Why HSMs still have a place at ECMWF

Tape is dead! Or is it?

Francis Dequenne francis.dequenne@ecmwf.int

© ECMWF June 2, 2015

ECMWF

European Centre for Medium-range Weather Forecast

What is ECMWF?

European Centre We are an independent international organisation funded by 34 States

Medium-Range

Up to fifteen days ahead.

Today our products also include monthly and seasonal forecasts and we collect and store meteorological data.

Weather ForecastsWe produce world-wide weather forecasts

European collaboration at its best!

ATMOSPHERIC COMPOSIT

SUPERCOMPUTER CENTRE

CLIMATE MONITORING

GLOBAL PREDICTION

ITRE FOR MEDIUM-RANGE WEATHER FORECASTS

SEVERE WEATHER

European with a global reach

- 34 member and co-operating states
- 270 staff
- 30 countries
- Partnerships around the world …

International cooperation at its best

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Mission-driven science

Change in the range of skilful forecasts compared to using the operational system of ten years ago

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

The Data Handling System

Our users

- Locally
 - Mainly HPC applications
 - Local scientists (-+200)
- Remotely
 - Member States Users
 - Meteorologists across the world
 - Thousands of registered users.
- Access type is quite varied. For example :
 - High resolution weather information (e.g. state of the atmosphere at a given time)
 - Done mostly locally
 - Access to higher level abstractions or lower resolution products
 - Both locally and remotely

Our archiving system

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Access Patterns: ECFS

Avg day store	Avg day	Peak hour	Peak hour
	retrieve	store	retrieve
40TB/day	20TB/day	2.6TB/H	2TB/H
500MB/s	250MB/s	750MB/s	600MB/s
150,000	60,000	15,000	13,000
files/day	files/day	files/hour	files/hour

Interval between last and current retrieval

Access Patterns: MARS

Avg day store	Avg day	Peak hour	Peak hour
	retrieve	store	retrieve
100TB/day	40TB/day	7.6TB/H	5TB/H
1200MB/s	500MB/s	2200MB/s	1500MB/s
150,000,000	100,000,000	10,000,000	7,500,000
objects/day	objects/day	objects/hour	objects/hour

- Some datasets are very popular. (less than 1%, .5PB)
- Operational datasets represent about 15PB,
 - Active for a few weeks
 - Then accessed from time to time
- Research experiments data: (70PB)
 - Typically dormant after a few days.
 - Some can become very popular after months or years

Behind the scene

- Applications:
 - Home grown:
 - ECFS (ECMWF File Storage)
 - MARS (Meteorological Archival and Retrieval System)
 - Backbone: HPSS
 - High Performance Storage System
 - Highly scalable Hierarchical Storage Management system
- Hardware used.
 - Servers:
 - Mostly small intel Linux servers.
 - Disk cache:
 - Midrange disk solutions : about 2.5PB of usable capacity
 - Tape storage:
 - 16,000 High-End tape media , providing 110PB of capacity.

• 11,000 LTO media. (Safety copy of our most precious 20% of data)

Tapes usage at ECMWF: a few facts

- All data stored on tape in the days following its creation
- Only 10 to 20% of DHS user retrieval requests requires staging from tape to disk.
 - Still up to 15,000 tape mounts /day
- Only a small fraction of a tape contents is retrieved
 - (typically less than 1%)
- Access is very demanding:
 - small reads interspaced with positioning requests.
- Some tapes have been mounted > 10,000 times.

Why using tapes?

- Why not having 100PB of SSD or Disks?
- Tape is still significantly cheaper than those.
- Our budget does not grow exponentially.
- At constant budget, we could only sustain 30-50% annual growth rate, even with tape.
 - Our users want much more.
 - 60% this year, more in the future.

Direct access to all data but Reduce significantly the amount of data stored? Loose potentially invaluable and irreproducible data?

50% growth rate (or more) but Delayed access for some retrieval requests?

But also...

