Improving Performance by Bridging the Semantic Gap
between Multi-queue SSD and I/0 Virtualization Framework

~

Tae Yong Kim™, Dong Hyun Kang', Dongwoo Lee', Young Ik Eom’

fSungkyunkwan University, South Korea
*Samsung Electronics, South Korea

. MSST 2015 .
. A— -

Background

« Multi-queue SSD

* 8Gbps/lane * NVM Express

* Up to 16 Lanes + SCSI Express
 Low latency N /

NVM Express
* 64K Queues

* 2K MSI-X Interrupts

—

* Up to 750K IOPS * Intel P3700/3600/3500
* UP to 3GB/s * Samsung XS1715/
SM1715/SM951
* HGST SN100

Motivation (1/3)

« Problem in previous Linux block layer with multi-queue SSD
— Performance degradation on I/O scalability
— Lock contention problem due to a single request queue
— Proposed per core software queues (Updated in ver. 3.13)

ol Per-core

12V Per-node
7.5M
5SM ® o~

2.5Mz 7\
0

10 20 30 40 50 60 70 80
Number of Cores

% M. Bjerling et al., “Linux block io: introducing multi-queue ssd access on multi-core systems”,
SYSTOR, 2013

Motivation (2/3)

« I/O scalability issue in KVM/QEMU
— 4KB random read performance varying the number of I/O processes
— Severe performance gap: up to 74%
— Performance increasingly degraded

800K
—{~NVMe SSD 1.5TB
700K (bare-metal)

600K =0-NVMe SSD 1.5TB
500K (VM)

=»=SATA SSD 128GB
400K (bare-metal)
300K

SATA SSD 128GB
200K (VM)

OK

Number of I/0 Processes

3% Host PC : Intel i7 3.5GHz * 4, 8GB RAM, Ubuntu 14.04 64bit(Kernel version 3.13)
¥ VM : 8 vCPU, 8GB RAM, Ubuntu 14.04, QEMU 2.0.0, KVM Accel., Virtio-Blk-Data-Plane
3% Benchmark : FIO (Direct I/O, libaio : native async. I/O, Queue Depth : 32)

Motivation (3/3)

KVM/QEMU
— Virtio-Blk-Data-Plane
« Para-virtualized I/0 technique
Layers & Data Structures
 Per-virtual-core threads
« Various I/O layers
» Numerous queues
» I/O thread
Single Request queue
» Shared by all Virtual CPUs
* Frequent lock contentions
Single I/O thread
» Executed by single core
» Significant bottleneck

Virtual CPU #0

1/8\‘ v/(/'o /O

Virtual CPU #1

Virtual CPU #2
Virtual CPU #3

Ao

VFS / File System /
Block Layer / I0 Scheduler

Frontend
Driver

@ Single Request Queue

Backend

Driver Single I/O Thread

VFS / File System

Block
Layer

Driver

\

Device

Controller

Architecture (1/5)

« Virtio-Blk-Data-Plane (a)

Single shared request queue
Cause: Single global mutex

Severe lock contentions among
vCPUs

Wastes time for acquiring the lock

- vCPU-dedicated queue (b)

Key: Dedicated request queue per
vCPU

Minimizes the lock contentions

Waiting time decreases
by up to 80%

N

p
Virtual CPU][Virtual CPU
Virtual CPU][Virtual CPU

Thread #4

|

Thread #1

\\

Single
Request
Queus

1/0
Thread #1

QEMU
J

~N

[Virtual CPU][Virtual CPUJJ

Virtual CPU Virtual CPU
Thread #1 Thread #4

QEMU
y,

/

Kernel

Submit 1/0
Software Queues

Submit 1/0 Kernel

Software Queues

000

!

