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Background 

• Multi-queue SSD 

Software Protocol 
· NVM Express 
· SCSI Express 

PCI Express 3.0 
· 8Gbps/lane 
· Up to 16 Lanes 
· Low latency 

NVM Express 
· 64K Queues 
· 2K MSI-X Interrupts 

Released Products 
· Intel P3700/3600/3500 
· Samsung XS1715/ 
  SM1715/SM951 
· HGST SN100 

High Performance 
· Up to 750K IOPS 
· UP to 3GB/s 
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Motivation (1/3) 

• Problem in previous Linux block layer with multi-queue SSD 

– Performance degradation on I/O scalability 

– Lock contention problem due to a single request queue 

– Proposed per core software queues (Updated in ver. 3.13) 

※ M. Bjørling et al., “Linux block io: introducing multi-queue ssd access on multi-core systems” , 
SYSTOR, 2013 



• I/O scalability issue in KVM/QEMU 

– 4KB random read performance varying the number of I/O processes 

– Severe performance gap: up to 74% 

– Performance increasingly degraded 
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※ Host PC : Intel i7 3.5GHz * 4, 8GB RAM, Ubuntu 14.04 64bit(Kernel version 3.13) 
※ VM : 8 vCPU, 8GB RAM, Ubuntu 14.04, QEMU 2.0.0, KVM Accel., Virtio-Blk-Data-Plane 
※ Benchmark : FIO (Direct I/O, libaio : native async. I/O, Queue Depth : 32) 

Motivation (2/3) 
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• KVM/QEMU 

– Virtio-Blk-Data-Plane 

• Para-virtualized I/O technique 

– Layers & Data Structures 

• Per-virtual-core threads 

• Various I/O layers 

• Numerous queues 

• I/O thread 

– Single Request queue 

• Shared by all Virtual CPUs 

• Frequent lock contentions 

– Single I/O thread 

• Executed by single core 

• Significant bottleneck  
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Motivation (3/3) 
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Architecture (1/5) 
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• Virtio-Blk-Data-Plane (a) 

– Single shared request queue 

– Cause: Single global mutex 

– Severe lock contentions among 
vCPUs 

– Wastes time for acquiring the lock 

 

 

• vCPU-dedicated queue (b) 

– Key: Dedicated request queue per 
vCPU 

– Minimizes the lock contentions 

– Waiting time decreases 
by up to 80% 

 



• Single I/O thread (a) 

– All I/O requests are inserted into 
one queue in the host 

– Cause: inefficient distribution 
caused by the single I/O thread 

– Disturbs I/O parallelism 

 

• vCPU-dedicated I/O thread (b) 

– Key: Dedicated I/O thread 
per vCPU 

– I/O threads are executed 
by non-overlapping CPU core 

– Improves I/O parallelism 
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Architecture (2/5) 
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Architecture (3/5) 
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Overall performance 
was improved  
by up to 10% 

• Configuring CPU Affinity for I/O Completion 

– MSI-X is useless in single I/O thread architecture 

– Unnecessary context switches: (a) – (b) – (c) 

– Assign a single non-overlapping CPU per I/O thread 

– Improves cache hit rates and reduces scheduling overheads 
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Architecture (4/5) 
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I/O Completion Path 
has been shortened 

• Eliminating Inter-process Interrupts (IPI) 

– IPI steers I/O completion to the particular CPU 

– IPI requires additional interrupt scheduling 

– IPI can be entirely eliminated by steered MSI-X interrupt 
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Architecture (5/5) 
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• I/O batch submission technique 

– batches all I/O request and submits through one system call 

• Workload-aware I/O batch submission 

– vCPU-dedicated I/O threads pollute the existing technique 

– Estimates intensiveness of the I/O workloads by the history 

– Waits for time to batch more, if intensive 



Experiment (1/5) 

• Experimental Group 

• Experimental Setup 

• FIO benchmark for I/O workload 

Denotation Features Information 

Baseline Single queue, Single I/O thread Unmodified QEMU 2.1.2 

MQ Multi-queue, Single I/O thread Previous work by Ming Lei※ 

MIOT vCPU-dedicated queues and I/O threads Our approach 

Setup Contents 

Host Machine Intel i7-2600 quad-core CPU 3.40GHz, 16GB RAM 

Target Device Null block device, Samsung XS1715 1.5TB 

Guest Machine 8 Virtual CPUs, 14GB RAM, Virtio-Blk-Data-Plane 

FIO Contents 

Workload 4KB random read, 4KB random write, 32KB seq. read, 32KB seq. write 

Config. libaio, I/O depth: 32, non-cache mode, I/O processes: 1-8, 1GB data 

※ Ming Lei, “Virtio blk multi-queue conversions” , KVM Forum, 2014 
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Experiment (2/5) 

