Software Challenges for
The Machine °

Sam Flneberg

Distinguished Technologlst HP Storage |
"~ MSST'15, June 2015, '* "

(many thanks to my colleagues at HP Labs who
are doing the real work)

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

What this talk i1s about

1. The perfect storm .

Data explosion + architecture walls + device crisis

2. What is HP doing about it
“The Machine” project at HP Labs

3. The memory is the computer
The software revolution when everything becomes persistent

2 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

The Approaching Cyber physical age

3

Internet of People

Pervasive
Connectivity

Internet of Things

Expansion

Smart Device | Explosion of
Information

By 2020

D 30
- (2)
Connected BI”IOn

Devices
10T “Things

i 1

. - (3)
Smart Billio

Meters

... for 8
Billion®

44 7B

200
Billion”

"

Things" April 2014 (3) Global Smart Meter Forecasts, 2012-2020. Smart Grid Insights (Zypryme), November 2013 (4) http://en.wikipedia.org

(1) IDC “Worldwide Internet of Things (l1oT) 2013-2020 forecast” October 2013. (2) IDC "The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of @

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Example: a mesh of connected aircraft

20TBX 2% 3%

twin-engine
20 terabytes of N-eNINC three-hour flight

information per aircraft duration

engine per hour

25,000 % 365

commercial flights daysina
per day (USA) year

__ 1,095,000,000 TB
~ (1ZB)

4 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. w

Architecture has not changed for 60 years

T
o '

o T T L T Y

| A e

5 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Architecture Walls

SOCKET Compute
Single-thread performance wall.
c|lec||c]||c c||lc||c||c / Diminishing return of multi-core.
0| [0 o7 [| [0 [t1] [0 & " -
5 5 5 s 5 s s s Chip-edge bandwidth wall
I 1
| L2$ | | L2$ |
[:] [: | Memory
MEM CTL || 10 || MEM CTL MEM CTL || 10 || MEM CTL - ,
: [0 } : [0]| DRAM reaching technology scaling
wall
DIMM [DIMM | DIMM [DIMM |
DIVM | | | [DIMM DIMM | | | [DiMM Storage

/ HDD/SSD layer is a significant

performance bottleneck. Prevents
big data getting closer to compute

| NETWORK INTERFACE

i@:

Data Movement

Too slow (and cumbersome) for real-time
access to shared memory @

6 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

The Machine Project

e

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Architecture of the future: The Machine

Photonics

Special purpose SoCs Massive memory pool
Electron Nad)
(@Q < Q Photons Q‘v‘p lons

8 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Special purpose cores

SoCs customized to the workload

9 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. w

Application-focused silicon Special purpose SoCs [

Traditional Server Motherboard System on a Chip (SoC)-based Server

ECC Memory ECC Memory \ ECC Memory \
| SoC
Custom

Processor Accelerators

Processor —— Processor
Mgmt Storage
| Interface NIC(s) Ctrlr
Southbridge \
Storage

Ctrlr Mgmt Production siorage
Network
Management \ideo NIC(s) * Less general-purpose, more workload focused

Logic
« Dramatic reduction in power, cost, and space

« SoC vendors bring their own differentiated
Mgmt VGA Production HDDs features and opportunities to disrupt markets

_

10 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Network Console Network

Why photonics?

Next-generation

i) Best of breed, better
Photonic-based architectures: together:

i i » Dense PM
The Fabric for intern SoC and o mm e
cross SOC for highly integrated, * Flat, SDN networks L B

+ Photonic SmE GmE AmE ZmE

and hyper-efficient architectures

Tomorrow
Photonic-integrated fabrics:
*"| Enable next-generation blades,
storage, and network fabrics

To this

From this

Capability / Value

20x power = Ea——

reduction \ Photonics destroys distance:
e Enables flat, hyper-efficient networks by avoiding

8x cost : o
reduction latency, boosting BW, $/Gb/s/m, and pj/bit are key

metrics
mrolaToegY

Time

11 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Massive memory pool m

Mass * Flash
SIDEE + Hard disk

Universal memory obsoletes this hierarchy

12 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Beyond DRAM: Non-Volatile Memory

Phase-Change Memory

Spin-Transfer Torque 5
MRAM o @ g

Resistive RAM 3D Flash
(Memristor)

Pers | Sten t | y Sto reS d a‘ta Haris Volos, et al. "Aerie: Flexible File-System Interfaces to
. Storage-Class Memory," Proc. EuroSys 2014.
Access latencies comparable to DRAM
Byte addressable (load/store) rather than block addressable (read/write) QD
/

13 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Architectural characteristics of The Machine

Opportunities and challenges

Many hardware threads per SoC

Very large NVRAM for both memory and storage (<lus latency)
Significant amount of fast local DRAM

Photonic memory fabric that permits fast load/store access to NVRAM

No global cache coherence
Volatile caches: minimal instruction set architecture support for persistence
Virtual Memory: translation vs. protection?

