
Improving Performance by Bridging the Semantic Gap
between Multi-queue SSD and I/O Virtualization Framework

Tae Yong Kim†*, Dong Hyun Kang†, Dongwoo Lee†, Young Ik Eom†

†Sungkyunkwan University, South Korea

*Samsung Electronics, South Korea

MSST 2015

2

Background

• Multi-queue SSD

Software Protocol
· NVM Express
· SCSI Express

PCI Express 3.0
· 8Gbps/lane
· Up to 16 Lanes
· Low latency

NVM Express
· 64K Queues
· 2K MSI-X Interrupts

Released Products
· Intel P3700/3600/3500
· Samsung XS1715/
 SM1715/SM951
· HGST SN100

High Performance
· Up to 750K IOPS
· UP to 3GB/s

3

Motivation (1/3)

• Problem in previous Linux block layer with multi-queue SSD

– Performance degradation on I/O scalability

– Lock contention problem due to a single request queue

– Proposed per core software queues (Updated in ver. 3.13)

※ M. Bjørling et al., “Linux block io: introducing multi-queue ssd access on multi-core systems” ,
SYSTOR, 2013

• I/O scalability issue in KVM/QEMU

– 4KB random read performance varying the number of I/O processes

– Severe performance gap: up to 74%

– Performance increasingly degraded

4

※ Host PC : Intel i7 3.5GHz * 4, 8GB RAM, Ubuntu 14.04 64bit(Kernel version 3.13)
※ VM : 8 vCPU, 8GB RAM, Ubuntu 14.04, QEMU 2.0.0, KVM Accel., Virtio-Blk-Data-Plane
※ Benchmark : FIO (Direct I/O, libaio : native async. I/O, Queue Depth : 32)

Motivation (2/3)

0K

100K

200K

300K

400K

500K

600K

700K

800K

1 2 3 4 5 6 7 8

IO
P

S

Number of I/O Processes

NVMe SSD 1.5TB

NVMe SSD 1.5TB
(VM)

SATA SSD 128GB

SATA SSD 128GB
(VM)

(bare-metal)

(bare-metal)

Performance Gap

Degradation

• KVM/QEMU

– Virtio-Blk-Data-Plane

• Para-virtualized I/O technique

– Layers & Data Structures

• Per-virtual-core threads

• Various I/O layers

• Numerous queues

• I/O thread

– Single Request queue

• Shared by all Virtual CPUs

• Frequent lock contentions

– Single I/O thread

• Executed by single core

• Significant bottleneck

5

 QEMU

Guest
 OS

 Kernel
 &
 KVM

Frontend
 Driver

Driver

Virtual CPU #0 Virtual CPU #1 Virtual CPU #2

Virtual CPU #3

I/O I/O I/O
I/O

VFS / File System /
 Block Layer / IO Scheduler

Single Request Queue

Backend
 Driver

Single I/O Thread

VFS / File System

Block
Layer

Software & Hardware Queues

Submission & Completion Queues

Device Controller

Motivation (3/3)

6

Architecture (1/5)

 (a) Virtio-Blk-Data-Plane (b) vCPU-dedicated queue

Virtual CPU Virtual CPU Virtual CPU Virtual CPU

Virtual CPU
Thread #1

Virtual CPU
Thread #4

Virtual CPU
Thread #1

Virtual CPU
Thread #4

I/O
Thread #1

Single
Request
Queue

vCPU-
dedicated
queues

QEMU QEMU

Kernel Kernel
Submit I/O

Software Queues
Submit I/O

I/O
Thread #1

Software Queues

• Virtio-Blk-Data-Plane (a)

– Single shared request queue

– Cause: Single global mutex

– Severe lock contentions among
vCPUs

– Wastes time for acquiring the lock

• vCPU-dedicated queue (b)

– Key: Dedicated request queue per
vCPU

– Minimizes the lock contentions

– Waiting time decreases
by up to 80%

• Single I/O thread (a)

– All I/O requests are inserted into
one queue in the host

– Cause: inefficient distribution
caused by the single I/O thread

– Disturbs I/O parallelism

• vCPU-dedicated I/O thread (b)

– Key: Dedicated I/O thread
per vCPU

– I/O threads are executed
by non-overlapping CPU core

– Improves I/O parallelism

7

Architecture (2/5)

 (b) vCPU-dedicated I/O thread

Virtual CPU Virtual CPU

Virtual CPU
Thread #1

Virtual CPU
Thread #4

I/O
Thread #1

I/O
Thread #4

I/O

I/O

vCPU-
dedicated
queues

QEMU

Kernel
Submit I/O

 (a) Single I/O thread

Virtual CPU Virtual CPU

Virtual CPU
Thread #1

Virtual CPU
Thread #4

Submit I/O

I/O
Thread #1

vCPU-
dedicated
queues

QEMU

Kernel

8

Architecture (3/5)

CPU Core#0 CPU Core#1 CPU Core#2

I/O thread #1 I/O thread #0

Steered
MSI-X

Interrupt

I/O completion

(b) I/O
pre-processing

I/O completion

MSI-x
Interrupt

I/O submission

(c) IPI

I/O submission

(a) (d)

Overall performance
was improved
by up to 10%

• Configuring CPU Affinity for I/O Completion

– MSI-X is useless in single I/O thread architecture

– Unnecessary context switches: (a) – (b) – (c)

– Assign a single non-overlapping CPU per I/O thread

– Improves cache hit rates and reduces scheduling overheads

9

Architecture (4/5)

CPU Core#0 CPU Core#2

I/O thread #1 I/O thread #0

Steered
MSI-X

Interrupt

I/O completion (b) I/O
pre-processing

I/O completion I/O submission

(c) IPI

I/O submission

(a) (d)

I/O Completion Path
has been shortened

• Eliminating Inter-process Interrupts (IPI)

– IPI steers I/O completion to the particular CPU

– IPI requires additional interrupt scheduling

– IPI can be entirely eliminated by steered MSI-X interrupt

10

Architecture (5/5)

 (b) vCPU-dedicated I/O thread

I/O
Thread #1

I/O
Thread #2

QEMU

Kernel

Submit I/O

 (a) Single I/O thread

Submit I/O

I/O
Thread #1

QEMU

Kernel

Mode Switch

I/O
Thread #3

• I/O batch submission technique

– batches all I/O request and submits through one system call

• Workload-aware I/O batch submission

– vCPU-dedicated I/O threads pollute the existing technique

– Estimates intensiveness of the I/O workloads by the history

– Waits for time to batch more, if intensive

Experiment (1/5)

• Experimental Group

• Experimental Setup

• FIO benchmark for I/O workload

Denotation Features Information

Baseline Single queue, Single I/O thread Unmodified QEMU 2.1.2

MQ Multi-queue, Single I/O thread Previous work by Ming Lei※

MIOT vCPU-dedicated queues and I/O threads Our approach

Setup Contents

Host Machine Intel i7-2600 quad-core CPU 3.40GHz, 16GB RAM

Target Device Null block device, Samsung XS1715 1.5TB

Guest Machine 8 Virtual CPUs, 14GB RAM, Virtio-Blk-Data-Plane

FIO Contents

Workload 4KB random read, 4KB random write, 32KB seq. read, 32KB seq. write

Config. libaio, I/O depth: 32, non-cache mode, I/O processes: 1-8, 1GB data

※ Ming Lei, “Virtio blk multi-queue conversions” , KVM Forum, 2014

0K

50K

100K

150K

200K

250K

300K

350K

400K

450K

1 2 3 4

4
K

B
 R

a
n

d
o

m
 R

e
a

d
 (

IO
P

S
)

Number of I/O Processes

1 I/O Thread

2 I/O Threads

3 I/O Threads

4 I/O Threads

Experiment (2/5)

More I/O threads obviously contribute to higher performance

• Impact of the Number of I/O Threads

– Single VM with 4 virtual CPUs and 4 request queues

– I/O threads is varied from 1 to 4

– Specifying a non-overlapping CPU affinity for each I/O thread

53.2

36.7

12.2

21.1

0

10

20

30

40

50

60

Baseline MQ MIOT-1 MIOT

N
u

m
b

e
r

o
f

I/
O

 R
e

q
u

e
s
ts

MIOT-v

Experiment (3/5)

※ MIOT-v: MIOT without the Workload-aware I/O batch submission technique

72%
-77%

• Effect of Workload-aware I/O batch submission

– Measure the number of I/O requests per system call

– MIOT-v degraded the number of I/O request up to 77%

– MIOT improves it up to 72% compared to MIOT-v

The overall performance was improved by up to 10%

0K
50K

100K
150K
200K
250K
300K
350K
400K
450K
500K

1 2 3 4 5 6 7 8

IO
P

S

Number of I/O Processes
(a) IOPS

0

500

1,000

1,500

2,000

2,500

3,000

1 2 3 4 5 6 7 8

M
ic

ro
s
e

c
o

n
d

s

Number of I/O Processes
(b) Latency

0K

5K

10K

15K

20K

25K

30K

35K

1 2 3 4 5 6 7 8

N
u

m
b

e
r

o
f

C
o

n
te

x
t

S
w

it
c
h

e
s

Number of I/O Processes
(c) Context Switch

Experiment (4/5)

