Network Security
with High Performance Storage
for Big Data & HPC Applications

Kevin Deierling
Mellanox Technologies

A

Mellanox

EEEEEEEEEEEE

Agenda

Data Center Evolution

Virtualization, MLS, Multi-Host

User Space 1/0, Virtualization, & RDMA
SELinux Networking

Securing RDMA

— InfiniBand & RoOCE in SELinux environment

Mellanox

EEEEEEEEEEEE

Massive, High Performance MLS Storage

Levels

Multiple x
Security — D l l
—— . —

* Scalable storage for HPC & Big Data Seagate@
* High Performance Lustre w (RDMA) ClusterStor
e Secure, integrated, scale out parallel file system Secure

Storage
e Requires holistic security across OS, Network & Storage Appliance

A\

Mellanox

DDDDDDDDDDDD

Virtualization & Security

e Virtualization, MLS, & user space 1/O creates new
security concerns

— VM Hypervisors, containers
— 1/0 virtualization: Needed for performance

 Hardware offload actually helps security
— Embedded offloads

 Hardware monitors & enforces policies set by secure SELinux
processes

— Secure user space |/O needs
e Secure hardware configuration to implement policy
e Hardware memory translation and protection enforcement!

Mellanox

EEEEEEEEEEEE

Efficient Data Movement

MLS Partitions

Efficient Data Movement (RDMA)

Application
Buffer

| | | |

Application

Buffer

Kernel Bss Protl Offload

InfiniBand/RoCE @ 100Gb/s

Hardware Partitions for Efficient Data Movement
Flow Steering Multi-Level Security With RDMA

e Efficient Data Movement
— Advanced Flow Steering Engine
— Virtual network acceleration (VXLAN, NVGRE, GENEVE)
— RDMA - Efficient Data Exchange - Low Latency, Low CPU Overhead m m

Mellanox

TECHNOLOGIES

RDMA: Critical for Performance

ZERO Copy Remote Data Transfer

USER Application Application
‘ Buffer €8 Buffer
KERNEL

g

Kernel Bypass Protocol Offload

HARDWARE

N
Low Latency, High Performance Data Transfers @;

InfiniBand - 100Gb/s RoCE* - 100Gb/s

* RDMA over Converged Ethernet

User space |/O needs hardware memory protection! ZIE ZIX

Mellanox

TECHNOLOGIES

Introduction

e SELinuxis a Mandatory Access Control (MAC) scheme for Linux
— Central policy is loaded upfront into the kernel
— Applications cannot override or modify this policy
* Benefits
— Differentiate a user from the applications that the user runs
— Restrict application access only to what is required to perform its task
— Allow granular policy segregation
— Example

* Run 2 instances of a Web Server: “top-secret” and “standard”

e Each server can only
— Receive traffic from specific network interfaces
— Open sockets on specific ports
— Serve files from specific directories
— Communicate only with specific peer addresses

 Type enforcement is the main security mechanism used by SELinux

Mellanox

TECHNOLOGIES

Type Enforcement (TE)

Applies to all user-visible kernel entities
— E.g., processes, files, IPC objects, sockets
Each entity is associated with:
— A security descriptor
* Assigned upon creation, modified based on policy
— Aclass and a set of operations
* Stems from the type of object
* E,g., asocket can send() and recv()
TE defines what a <subject> can do on an <object> based on their security
descriptors
— Specified by a policy of access rules, enforced when accesses are made

Security descriptors
— Identify the user, role, type, and optionally security level+class of an object
— Specified by a variable-length string: “user:role:type[:level]”

Policy rules

— Specify which source tag can access which target tag and for what operations
e E.g., “allow source_t target_t:class { [op1] [op2] ... }”
— Typically, only the ‘type’ (a.k.a ‘Domain’) portion of the tag is mentioned

Mellanox

TECHNOLOGIES

Fundamental RDMA SELinux Support

e RDMA network security shall be based on partitioning

— Host kernels control the association of P_Key values with
security descriptors

* Object labeling

— Each QP shall be associated with a security descriptor
* Inherited by the creating process in the absence of a specific policy

— Each RDMA_ID shall be associated with a security descriptor
* Inherited by the creating process in the absence of a specific policy

— P_Key value labeling
* Associates a P_Key value with a security descriptor

e System object descriptors are a good example (like network interfaces
or nodes)
— “system_u:object_r:rdma_partition_default_t”
— “system_u:object_r:rdma_partition_topsecret_t”

Mellanox

EEEEEEEEEEEE

Fundamental RDMA SELinux Support (cont.)

e Traffic labeling

— Uses network labeling (labels are carried on the wire)
— P_Key values are used as the network label

e Policies
— Allow a QP or RDMA_ID to be associated with a P_Key value
— Example: “allow hpc_default_t rdma_partition_default_t : rdma_partition { modify }’, where
* ‘hpc_default_t’ is the QP / RDMA_ID domain (type) inherited from the creating process
* ‘rdma_partition_default_t’ is a partition security descriptor domain
* ‘rdma_partition” indicates that the subject is of partition type
* ‘modify’ indicates that the QP is allowed to modify to reference the corresponding partition tag

e Enforcement

— QP partitioning is enforced at all times

* Upon creation, a violation shall result in an immediate error

* At runtime, any violation due to policy or P_Key value changes shall transition the QP into error
— RDMA-ID

e Allingress/egress CM MADs shall be checked according to the partition policy

* Any violation shall result in an immediate packet drop

Mellanox

TECHNOLOGIES

Thank You!