(a) Virtio-Blk-Data-Plane

(b) vCPU-dedicated queue

Architecture (2/5)

« Single I/0 thread (a)

All I/O requests are inserted into
one queue in the host

Cause: inefficient distribution
caused by the single 1/O thread

Disturbs I/O parallelism

« vCPU-dedicated I/0 thread (b)

Key: Dedicated I/O thread
per vCPU

I/0 threads are executed
by non-overlapping CPU core

Improves I/O parallelism

~N

[Virtual CPU [Virtual CPU

Virtual CPU
Thread #4

Virtual CPU
Thread #1

Thread #1

~N

Thread #1 Thread #4

[Virtual CPU][Virtual CPUJJ

[Virtual CPU Virtual CPU

vCPU-
dedicated
queues
v v

1/0 1/0

1/0
Thread #1

[\
I

1/0
Thread #4

1\
I

%4

/

-
e
\

Kernel

D00

Subnijit 1/0

(a) Single I/0 thread

(b) vCPU-dedicated I/0 thread

Architecture (3/5)

« Configuring CPU Affinity for I/0 Completion
MSI-X is useless in single I/O thread architecture
Unnecessary context switches: (a) — (b) — (¢)
Assign a single non-overlapping CPU per I/0 thread
Improves cache hit rates and reduces scheduling overheads

CPU Core#0

CPU Core#1

CPU Core#2

(a) l

I/O thread #0

MSI-x
Interrupt (b)I/0
pre-processing

(c) IPI

I/O completion

I/O submission

d 1

I/O thread #1

:\ Steered
MSI-X

|

|

Interrupt

I/0 completion

I/O submission

Architecture (4/5)

« Eliminating Inter-process Interrupts (IPI)
— IPI steers I/O completion to the particular CPU
— IPI requires additional interrupt scheduling
— IPI can be entirely eliminated by steered MSI-X interrupt

CPU Core#0 CPU Core#2
| |

(a) | (d) |

I/O thread #0 I/0 thread #1

N Steered
MSI-X

Interrupt

(b)1I/0
pre-processing

(c) IPI

I/O completion

I/O completion 1/O submission

I/O submission

Architecture (5/5)

« I/0 batch submission technique
— batches all I/O request and submits through one system call
« Workload-aware I/0 batch submission
— VCPU-dedicated I/0O threads pollute the existing technique
— Estimates intensiveness of the I/O workloads by the history
— Waits for time to batch more, if intensive

QEMU

Thread #2 1/0
Thread #3
Thread #1 1/0

Submit I/0

Submit I/0

Mode Switch /

\ e Switch_
@ Kernel @

(a) Single I/0 thread (b) vCPU-dedicated I/0 thread

Experiment (1/5)

- Experimental Group

Baseline Single queue, Single I/O thread Unmodified QEMU 2.1.2
MQ Multi-queue, Single I/O thread Previous work by Ming Lei*

MIOT vCPU-dedicated queues and I/O threads Our approach
3% Ming Lei, “Virtio blk multi-queue conversions” , KVM Forum, 2014

» Experimental Setup

Setup Contents

Host Machine Intel i7-2600 quad-core CPU 3.40GHz, 16GB RAM
Target Device Null block device, Samsung XS1715 1.5TB
Guest Machine 8 Virtual CPUs, 14GB RAM, Virtio-Blk-Data-Plane

 FIO benchmark for I/0 workload

Workload 4KB random read, 4KB random write, 32KB seq. read, 32KB seq. write
Config. libaio, 1/0 depth: 32, non-cache mode, I/O processes: 1-8, 1GB data

Experiment (2/5)

« Impact of the Number of I/0 Threads
— Single VM with 4 virtual CPUs and 4 request queues
— I/O threads is varied from 1 to 4
— Specifying a non-overlapping CPU affinity for each I/O thread

More I/O threads obviously contribute to higher performance

450K
400K
350K
300K

250K |
i e |
2

1 I/O Thread
E 2 I/O Threads
3 I/O Threads

.-—‘“‘-‘
I 4 1/0 Threads
3 4

Number of I/0 Processes

150K
100K
50K
0K

4KB Random Read (IOPS)

1

Experiment (3/5)

- Effect of Workload-aware 1I/0 batch submission
— Measure the number of I/0O requests per system call
— MIOT-v degraded the number of I/O request up to 77%
— MIQOT improves it up to 72% compared to MIOT-v

The overall performance was improved by up te 10%

36:7

Number of I/0 Requests

Baseline MQ MIOT-v MIOT
X MIOT-v: MIOT without the Workload-aware /O batch submission technique

Experiment (4/5)

- Analysis of the Effect of Three Optimizations
— Measure IOPS, latency, and the number of context switches
— Through 4KB random read of FIO microbenchmark
— Each optimization has a positive impact on IOPS

