for improving throughput focused on large requests

NVM technologies exhibit performance similar to DRAM
Device overhead of small I/Os a few microseconds

Bottleneck shifts from device to host I/O stack

Most systems today use some form of networked storage
Ethernet NICs have improved significantly latency as well

Our goal

Reduce host-level overhead for small I/O requests
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Tyche Semantics

Tyche is an in-house network storage protocol over raw Ethernet that
achieves high throughput without any hardware support [MSST14]

Connection-oriented protocol over raw Ethernet that can be deployed in
existing infrastructures

Create and present a local view of a remote storage device (NBD-like)

Support any existing file system

Transparent bundling of multiple NICs (tested up to 6)

Reliable delivery

Provide RDMA-like operations without any hardware support

Copy reduction via page remapping in the I/O path

NUMA affinity management

Storage-specific packet processing

Pre-allocation of memory
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Tyche Design

Tyche achieves up to 6.7GB/s by using six 10Gbit/s NICS without
hardware support [MSST14]
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However . . .

Tyche still exhibits low throughput and low network link utilization for
small I/O requests
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Therefore, our goal is . . .

We analyze the host CPU overheads in the networked I/O path

We find that small I/O requests are limited by:
Context switch overhead

Network packet processing

We reduce overheads and increase throughput for small I/O
requests:

Low I/O concurrency ⇒ Context switches

High I/O concurrency ⇒ Dynamic batching of requests
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Experimental Testbed

Two nodes 4-core Intel Xeon E5520 @2.7GHz
Initiator: 12GB DDR-III DRAM

Target: 48GB DDR-III DRAM, but 36GB used as ramdisk

1 Myri10ge card each node, connected back to back
CentOS 6.3
Tyche implemented in Linux kernel 2.6.32
Benchmark: FIO

Direct I/O, 4kB requests

Queue depth: single thread with 1 outstanding request
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End-to-end Overhead Analysis
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4kB Read Requests At Low Concurrency

Total: 73.69µs and Throughput: 52.50MB/s
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4kB Write Requests At Low Concurrency

Total: 73.80µs and Throughput: 52.50MB/s
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Overhead of Context Switches

Each context switch costs ' 4µs and up to 27.5% of total overhead
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Jongmin et.al., Transactions on Storage 11(2), 2015
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Avoiding Context Switch at the Receive Path

A single thread runs network layer tasks and block layer tasks
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communicate both layers
are not needed
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is significantly reduced
Total overhead is
reduced by 18%
Throughput increases by
22%
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Avoiding Context Switch at the Target Send Path

No work queue to send the completion back at the target
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No sync with the work
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reduced by 22%
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Summary

For 4kB requests, at low concurrency:
Total I/O overhead per I/O request is reduced by 27%

Throughput improves by 45%

Context switch overhead is reduced by up to 60%

Tyche processing is reduced by 56%/61% for reads/writes
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Adaptive Batching

Problem
Under high concurrency, Tyche still cannot achieve high throughput

for small I/O requests
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Batching Request Messages

A batch request message includes I/O requests or I/O completions

Batch message 

tx ring

NIC tx ring

Batch queue

I/O requests

Applications

HD

N
et w

or k 
driv er

Tyc he 
netw

ork  
laye r

Tyc he b loc k
laye r

F Initiator has a batch queue and thread

Initiator:
Applications enqueue I/O requests
into the batch queue
A thread dequeues these requests
and inserts into a batch message

Target:
Issues a regular I/O requests per
request in the batch message
Batches completions as well

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 19



Batching Data Messages

Data of a 4kB request is sent by using a single data packet in a
Jumbo Ethernet frame of 4kB

We batch data messages:
Data for 4kB request messages is sent together in a single data
message

We use data packets of 8kB

Jumbo Ethernet frame of 8kB is used
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Dynamic Batching

Problem
Should we send a batch message or wait for more I/O requests?

Proposal

We define N as the number of requests to put in a message
We calculate N using feedback from achieved (measured)
throughput and available concurrency (current queue depth)

N is calculated constantly (every second)

We send a message every N requests or when a timeout occurs

To avoid local minimum we artificially increase/decrease N if it
stays constant for some time
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Batching Requests/Responses (no data)

Dynamic Tyche-Batch improves link utilization by up to 49.5%
Batching achieves up to 80.7% of link utilization
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Batching Data + Requests/Responses

Dynamic Tyche-Batch improves link utilization by up to 56.9%
Batching achieves up to 88.0% of link utilization
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Batching Requests/Responses (no data): Batch Level

Reads: batch level increases as number of requests does
Writes: batch level is kept constant up to more than 256 requests
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Mixed Request Sizes

32 threads issue 4kB, every 60s a new thread issues 128kB
Batching achieves up to 91.3% of link utilization
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Conclusions

We analyze overhead of Tyche [MSST14]

CPU overhead is up to 65% of total overhead (including OS etc)

I/O protocol is up to 47% of total overhead (excluding OS etc)

At low concurrency: we reduce I/O protocol overhead by up to
61% via reducing context switches

At high concurrency: we improve link utilization by up to 57% via
adaptive batching

We achieve:
14µs overhead per I/O request, about 7µs on each of initiator/target
(excluding network link)

91% of theoretical maximum of link utilization: 287K out of 315K
IOPS on 10GigE

No hardware support required
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