Questions

A

Mellanox

TECHNOLOGIES

Data Center Evolution Over Time

A Digital Data Explosion
Global digital information created & shared

)

o (+40% Y/Y)
2 AP iuiti-Host——
)
N9 *
W
k]
=
L
g 6 - <
~ ‘Server v
‘Server
Server
3 _Server

Multi-Server

' | | 1
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

JALTIIN
Mellanox

TECHNOLOGIES

Source: KPCB, IDC

Changing Traffic Patterns Requires Data Center
Change

Traditional 3-Tier
Data Center

Web Server
I soqal also "”'“
App Server = ""‘“CUS O e -
I Wmaympl'egélbgt "']pecgcrmatlOnnmrmlersthav'zr
Database mu;;a o%géve%mrﬂgﬁﬁenon
I USG 'MWV‘“WM\:WTM
i mln s . = musedoatam%fmwm
IIII I1[I I'III Data center Data center e
Storage ‘
North-south traffic 80% East-west traffic 70%
North-south traffic: Data East-west traffic: data
forwarded between external forwarded between
users and internal servers. internal servers of the
Typically data flows through data center.

the 3-tier architecture

A\

Mellanox

TECHNOLOGIES

New Storage Media Creates Network Bottlenecks

Storage Media Technology Networked Storage

Storage
Medias Network
1000 0
00 - pun
NVM -[
s
10 /)/
SSD=-
NVM

Protocol and Network

Access Time (micro-Sec)

Access Time (microx

HDD SSD NVM

0.01

W Storage M Protocol (SW) M Network

Faster Networking, Protocol Offloads, & Bypass Required to Match NVM Performance

Mellanox

TECHNOLOGIES

T
#

}-H-i*i*i*t*i*i*i*i*i**i**ﬂi

Containers

shocker: docker PoC VMM-container breakout (C) 2014 Sebastian Krahmer

Demonstrates that any given docker image someone is asking

you to run in your docker setup can access ANY file on your host,
e.q. dumping hosts fetc/shadow or other sensitive info, compromising
security of the host and any other docker VM's on it.

docker using container based VMM: Sebarate pid and net namespace,
stripped caps and RO bind mounts into container's /. However

as its only a bind-mount the fs struct from the task is shared
with the host which allows to open files by file handles

(open_by handle at()). As we thankfully have dac override and

dac read search we can do this. The handle is usually a 64bit
string with 32bit inodenumber inside (tested with extd).

Inode of / 1is always 2, s0 we have a starting point to walk

the F5 path and brute force the remaining 32bit until we find the
desired file (It's probably easier, depending on the fhandle export
function used for the FS in question: it could be a parent inode# or
the inode generation which can be obtained wia an ioctl).

[In practise the remaining 32bit are all 8 :]

tested with docker ©.11 busybox demo image on a 3.11 kernel:

docker run -1 busybox sh

seems to run any program inside VMM with UID @ (some caps stripped); m m
Docker, Linux Containers (LXC), and security from Jérome Petazzoni

Mellanox

TECHNOLOGIES

Containers & Security: Oxymoron or Opportunity

e “Containers do not contain.”
— Dan Walsh (Mr SELinux)

e Leak Threats

— Filesystem, Namespace problems

* Fixes
— Name space mapping to isolate UID
— SELinux: containers security contexts

Docker, Linux Containers (LXC), and security from Jérome Petazzoni

Mellanox

EEEEEEEEEEEE

From Compute Centric to Data Centric Data Center
(DCDC)

* Compute-centric architecture
— CPU at the center with attached

peripherals . , Compute Centric Center Architecture
— Developed for transactional processing
* Small, slow, fixed-format data Networking

— Data is an afterthought!
— Not equipped for Big-Fast-Unstructured

bata I/O
: o ' Data !
* Focus is on server-level optimization | !
— Compute-centric optimization focus is L PP
the server Lo
— Secondary focus is the storage chassis FrmTTeee e
\1 Storage
Memory Resources

* Ahigher level view is huge advantage!

[J
— From compute to data centric “ > ‘_>
architecture Memory J CPU

— Explicitly considers Big-Fast-
Unstructured Data

— Higher efficiency and better CapEx and
OpEx

Compute

Mellanox

TECHNOLOGIES

Optimizing NFV & DPDK for Security

Software Hardware Virtualization Optimized
Virtualization & IOMMU for Security Virtualization
NFV App NFV App NFV App
DPDK DPDK DPDK

User
Hypervisor ‘
Kernel
SR-IOV SR-IOV + TPT

NFV: Network Function Virtualization SR-I0V: Single Root I/0 Virtualization M
DPDK: Data Plane Development Kit TPT: Translation Protection Table Mellanox

TECHNOLOGIES

Network

I
)
=
o
=
o
=
(0]

