A Report on the FAST 2015 Storage Conference

André Brinkmann Johannes Gutenberg University Mainz

Some Statistics ...

- Santa Clara has the highest density of (important) storage conferences in the world
- FAST conference takes four days to cover huge set of storage related topics

Some Statistics ...

- 26 Full papers at FAST conference
 - 6 papers on Flash
 - 2 papers on NVRAM
 - 2 papers on Magnetic Disks
 - 1 paper on Tape / Archiving

Some Statistics ...

- 26 Full papers at FAST conference
 - 2 papers including Wide Area Networks
 - 2 papers on storage for mobile devices
 - 0 papers on parallel file systems
 - 0 papers on transactional memory

Selected Papers

- Skylight A Window on Shingled Disk Operation (Abutalib Aghayev, Peter Desnoyers)
- How Much Can Data Compressibility Help to Improve NAND Flash Memory Lifetime? (Jiangpeng Li, Kai Zhao, Xuebin Zhang, Jun Ma, Ming Zhao, Tong Zhang)
- RAIDShield: Characterizing, Monitoring, and Proactively Protecting Against Disk Failures (Ao Ma, Fred Douglis, Guanlin Lu, Darren Sawyer, Surendar Chandra, Windsor Hsu)

Selected Papers

- SDGen: Mimicking Datasets for Content Generation in Storage Benchmarks (Raúl Gracia-Tinedo, Danny Harnik, Dalit Naor, Dmitry Sotnikov, Sivan Toledo, Aviad Zuck)
- Write Once, Get 50% Free: Saving SSD Erase Costs Using WOM Codes (Gala Yadgar, Eitan Yaakobi, Assaf Schuster)

Skylight

Software part:

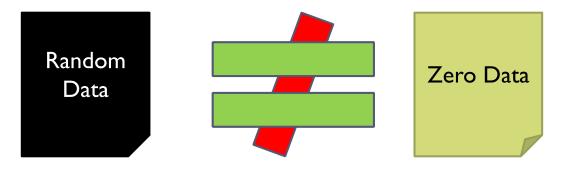
- Launch crafted I/O operations using fio
- Disable kernel read-ahead, drive lookahead, on-board volatile cache
- Use latency to infer drive properties

Hardware part:

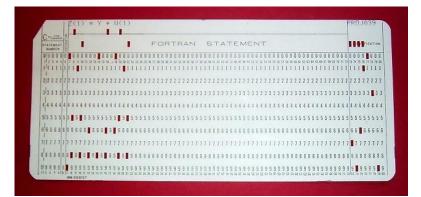
- Install a transparent window on the drive
- Track the head movements using a high-speed camera
- Convert movements to head position graphs

Data Compressibility to Improve NAND Flash Memory Lifetime

Data compressibility : $\alpha \mathbf{P}$ Lifetime extends: $1/\alpha$ Unused space in one NAND Flash page One sector data Physical NAND Flash page data compression Unused space Minimize{damage} **3** Impact of compression ratio variance Compressed data used space Type-III Lower page -wordline Upper page Type-I Type-II uncompressed data MLC NAND Flash wordline compressed data


RAID Shield

- Analyzed 1 million SATA disks and revealed
 - Failure modes degrading RAID reliability
 - Reallocated sectors reflect disk reliability deterioration
 - Disk failure is predictable
- Built RAIDSHIELD, an active defense mechanism
 Reconstruct failing disk before it's too late!
- PLATE: single-disk proactive protection
 Deployment eliminates 70% of RAID failures
- ARMOR: disk group proactive protection


 Recognize vulnerable RAID groups

SDGen -Stones in the backpack!!! Just thin air \bigcirc

Write Once, Get 50% Free

data	1 st write	2 nd write
00	000	111
10	100	011
01	010	101
11	(001)	110

(Rivest and Shamir, 1982)

- $0 \rightarrow 1 bu \ 1 \not\rightarrow 0 t$
- WOM Code: write *n* bits of information on *m* cells, *n>m*

0

0

1

• Example: write 11 and then write 01

0

- Normally:
- WOM code: