
Reducing CPU and network overhead for
small I/O requests in network storage
protocols over raw Ethernet

Pilar González-Férez and Angelos Bilas

31th International Conference on Massive Storage Systems and Technology

MSST 2015

June 5th, Santa Clara, California

Motivation

Small I/O requests limited by host I/O path overhead

Small I/O requests are important for a large number of workloads
Most files are 4kB or smaller

Metadata requests are typically small and ' 50% of the I/Os

Storage devices, specially HDDs, dominate all I/O overheads
Techniques for improving throughput focused on large requests

NVM technologies exhibit performance similar to DRAM
Device overhead of small I/Os a few microseconds

Bottleneck shifts from device to host I/O stack

Most systems today use some form of networked storage
Ethernet NICs have improved significantly latency as well

Our goal

Reduce host-level overhead for small I/O requests

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 2

Tyche Semantics

Tyche is an in-house network storage protocol over raw Ethernet that
achieves high throughput without any hardware support [MSST14]

Connection-oriented protocol over raw Ethernet that can be deployed in
existing infrastructures

Create and present a local view of a remote storage device (NBD-like)

Support any existing file system

Transparent bundling of multiple NICs (tested up to 6)

Reliable delivery

Provide RDMA-like operations without any hardware support

Copy reduction via page remapping in the I/O path

NUMA affinity management

Storage-specific packet processing

Pre-allocation of memory

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 3

Tyche Design

Tyche achieves up to 6.7GB/s by using six 10Gbit/s NICS without
hardware support [MSST14]

N
IC

buffers for
requests
and data

tx_ring

N
etw

ok layer
Physical
devices

Kernel Space

Tyche
block layer

Send path (Initiator) Receive path (Target)

not_ring

rx_ring

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

Tyche network
layer

Tyche
block layer

VFS
File System

Ethernet Driver

Block storage device

Ethernet Driver

buffers for
requests
and data

Tyche network
layer

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 4

However . . .

Tyche still exhibits low throughput and low network link utilization for
small I/O requests

 0

 20

 40

 60

 80

 100

 120

8 16 32 64 128

L
in

k
 u

ti
li

z
a

ti
o

n
 (

%
)

outstanding I/O requests

FIO - Read requests

4kB

8kB

32kB

64kB

128kB

NBD-4kB

Link utilization

Tyche provides up to 5x the
link utilization of NBD, but
Tyche achieves only up to
56% for 4kB requests,
while up to 90% for 8kB
requests

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 5

Therefore, our goal is . . .

We analyze the host CPU overheads in the networked I/O path

We find that small I/O requests are limited by:
Context switch overhead

Network packet processing

We reduce overheads and increase throughput for small I/O
requests:

Low I/O concurrency ⇒ Context switches

High I/O concurrency ⇒ Dynamic batching of requests

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 6

1 Motivation

2 Overhead Analysis

3 Reducing Context Switches

4 Adaptive Batching

5 Conclusions

Experimental Testbed

Two nodes 4-core Intel Xeon E5520 @2.7GHz
Initiator: 12GB DDR-III DRAM

Target: 48GB DDR-III DRAM, but 36GB used as ramdisk

1 Myri10ge card each node, connected back to back
CentOS 6.3
Tyche implemented in Linux kernel 2.6.32
Benchmark: FIO

Direct I/O, 4kB requests

Queue depth: single thread with 1 outstanding request

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 8

End-to-end Overhead Analysis

B
lock layer

N
etw

ork layer
E

thernet
driver

Message
buffers

tx

NIC tx

Ty-IS

NIC rx

rx

not

Ty-IR

CS-Rec

CS-IRQ

NIC tx

Ty-TS

NIC rx

Ty-TR

CS-IRQNetwork

Work
queue

I/O request
I/O request

Ramdisk

Kernel space
User spaceApplication

In/Out Kernel

S
torage

device
tx

rx

not

CS-WQ CS-Rec

A

B

Initiator Target

Ty-TS

CS-Out

C D

EF

GH

Overheads measured
Total

Tyche Send Path: Ty-IS,
Ty-TS

Tyche Receive Path:
Ty-IR, Ty-TR

Context switches:
CS-WQ, CS-Rec,
CS-IRQ

Ramdisk

Overheads computed
In/Out Kernel

Link+NIC

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 9

4kB Read Requests At Low Concurrency

Total: 73.69µs and Throughput: 52.50MB/s

B
lock layer

N
etw

ork layer
E

thernet
driver

Message
buffers

tx

NIC tx

Ty-IS

NIC rx

rx

not

Ty-IR

CS-Rec

CS-IRQ

NIC tx

Ty-TS

NIC rx

Ty-TR

CS-IRQNetwork

Work
queue

I/O request
I/O request

Ramdisk

Kernel space
User spaceApplication

In/Out Kernel

S
torage

device
tx

rx

not

CS-WQ CS-Rec

A

B

Initiator Target

Ty-TS

CS-Out

C D

EF

GH

(queue depth=1)

