
Network Security

with High Performance Storage

for Big Data & HPC Applications

Kevin Deierling

Mellanox Technologies

Agenda

• Data Center Evolution

• Virtualization, MLS, Multi-Host

• User Space I/O, Virtualization, & RDMA

• SELinux Networking

• Securing RDMA

– InfiniBand & RoCE in SELinux environment

Massive, High Performance MLS Storage

• Scalable storage for HPC & Big Data

• High Performance Lustre w (RDMA)

• Secure, integrated, scale out parallel file system

• Requires holistic security across OS, Network & Storage

Multiple

Security

Levels

ClusterStor

Secure
Storage

Appliance

Virtualization & Security

• Virtualization, MLS, & user space I/O creates new
security concerns

– VM Hypervisors, containers

– I/O virtualization: Needed for performance

• Hardware offload actually helps security

– Embedded offloads

• Hardware monitors & enforces policies set by secure SELinux
processes

– Secure user space I/O needs

• Secure hardware configuration to implement policy

• Hardware memory translation and protection enforcement!

Efficient Data Movement

• Efficient Data Movement
– Advanced Flow Steering Engine

– Virtual network acceleration (VXLAN, NVGRE, GENEVE)

– RDMA – Efficient Data Exchange - Low Latency, Low CPU Overhead

Efficient Data Movement

With RDMA
Partitions for

Multi-Level Security

Hardware

Flow Steering

MLS Partitions
VM

CPU CPU CPU CPU

VM VMVM VMVM

RDMA: Critical for Performance

* RDMA over Converged Ethernet

ZERO Copy Remote Data Transfer

Low Latency, High Performance Data Transfers

InfiniBand - 100Gb/s RoCE* – 100Gb/s

Kernel Bypass Protocol Offload

Application ApplicationUSER

KERNEL

HARDWARE

Buffer Buffer

User space I/O needs hardware memory protection!

Introduction

• SELinux is a Mandatory Access Control (MAC) scheme for Linux
– Central policy is loaded upfront into the kernel

– Applications cannot override or modify this policy

• Benefits
– Differentiate a user from the applications that the user runs

– Restrict application access only to what is required to perform its task

– Allow granular policy segregation

– Example
• Run 2 instances of a Web Server: “top-secret” and “standard”

• Each server can only
– Receive traffic from specific network interfaces

– Open sockets on specific ports

– Serve files from specific directories

– Communicate only with specific peer addresses

• Type enforcement is the main security mechanism used by SELinux

Type Enforcement (TE)

• Applies to all user-visible kernel entities
– E.g., processes, files, IPC objects, sockets

• Each entity is associated with:
– A security descriptor

• Assigned upon creation, modified based on policy

– A class and a set of operations
• Stems from the type of object

• E,g., a socket can send() and recv()

• TE defines what a <subject> can do on an <object> based on their security
descriptors

– Specified by a policy of access rules, enforced when accesses are made

• Security descriptors
– Identify the user, role, type, and optionally security level+class of an object

– Specified by a variable-length string: “user:role:type[:level]”

• Policy rules
– Specify which source tag can access which target tag and for what operations

• E.g., “allow source_t target_t:class { [op1] [op2] … }”

– Typically, only the ‘type’ (a.k.a ‘Domain’) portion of the tag is mentioned

Fundamental RDMA SELinux Support

• RDMA network security shall be based on partitioning
– Host kernels control the association of P_Key values with

security descriptors

• Object labeling
– Each QP shall be associated with a security descriptor

• Inherited by the creating process in the absence of a specific policy

– Each RDMA_ID shall be associated with a security descriptor
• Inherited by the creating process in the absence of a specific policy

– P_Key value labeling
• Associates a P_Key value with a security descriptor

• System object descriptors are a good example (like network interfaces
or nodes)

– “system_u:object_r:rdma_partition_default_t”

– “system_u:object_r:rdma_partition_topsecret_t”

Fundamental RDMA SELinux Support (cont.)