The excessive context switches are the major cause of

performance degradation

——Baseline MQ —=—MIOT-w MIOT-v

500K 3,000
450K

400K ©2,500
350K e
¢ 300K S 2,000

O 250K @ 1,500
= 200K o

150K ' G 1,000
100K s

cOK 500

0K 0

123456738 12345678 123 456 78
Number of I/0 Processes Number of I/0 Processes Number of I/0 Processes
(a) IOPS (b) Latency (c) Context Switch

X MIOT-w: MIOT without optimizations
¥ MIOT-v: MIOT without Workload-aware /O batch submission

£
o
—

Switches

Number of Context

Experiment (5/5)

- Analysis of the Effect of Three Optimizations
— Measure the number of exits and total time for handling events through perf
— The number of exits is mostly proportional to the total time
— But not absolute in all cases such as MQ and MIOT-p

5% decrease of the number: of exits by our approach

I/O_INSTRUCTION

1,000 (IO_INST)
mmmm MSR_WRITE

800 HLT
PENDING_INTERRUPT

—
ul
<

600
mmmm EXTERNAL_INTERRUPT

(EXT_INT)
400 CR_ACCESS

ETC

Number of exits
—

(0] o

= =

200
Total Time for

Handling Events

. 0
Baseline MQ MIOT-w MIOT-v MIOT MIOT-p

¥ MIOT-w: MIOT without optimizations
X MIOT-v: MIOT without Workload-aware 1/0O batch submission
X MIOT-p: MIOT with polling mechanism

Evaluation (1/4)

« IOPS on Null Block Device

— Both IOPS of Baseline were gradually decreased
— Both IOPS of MQ were limited and still have I/O scalability issue
— MIOT achieved up to 440K / 350K IOPS (Random read / Random write)

MIOT improved IOPS by up to 2.67Xx compared to Baseline
py up tor 38% compared to MQ

—3é— Baseline MQ == MIOT
400K
350K
300K
250K

a

O 200K

=
150K
100K

50K

0K
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of I/0 Processes Number of I/0 Processes
(a) 4KB Random Read (b) 4KB Random Write

Evaluation (2/4)

« Throughput on Null Block Device
— Seq. read throughput of Baseline was gradually decreased
— The throughput of MQ on seq. read achieved little improvement
— MIQOT reached up to 9800 MB/s / 9200 MB/s (Seq. read / Seq. write)

MIOT improved throughput by up to 2.32x compared to Baseline
py up to 77% compared to MQ

—3é— Baseline MQ == MIOT
] 10,000
9,000

~ 8,000

7,000 / TN~

6,000
5,000
4,000
3,000
2,000
1,000

0

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of I/0 Processes Number of I/0 Processes
(c) 32KB Sequential Read (d) 32KB Sequential Write

ek

Throughput (MB/s

Evaluation (3/4)

« IOPS on NVMe SSD

— Both IOPS of Baseline were gradually decreased
— IOPS on random write is limited by native IOPS (350K IOPS) of the SSD
— MIOT achieved up to 460K / 300K IOPS (Random read / Random write)

MIOT improved IOPS by up to 2.87Xx compared to Baseline
py up tor 42% compared to MQ

—3é— Baseline MQ == MIOT

350K
300K
250K
(n200K M
Se—x

S 150k

100K
50K

0K
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of I/0 Processes Number of I/0 Processes
(a) 4KB Random Read (b) 4KB Random Write

Evaluation (4/4)

« Throughput on NVMe SSD

— All throughput is limited by native performance (3000 MB/s, 1400 MB/s)
— MIOT gained little achievement in Sequential workloads
— MIQOT reached up to 2800 MB/s / 1300 MB/s (Seq. read / Seq. write)

Tne througnput Improvements are now concealed on the NVMe SSD

36— Baseline

3 4 5 6 7 8
Number of I/0 Processes
(c) 32KB Sequential Read

MQ

1,340
1,330

1320
4]

1,310
1,300
1,290
1,280
1,270
1,260

== MIOT

1 2 3 4 5 6 7 8
Number of I/0 Processes
(d) 32KB Sequential Write

Conclusion

>

Existing QEMU cannot guarantee
the performance of guest machines

when a multi-queue SSD is used 4

Guest machines suffered from lock

We proposed a novel approach, the

design of vCPU-dedicated queues

and I/0 threads with three

optimizations 4

IOPS performance was significantly
improved by up to 2.67x, and the
throughput was enhanced by up to
132%

Thank you!

