
© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Software Challenges for
The Machine

Sam Fineberg

Distinguished Technologist, HP Storage

MSST 15, June 2015

(many thanks to my colleagues at HP Labs who

are doing the real work)

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.2

What this talk is about

1. The perfect storm

Data explosion + architecture walls + device crisis

2. What is HP doing about it

“The Machine” project at HP Labs

3. The memory is the computer

The software revolution when everything becomes persistent

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.3

By 2020

… for 8

Billion (4)

The Approaching Cyber physical age

Pervasive

Connectivity

Explosion of

Information

Smart Device

Expansion

Internet of Things

(1) IDC “Worldwide Internet of Things (IoT) 2013-2020 forecast” October 2013. (2) IDC "The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of

Things" April 2014 (3) Global Smart Meter Forecasts, 2012-2020. Smart Grid Insights (Zypryme), November 2013 (4) http://en.wikipedia.org

200

Billion
(1)

IoT “Things”

30

Billion
(2)

Connected

Devices

(3)

1

Billio

n

Smart
Meters

Internet of People

44 ZB

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.4

Example: a mesh of connected aircraft

20 TB
20 terabytes of

information per

engine per hour

3
three-hour flight

duration

2
twin-engine

aircraft

days in a

year

36525,000
commercial flights

per day (USA)

1,095,000,000 TB

(1 ZB)

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.5

Architecture has not changed for 60 years

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.6

Architecture Walls
Compute

Single-thread performance wall.

Diminishing return of multi-core.

Chip-edge bandwidth wall

Storage

HDD/SSD layer is a significant

performance bottleneck. Prevents

big data getting closer to compute

Data Movement

Too slow (and cumbersome) for real-time

access to shared memory

Memory

DRAM reaching technology scaling

wall

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

The Machine Project

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.8

Special purpose SoCs

Photonics

Massive memory pool

Photons Ions
Electron

s

Architecture of the future: The Machine

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.9

Special purpose cores

SoCs customized to the workload

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.10

Application-focused silicon

• Less general-purpose, more workload focused

• Dramatic reduction in power, cost, and space

• SoC vendors bring their own differentiated

features and opportunities to disrupt markets

Traditional Server Motherboard

Storage
Ctrlr

Mgmt

Network

Management
Logic

Video

Southbridge

Production

Network

NIC(s)

VGA

Console

ProcessorProcessor

ECC Memory ECC Memory

HDDs

System on a Chip (SoC)-based Server

Storage
Ctrlr

Mgmt Production

Network

NIC(s)

Processor

ECC Memory

Storage

Mgmt
Interface

Custom
Accelerators

SoC

Special purpose SoCs

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.11

Why photonics?

Time

C
a

p
a

b
ili

ty
 /
 V

a
lu

e

animation

Tomorrow

Photonic-integrated fabrics:

Enable next-generation blades,

storage, and network fabricsFrom this To this

20x power
reduction

Today

Photonics destroys distance:

Enables flat, hyper-efficient networks by avoiding

latency, boosting BW, $/Gb/s/m, and pj/bit are key

metrics

8x cost
reduction

Best of breed, better

together:
• Dense PM
• Low-power processors
• Flat, SDN networks
• Photonic

interconnection

Next-generation

Photonic-based architectures:

The Fabric for intern SoC and

cross SOC for highly integrated,

and hyper-efficient architectures

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.12

SRAM

DRAM

• Flash

• Hard disk

On-chip
cache

Main
memory

Mass
storage

S
p
e
e
d

C
o

s
t
p

e
r

b
it

Universal memory obsoletes this hierarchy

Capacity

Massive memory pool

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.13

Beyond DRAM: Non-Volatile Memory

Persistently stores data

Access latencies comparable to DRAM

Byte addressable (load/store) rather than block addressable (read/write)

3D Flash

Phase-Change Memory

Spin-Transfer Torque

MRAM
Resistive RAM

(Memristor)

ns μs

Latency

Haris Volos, et al. "Aerie: Flexible File-System Interfaces to

Storage-Class Memory," Proc. EuroSys 2014.

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.14

Opportunities and challenges

Architectural characteristics of The Machine

Many hardware threads per SoC

Very large NVRAM for both memory and storage (<1µs latency)

Significant amount of fast local DRAM

Photonic memory fabric that permits fast load/store access to NVRAM

No global cache coherence

Volatile caches: minimal instruction set architecture support for persistence

Virtual Memory: translation vs. protection?

How can app developers utilize distributed persistent memory – what are the

right abstractions?

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

The Software Revolution

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.16

Data Representations

In-storage durability
– Separate object and persistent formats

– Programmability and performance issues

– Translation code error-prone and insecure

+ Clean separation of persistent state

In-memory durability
+ In-memory objects are durable throughout

+ Byte-addressability simplifies programmability

+ Low load/store latencies offer high performance

– Persistent does not mean consistent!