Overhead

µs %

I/O kernel 13.19 17.9

Ty-IS 2.75

20.0
Ty-TR 3.00

Ty-TS 4.00

Ty-IR 5.00

CS-WQ 4.00
27.3CS-Rec 8.00

CS-IRQ 8.15

Ramdisk 1.00 1.4

Link+NIC 24.60 33.4

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 10

4kB Write Requests At Low Concurrency

Total: 73.80µs and Throughput: 52.50MB/s

B
lock layer

N
etw

ork layer
E

thernet
driver

Message
buffers

tx

NIC tx

Ty-IS

NIC rx

rx

not

Ty-IR

CS-Rec

CS-IRQ

NIC tx

Ty-TS

NIC rx

Ty-TR

CS-IRQNetwork

Work
queue

I/O request
I/O request

Ramdisk

Kernel space
User spaceApplication

In/Out Kernel

S
torage

device
tx

rx

not

CS-WQ CS-Rec

A

B

Initiator Target

Ty-TS

CS-Out

C D

EF

GH

(queue depth=1)

Overhead

µs %

I/O kernel 12.80 17.3

Ty-IS 4.75

20.3
Ty-TR 5.00

Ty-TS 3.00

Ty-IR 2.25

CS-WQ 4.00
27.3CS-Rec 8.00

CS-IRQ 8.13

Ramdisk 1.00 1.4

Link+NIC 24.87 33.7

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 11

1 Motivation

2 Overhead Analysis

3 Reducing Context Switches

4 Adaptive Batching

5 Conclusions

Overhead of Context Switches

Each context switch costs ' 4µs and up to 27.5% of total overhead

B
lock layer

N
etw

ork layer
E

thernet
driver

Message
buffers

tx

NIC tx

Ty-IS

NIC rx

rx

not

Ty-IR

CS-Rec

CS-IRQ

NIC tx

Ty-TS

NIC rx

Ty-TR

CS-IRQNetwork

Work
queue

I/O request
I/O request

Ramdisk

Kernel space
User spaceApplication

In/Out Kernel

S
torage

device

tx

rx

not

CS-WQ CS-Rec

A

B

Initiator Target

Ty-TS

CS-Out

C D

EF

GH

Two threads just performing
context switches:

Same NUMA node: 2.5µs

Different node: 5µs

Overhead from saving,
restoring processor
registers, pipeline flush,
caches . . .
Jongmin et.al., Transactions on Storage 11(2), 2015

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 13

Avoiding Context Switch at the Receive Path

A single thread runs network layer tasks and block layer tasks

B
lock layer

N
etw

ork layer
E

thernet
driver

Message
buffers

tx

NIC tx

Ty-IS

NIC rx

rx

Ty-IR

CS-IRQ

NIC tx

Ty-TS

NIC rx

Ty-TR

CS-IRQNetwork

Work
queue

I/O request
I/O request

Ramdisk

Kernel space
User spaceApplication

In/Out Kernel

S
torage

device

tx

rx

CS-WQ

A

B

Initiator Target

Ty-TS

CS-Out

C D

EF

GH

Shared structures to
communicate both layers
are not needed
Overhead of receive path
is significantly reduced
Total overhead is
reduced by 18%
Throughput increases by
22%

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 14

Avoiding Context Switch at the Target Send Path

No work queue to send the completion back at the target

B
lock layer

N
etw

ork layer
E

thernet
driver

Message
buffers

tx

NIC tx

Ty-IS

NIC rx

rx

Ty-IR

CS-IRQ

NIC tx

Ty-TS

NIC rx

Ty-TR

CS-IRQNetwork

Work
queue

I/O request
I/O request

Ramdisk

Kernel space
User spaceApplication

In/Out Kernel

S
torage

device

tx

rx

A

B

Initiator Target

Ty-TS

CS-Out

C D

EF

GH

No sync with the work
queue threads is needed
Overhead of target send
path is also reduced
Total overhead is
reduced by 22%
Throughput increases by
45%

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 15

Summary

For 4kB requests, at low concurrency:
Total I/O overhead per I/O request is reduced by 27%

Throughput improves by 45%

Context switch overhead is reduced by up to 60%

Tyche processing is reduced by 56%/61% for reads/writes

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 16

1 Motivation

2 Overhead Analysis

3 Reducing Context Switches

4 Adaptive Batching

5 Conclusions

Adaptive Batching

Problem
Under high concurrency, Tyche still cannot achieve high throughput

for small I/O requests

 0

 20

 40

 60

 80

 100

 120

8 16 32 64 128

L
in

k
 u

ti
li

z
a

ti
o

n
 (

%
)

outstanding I/O requests

FIO - Read requests

4kB

8kB

32kB

64kB

128kB

NBD-4kB

Batch several requests into
a single request message

Batching reduces
Number of messages
Message processing
Number of context
switches