- Reliability.
 - Data loss is extremely rare, typically self contained.
 - More than 80% of our data has no backup.
 - Less vulnerable to firmware/software induced corruption
- Performances are more than adequate for our needs.
 - Currently 200 drives, each able of 240MB/s
 - 48GB/s potential bandwidth.
 - In fact, we use much less than that
- Eye catching piece of equipment during site visits.

There are drawbacks...

ECCIVE EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Tape drives related Issues

- Latency
 - Less important in a predominantly batch environment.
 - Can be mitigated.
- Mechanical equipment
 - Tape drive and robotic failure do happen
- Requires supervision
 - One full time employee
- Integration in "new" storage paradigms
 - Limited support in object storage solution.
- Tape capacity growth is slowing down
 - Used to be 40%/year, No more

Human related issues

- Tape mount storms
 - Tape drive thrashing
 - A badly defined requests can result in hundred requests.
- Users expectations need to be tailored
- Users need education.
- Finding the right skills to handle HSMs.
 - Hard to find manpower able to handle HSMs
 - What is an HSM?
 - Not seen as sexy.
 - Limited direct rewards.

How do we optimise our HSM?

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Good management of top storage cache!

Top Tier storage: 3% of the ECMWF archive >85% of all retrieves

- ECFS:
 - Segregate files in different size bands.
 - In each band use Purge based on LRU.
 - Keep small files on disk forever/much longer than big ones.
- MARS:
 - Lock on disk very popular datasets (1/2 a PB).
 - Keep recently accessed objects for a few days on disk.
 - How long depends on dataset type.
 - Monitor for tapes being regularly used
 - Pre-cache and lock their contents.

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Make each tape mount count.

• Each Data request typically only retrieve a very small amount of data from tape.

Make each tape mount count.

Reduce latency by asking multiple objects in one request

Get x1,x5,x2,x3

Requires user cooperation!

- Retrieval from tape can be optimised
 - Minimise positioning
 - New Tape Ordered Recalls features of several vendors should help become more efficient.

Application implementation dependant!

.x2.x3.x5

Make each tape mount count.

• Combining requests from multiple users.

Use Enterprise-class drives.

- A lot of tape drives horror stories
 - Often linked to misuse of commodity equipment.
- Enterprise-class tape drives
 - Much better at positioning: more suitable to random access
 - Better at adapting to "low" IO bandwidth
 - Better at detecting and correcting errors
- Price differential is small.

When will HSM fade away at ECMWF?

- When we find an alternative solution ...
 - Is cheaper than an tape-based HSM
 - Provide an aggregate bandwidth of tens of GiB/s
 - Allow access to first byte in <1 second in 90% of retrieves
 - Can be integrated in an environment presenting
 - Hundreds of millions of files in a single namespace.
 - hundreds of billions objects in a single repository
 - Can be protected against catastrophic failure
 - Access to data can be restored in a matter of hours.
 - Can be maintained/managed by a handful of people.
 - Provided by main stream vendor(s).

What are we exploring?

- Improve use of front end caches (Disks or SSD)
 - What do we gain by adding xx% of cache?
 - Better targeting of the caches to "likely candidates"...
- Use of new tape drives features
 - E.g. Tape Ordered Retrievals.
- We will look at erasure code based solutions.
 - Still need to find a reliable way to backup/restore these.

In the long run...

- Getting rid of file system paradigm?
 - File systems are popular with the users...
 - Implement usage of object-oriented storage solutions for MARS
 - Implement of object-accessible storage devices
 - Provide an "easy to use" database.
- Work is done in assessing ability to recreate data instead of conserving it.
 - Non trivial.
 - Impossible to recreate "the same" data.
- Revisit from time to time use of
 - dedup appliances and
 - Compression on disk.

In summary

- HSM allow us to keep more data for the same budget.
- Requires good management of higher storage tier
 - serve 80 to 90 % of requests from disk
 - Serve small files from disks
- Requires optimisation of tape usage.
- Very suitable for an environment where
 - A lot of batch usage
 - Users understand how to optimise their retrieves
 - Occasional wait for data is acceptable.

Any questions?

francis.dequenne@ecmwf.int

© ECMWF June 2, 2015