In-

memor

y

objects

File or

Database

Serialize

Deserialize

CPU

CACHES

DRAM NVRAM

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.17

Traditional File System Separate storage address space

Data is copied between storage and

DRAM

Block-level abstraction leads to

inefficiencies

Use of page cache leads to extra

copies

True even for memory-mapped I/O

Software layers add overhead

Storage: disks, SSDs

Traditional FS

Applications

Page Cache

Block Device

mma

p

file IO

VFS

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.18

NVM-optimized File System

Examples

Microsoft BPFS

Intel PMFS DAX

(pmem.io)

Low overhead access to

persistent memory

No page cache

Direct access with mmap

Leverage hardware

support for consistency
PM

Traditional FS

Applications

Page Cache

Block Device

mma

p

file IO

NVM

FS

mmu

mappings

mma

p
VFS

file IO

Subramanya R Dulloor, et al. "System Software for Persistent Memory," Proc. EuroSys 2014.

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.19

NVM-optimized Distributed File System

Pooled NVM enables direct

access to non-local data

Reduces need for replication

Provides more natural load

balancingread

metadataclient

Pooled NVM

Process

(Node B)

read()

Process

(Node A)

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.20

Why can’t I just write my program, and have all my data be persistent?

NVM-aware Application Programming

• Consider a simple banking program (just two accounts):

double accounts[2];

• Between which I want to transfer money. Naïve implementation:

transfer(int from, int to, double amount) {

accounts[from] -= amount;

accounts[to] += amount;

}

What if I crash

here?

Crashes cause corruption, which

prevents us from merely restarting the

computation

persistent double accounts[2];
transfer(int from, int to, double amount) {
<save old value of accounts[from] in undo log>;
<flush log entry to NVRAM>

accounts[from] -= amount;
<save old value of accounts[to] in undo log>;
<flush log entry to NVRAM>

accounts[to] += amount;
<flush all other persistent stores to NVRAM>
<clear and flush log>
}

Need code that plays back undo log

on restart. Getting this to work with

threads and locks is very hard

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.21

The Atlas programming model

Programmer distinguishes persistent | transient

Persistent data lives in a “persistent region”
• Mappable into process address space (no DRAM

buffers)

• Accessed via CPU loads and stores

Programmer writes ordinary multithreaded
code

• Automatic durability support at a fine granularity,
complete with recovery code

• Supports consistency of durable data derived from
concurrency constructs

Protection against failures
• Process crash: works with existing architecture

• Tolerating kernel panics and power failures requires
NVRAM and CPU cache flushesD. Chakrabarti, H. Boehm and K. Bhandari. Atlas: Leveraging Locks for Non-volatile Memory Consistency.

Proc. OOPSLA, 2014.

persistent double accounts[2];
transfer(
int from, int to, double amount) {
__atomic {

accounts[from] -= amount;
accounts[to] += amount;

}
}

Updates in __atomic block are

either completely visible after

crash or not at all

If updates in __atomic block are

visible, then so are prior updates

to persistent memory

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.22

Persistent Regions

Named container for all persistent data

Analogous to file-backed memory mapping

Data outside persistent region considered transient

Easy to slide beneath complex (legacy) software

Transparent support preserves data integrity from crashes

Key mechanism: failure-atomic updates

All-or-nothing guarantee for a failure-atomic batch of updates

Admits several implementations

- Failure-atomic update of files via msync/fsync [Eurosys2013]

- Lexically-scoped atomic{} sections with durability semantics

[Mnemosyne, Nvheaps, ASPLOS11]

- Durability support for lock-based critical sections [Atlas, OOPSLA’14]

Root

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.23

Example: a Persistent Queue

enqueue(val) {

pmalloc()

init_node()

__atomic { // lock

attach_node()

move_tail()

}

}

dequeue() {

__atomic { // lock

elem = read_head()

move_head()

}

return elem

}

pr = find_or_create_persistent_region(“queue”);

persistent q = get_root(pr);

if (q is absent) initialize q and call set_root

Thread 1 Thread 2

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.24

Role of Compiler and Runtime
Thread 1

Thread 2

Time

<hb

N

N

T

H

Shared Log

enqueue(val) {

pmalloc()

init_node()

L.lock()

attach_node()

move_tail()

L.unlock()

}

dequeue() {

L.lock()

elem = read_head()

move_head()

L.unlock()

return elem

}

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.25

Wrapping up Everything changes…
Hardware

• Memory controller

Architecture

• Coherence/sharing model

• Consistency model

• Error handling, RAS

Software

• OS, memory management

• Compilers and runtime

• Algorithms and data structures

• Storage hierarchy

• Applications

• Security and Protection

Universal memory is coming

Computing shifts to a persistent

world

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.26

Learn more about The Machine

The Machine provides new computing architecture

Specialized SoCs + massive shared NVM pool + photonic interconnects

Many opportunities for OS and application software innovation

Where to look for more information

http://www.hpl.hp.com/research/systems-research/themachine/

HP Discover 2014 talks on The Machine

• HP Labs Director Martin Fink's announcement: https://www.youtube.com/watch?v=Gxn5ru7klUQ

• Kim Keeton’s talk on technologies: https://www.youtube.com/watch?v=J6_xg3mHnng

Dejan Milojicic’s keynote at Linaro Connect: http://connect.linaro.org/hkg15/

Paolo Faraboschi’s keynote at HPCA/PPoPP/CGO

http://www.hpl.hp.com/research/systems-research/themachine/
https://www.youtube.com/watch?v=Gxn5ru7klUQ
https://www.youtube.com/watch?v=J6_xg3mHnng
http://connect.linaro.org/hkg15/

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Thank You