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 18

Batching Request Messages

A batch request message includes I/O requests or I/O completions

Batch message

tx ring

NIC tx ring

Batch queue

I/O requests

Applications

HD

N
et w

or k
driv er

Tyc he
netw

ork
laye r

Tyc he b loc k
laye r

F Initiator has a batch queue and thread

Initiator:
Applications enqueue I/O requests
into the batch queue
A thread dequeues these requests
and inserts into a batch message

Target:
Issues a regular I/O requests per
request in the batch message
Batches completions as well

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 19

Batching Data Messages

Data of a 4kB request is sent by using a single data packet in a
Jumbo Ethernet frame of 4kB

We batch data messages:
Data for 4kB request messages is sent together in a single data
message

We use data packets of 8kB

Jumbo Ethernet frame of 8kB is used

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 20

Dynamic Batching

Problem
Should we send a batch message or wait for more I/O requests?

Proposal

We define N as the number of requests to put in a message
We calculate N using feedback from achieved (measured)
throughput and available concurrency (current queue depth)

N is calculated constantly (every second)

We send a message every N requests or when a timeout occurs

To avoid local minimum we artificially increase/decrease N if it
stays constant for some time

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 21

Batching Requests/Responses (no data)

Dynamic Tyche-Batch improves link utilization by up to 49.5%
Batching achieves up to 80.7% of link utilization

 0

 20

 40

 60

 80

 100

32 64 128 256 512

L
in

k
 u

ti
li

z
a

ti
o

n
 (

%
)

outstanding I/O requests

NoB

DyB

B-2

B-8

B-64

Read requests

 0

 20

 40

 60

 80

 100

32 64 128 256 512
L

in
k

 u
ti

li
z
a

ti
o

n
 (

%
)

outstanding I/O requests

NoB

DyB

B-2

B-8

B-64

Write requests

FIO, 4kB requests, 1, 2, . . . , and 128 threads, and 4 outstanding I/O per thread

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 22

Batching Data + Requests/Responses

Dynamic Tyche-Batch improves link utilization by up to 56.9%
Batching achieves up to 88.0% of link utilization

 0

 20

 40

 60

 80

 100

32 64 128 256 512

L
in

k
 u

ti
li

z
a

ti
o

n
 (

%
)

outstanding I/O requests

NoB

DyB

B-2

B-8

B-64

Read requests

 0

 20

 40

 60

 80

 100

32 64 128 256 512
L

in
k

 u
ti

li
z
a

ti
o

n
 (

%
)

outstanding I/O requests

NoB

DyB

B-2

B-8

B-64

Write requests

FIO, 4kB requests, 1, 2, . . . , and 128 threads, and 4 outstanding I/O per thread

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 23

Batching Requests/Responses (no data): Batch Level

Reads: batch level increases as number of requests does
Writes: batch level is kept constant up to more than 256 requests

 0

 20

 40

 60

 80

32 64 128 256 512

B
a

tc
h

 l
e

v
e

l

outstanding I/O requests

DyB B-2 B-8 B-64

Read requests

 0

 20

 40

 60

 80

32 64 128 256 512
B

a
tc

h
 l

e
v

e
l

outstanding I/O requests

DyB B-2 B-8 B-64

Write requests

FIO, 4kB requests, 1, 2, . . . , and 128 threads, and 4 outstanding I/O per thread

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 24

Mixed Request Sizes

32 threads issue 4kB, every 60s a new thread issues 128kB
Batching achieves up to 91.3% of link utilization

 0

 20

 40

 60

 80

 100

 0 60
 120

 180
 240

 300
 360

L
in

k
 u

ti
li

z
a

ti
o

n
 (

%
)

Time (s)

DyB NoB

Read requests

 0

 20

 40

 60

 80

 100

 0 60
 120

 180
 240

 300
 360

L
in

k
 u

ti
li

z
a

ti
o

n
 (

%
)

Time (s)

DyB NoB

Write requests

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 25

Conclusions

We analyze overhead of Tyche [MSST14]

CPU overhead is up to 65% of total overhead (including OS etc)

I/O protocol is up to 47% of total overhead (excluding OS etc)

At low concurrency: we reduce I/O protocol overhead by up to
61% via reducing context switches

At high concurrency: we improve link utilization by up to 57% via
adaptive batching

We achieve:
14µs overhead per I/O request, about 7µs on each of initiator/target
(excluding network link)

91% of theoretical maximum of link utilization: 287K out of 315K
IOPS on 10GigE

No hardware support required

Motivation Overhead Analysis Reducing Context Switches Adaptive Batching Conclusions 26

Reducing CPU and network overhead for small I/O
requests in network storage protocols over raw

Ethernet
Pilar González-Férez and Angelos Bilas
pilar@ditec.um.es bilas@ics.forth.gr