※ MIOT-w: MIOT without optimizations
※ MIOT-v: MIOT without Workload-aware I/O batch submission

• Analysis of the Effect of Three Optimizations

– Measure IOPS, latency, and the number of context switches

– Through 4KB random read of FIO microbenchmark

– Each optimization has a positive impact on IOPS

The excessive context switches are the major cause of
 performance degradation

0

200

400

600

800

1,000

M

5M

10M

15M

20M

Baseline MQ MIOT-1 MIOT-1 MIOT Polling

T
im

e
 (

s
)

N
u

m
b

e
r

o
f

e
x

it
s

I/O_INSTRUCTION
(IO_INST)
MSR_WRITE

HLT

PENDING_INTERRUPT

EXTERNAL_INTERRUPT
(EXT_INT)
CR_ACCESS

ETC

Total Events Handled
Time

Experiment (5/5)

MIOT-v MIOT-w MIOT-p

Total Time for
Handling Events

※ MIOT-w: MIOT without optimizations
※ MIOT-v: MIOT without Workload-aware I/O batch submission
※ MIOT-p: MIOT with polling mechanism

-17%

45% decrease of the number of exits by our approach

• Analysis of the Effect of Three Optimizations

– Measure the number of exits and total time for handling events through perf

– The number of exits is mostly proportional to the total time

– But not absolute in all cases such as MQ and MIOT-p

0K

50K

100K

150K

200K

250K

300K

350K

400K

450K

500K

1 2 3 4 5 6 7 8

IO
P

S

Number of I/O Processes

(a) 4KB Random Read

0K

50K

100K

150K

200K

250K

300K

350K

400K

1 2 3 4 5 6 7 8

IO
P

S

Number of I/O Processes

(b) 4KB Random Write

Evaluation (1/4)

• IOPS on Null Block Device

– Both IOPS of Baseline were gradually decreased

– Both IOPS of MQ were limited and still have I/O scalability issue

– MIOT achieved up to 440K / 350K IOPS (Random read / Random write)

MIOT improved IOPS by up to 2.67x compared to Baseline
by up to 38% compared to MQ

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(M

B
/
s
)

Number of I/O Processes

(c) 32KB Sequential Read

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(M

B
/
s
)

Number of I/O Processes

(d) 32KB Sequential Write

Evaluation (2/4)

• Throughput on Null Block Device

– Seq. read throughput of Baseline was gradually decreased

– The throughput of MQ on seq. read achieved little improvement

– MIOT reached up to 9800 MB/s / 9200 MB/s (Seq. read / Seq. write)

MIOT improved throughput by up to 2.32x compared to Baseline
by up to 77% compared to MQ

Evaluation (3/4)

0K

50K

100K

150K

200K

250K

300K

350K

400K

450K

500K

1 2 3 4 5 6 7 8

IO
P

S

Number of I/O Processes

(a) 4KB Random Read

0K

50K

100K

150K

200K

250K

300K

350K

1 2 3 4 5 6 7 8

IO
P

S

Number of I/O Processes

(b) 4KB Random Write

MIOT improved IOPS by up to 2.87x compared to Baseline
by up to 42% compared to MQ

• IOPS on NVMe SSD

– Both IOPS of Baseline were gradually decreased

– IOPS on random write is limited by native IOPS (350K IOPS) of the SSD

– MIOT achieved up to 460K / 300K IOPS (Random read / Random write)

Evaluation (4/4)

2,400

2,450

2,500

2,550

2,600

2,650

2,700

2,750

2,800

2,850

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(M

B
/
s
)

Number of I/O Processes

(c) 32KB Sequential Read

1,260

1,270

1,280

1,290

1,300

1,310

1,320

1,330

1,340

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(M

B
/
s
)

Number of I/O Processes

(d) 32KB Sequential Write

• Throughput on NVMe SSD

– All throughput is limited by native performance (3000 MB/s, 1400 MB/s)

– MIOT gained little achievement in Sequential workloads

– MIOT reached up to 2800 MB/s / 1300 MB/s (Seq. read / Seq. write)

The throughput improvements are now concealed on the NVMe SSD

Conclusion

Analysis

Guest machines suffered from lock
contentions and parallelism issue

Motivation

Existing QEMU cannot guarantee
the performance of guest machines
when a multi-queue SSD is used

Evaluation

IOPS performance was significantly
improved by up to 2.67x, and the
throughput was enhanced by up to
132%

Solution

We proposed a novel approach, the
design of vCPU-dedicated queues
and I/O threads with three
optimizations

Thank you!

Questions?

stthlseo