• Traffic labeling
– Uses network labeling (labels are carried on the wire)

– P_Key values are used as the network label

• Policies
– Allow a QP or RDMA_ID to be associated with a P_Key value

– Example: “allow hpc_default_t rdma_partition_default_t : rdma_partition { modify }”, where
• ‘hpc_default_t’ is the QP / RDMA_ID domain (type) inherited from the creating process

• ‘rdma_partition_default_t’ is a partition security descriptor domain

• ‘rdma_partition’ indicates that the subject is of partition type

• ‘modify’ indicates that the QP is allowed to modify to reference the corresponding partition tag

• Enforcement
– QP partitioning is enforced at all times

• Upon creation, a violation shall result in an immediate error

• At runtime, any violation due to policy or P_Key value changes shall transition the QP into error

– RDMA-ID
• All ingress/egress CM MADs shall be checked according to the partition policy

• Any violation shall result in an immediate packet drop

Thank You!

Questions

Data Center Evolution Over Time

Multi-Core

Multi-Host

Multi-Server

Source: KPCB, IDC

A Digital Data Explosion
Global digital information created & shared

Changing Traffic Patterns Requires Data Center

Change

Web Server

App Server

Database

Traditional 3-Tier

Data Center

Storage

Data center

East-west traffic 70%North-south traffic 80%

North-south traffic: Data
forwarded between external
users and internal servers.
Typically data flows through
the 3-tier architecture

East-west traffic: data
forwarded between
internal servers of the
data center.

Data center
Data center

New Storage Media Creates Network Bottlenecks

Faster Networking, Protocol Offloads, & Bypass Required to Match NVM Performance

0.1

10

1000

HD SSD NVM

A
c

c
e

s
s

 T
im

e
 (

m
ic

r
o

-S
e

c
)

Storage Media Technology

50%

100%

Networked Storage

Storage Protocol (SW) Network

Storage

Medias
Network

HDD

SSD

0.01

1

100

HD SSD NVM

FC, TCP RDMA RDMA+

A
c

c
e

s
s

 T
im

e
 (

m
ic

r
o

-S
e

c
)

Protocol and Network

NVM

HDD

HDD

10

Containers

Docker, Linux Containers (LXC), and security from Jérôme Petazzoni

Containers & Security: Oxymoron or Opportunity

• “Containers do not contain.”

– Dan Walsh (Mr SELinux)

• Leak Threats

– Filesystem, Namespace problems

• Fixes

– Name space mapping to isolate UID

– SELinux: containers security contexts

Docker, Linux Containers (LXC), and security from Jérôme Petazzoni

From Compute Centric to Data Centric Data Center

(DCDC)

• Compute-centric architecture
– CPU at the center with attached

peripherals

– Developed for transactional processing
• Small, slow, fixed-format data

– Data is an afterthought!

– Not equipped for Big-Fast-Unstructured
Data

• Focus is on server-level optimization
– Compute-centric optimization focus is

the server

– Secondary focus is the storage chassis

• A higher level view is huge advantage!
– From compute to data centric

architecture

– Explicitly considers Big-Fast-
Unstructured Data

– Higher efficiency and better CapEx and
OpEx

Compute

Networking

Data

??

Compute Centric Center Architecture

Memory Resources

CPU

I/O

Memory
Memory

Storage

Network Network

Optimizing NFV & DPDK for Security

Network

Hypervisor

NFV App

DPDK

SR-IOV

IOMMU

NFV App

DPDK

NFV App

DPDK
User

Kernel

H
a

rd
w

a
re

Software

Virtualization

Hardware Virtualization

& IOMMU for Security

Optimized

Virtualization

SR-IOV + TPT

NFV: Network Function Virtualization

DPDK: Data Plane Development Kit

SR-IOV: Single Root I/O Virtualization

TPT: Translation Protection Table

S
o

ftw
a

re