More I/O threads obviously contribute to higher performance  

• Impact of the Number of I/O Threads 

– Single VM with 4 virtual CPUs and 4 request queues 

– I/O threads is varied from 1 to 4 

– Specifying a non-overlapping CPU affinity for each I/O thread 
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Experiment (3/5) 

※ MIOT-v: MIOT without the Workload-aware I/O batch submission technique 

72% 
-77% 

• Effect of Workload-aware I/O batch submission 

– Measure the number of I/O requests per system call 

– MIOT-v degraded the number of I/O request up to 77% 

– MIOT improves it up to 72% compared to MIOT-v 

The overall performance was improved by up to 10% 
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Experiment (4/5) 

※ MIOT-w: MIOT without optimizations 
※ MIOT-v: MIOT without Workload-aware I/O batch submission 

• Analysis of the Effect of Three Optimizations 

– Measure IOPS, latency, and the number of context switches 

– Through 4KB random read of FIO microbenchmark 

– Each optimization has a positive impact on IOPS 

The excessive context switches are the major cause of 
 performance degradation 
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MIOT-v MIOT-w MIOT-p 

Total Time for 
Handling Events 
 

※ MIOT-w: MIOT without optimizations 
※ MIOT-v: MIOT without Workload-aware I/O batch submission 
※ MIOT-p: MIOT with polling mechanism 

-17% 

45% decrease of the number of exits  by our approach 

• Analysis of the Effect of Three Optimizations 

– Measure the number of exits and total time for handling events through perf 

– The number of exits is mostly proportional to the total time 

– But not absolute in all cases such as MQ and MIOT-p 



0K

50K

100K

150K

200K

250K

300K

350K

400K

450K

500K

1 2 3 4 5 6 7 8

IO
P

S
 

Number of I/O Processes 

(a) 4KB Random Read 
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(b) 4KB Random Write 

Evaluation (1/4) 

• IOPS on Null Block Device 

– Both IOPS of Baseline were gradually decreased 

– Both IOPS of MQ were limited and still have I/O scalability issue 

– MIOT achieved up to 440K / 350K IOPS (Random read / Random write) 

MIOT improved IOPS by up to 2.67x compared to Baseline 
by up to  38% compared to MQ 
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(d) 32KB Sequential Write 

Evaluation (2/4) 

• Throughput on Null Block Device 

– Seq. read throughput of Baseline was gradually decreased 

– The throughput of MQ on seq. read achieved little improvement 

– MIOT reached up to 9800 MB/s / 9200 MB/s (Seq. read / Seq. write) 

MIOT improved throughput by up to 2.32x compared to Baseline 
by up to  77% compared to MQ 



Evaluation (3/4) 
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(a) 4KB Random Read 
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(b) 4KB Random Write 

MIOT improved IOPS by up to 2.87x compared to Baseline 
by up to  42% compared to MQ 

• IOPS on NVMe SSD 

– Both IOPS of Baseline were gradually decreased 

– IOPS on random write is limited by native IOPS (350K IOPS)  of the SSD 

– MIOT achieved up to 460K / 300K IOPS (Random read / Random write) 



Evaluation (4/4) 
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(d) 32KB Sequential Write 

• Throughput on NVMe SSD 

– All throughput is limited by native performance (3000 MB/s, 1400 MB/s) 

– MIOT gained little achievement in Sequential workloads 

– MIOT reached up to 2800 MB/s / 1300 MB/s (Seq. read / Seq. write) 

 

The throughput improvements are now concealed on the NVMe SSD 



Conclusion 

Analysis 

Guest machines suffered from lock 
contentions and parallelism issue 

Motivation 

Existing QEMU cannot guarantee 
the performance of guest machines 
when a multi-queue SSD is used 
 

Evaluation 

IOPS performance was significantly 
improved by up to 2.67x, and the 
throughput was enhanced by up to 
132% 
 

Solution 

We proposed a novel approach, the 
design of vCPU-dedicated queues 
and I/O threads with three 
optimizations 



Thank you! 
 

Questions? 

stthlseo 