How can app developers utilize distributed persistent memory — what are the
right abstractions?

14 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

The Software Revolution

.o
«c 200000
* 9090000 s
S L LR RN AN
o o 99 * 00 »
LI N I R
R WV

2 ‘toavOOOWD..\\ 3 u%dy; 0 ‘/‘ ‘/,“:. o v-se. ¥ s a o B Fod

et \{“""‘.‘T\fﬁ ’d? 52 . e« 9 ’ o

‘r\ "\--.....\5.': A‘.. ™ DI O N B B B SR N R T Y I
R ,».\\g N IR/ ‘ ’ - R N SO NS N N = =
I NN o0 0 Tee— i § ¢ I R R W T R R R
ey ‘i‘s;’...‘ﬁ e 7. o M I BUBEAEE N NN N NI R R N N R s B
0;7“. ."“"~g f(. : 1“'...0"0..".0.1r'-0 08 2 09 b
« s 000 0 CECE X E RO N RN B I SR I e

@O0 0 0 9 ¢ F 9N 9 e @lis ¥ ®
A B N N B B R e s v @

4 [
| - P52
5 --‘ e . ;‘a?m L I {/“d!hsuzi' [)® @ o » @ & % 0 0 O B 4 s e v 10

™
()

O

O

Data Representations

In- Y
- Serialize
In-storage durability memor >
— Separate object and persistent formats Y —
N _ objects Deserialize
— Programmability and performance issues
— Translation code error-prone and insecure
+ Clean separation of persistent state
CPU

In-memory durability

16

+ In-memory objects are durable throughout
+ Byte-addressability simplifies programmability

{

CACHES

y

File or

Database

+ Low load/store latencies offer high performance

J

)

— Persistent does not mean consistent!

DRAM

NVRAM

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Traditional File System Separate storage address space

Data is copied between storage and

— DRAM
[Applications] _
1 1 Block-level abstraction leads to
mma file 10 inefficiencies
—————— F- --——————--ﬂ—————--
(VFS)

— Use of page cache leads to extra
coples
| [raditiona]

even for memory-mapped 1/0O

I I | DDR [N
I[Page Cache](—) |
I I I PCle NVM re layers add overhead
| Block Device] | PCle Flash [l
| |

—————————— SEIE 193 %

HDD

Storage: disks, SSDs

Software Qverhead

<€ >
10 Latency)
17 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

NVM-optimized File System

18

Applications

mma

————1

[Traditional FS] |

[
|
|
|[Page Cache]<—> |
|
|
|

|
Block Device] |
|

I

I |
V11 ___ 1
(iR P
| SRS Mappings |
| |
| |

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Examples
Microsoft BPFS

Intel PMFS - DAX
(pmem.io)

Low overhead access to
persistent memory

No page cache
Direct access with mmap

Leverage hardware
support for consistency

@

NVM-optimized Distributed File System

metadata ;

client
~
1
H .- [|
re\gd() e -
Py A?E
\Jfead]
Process
(Node A)
Pooled NVM

Process
(Node B)

Pooled NVM enables direct
access to non-local data

Reduces need for replication

Provides more natural load
balancing

19 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

NVM-aware Application Programming
Why can't | just write my program, and have all my data be persistent?

« Consider a simple banking program (just two accounts):
double accounts[2];

« Between which | want to transfer money. Na#/~ imnlomantation:

t f int £ , 1int to, doubl ;
ranster (in rom, An © oub_© persistent double accounts[2];

transfer(int from, int to, double amount) {
<save old value of accounts/[from/ inundo log>;
<flush log entry to NVRAM >

}
Crashes cause corruption, which GRS el o= ELEE
<save old value of accounts/[to]in undo log>;

prevents us from merely restarting the ysh log entry to NVRAM>

computation accounts[to] 4= amount;
<flush all other persistent stores to NVRAM >
Need code that plays back undo logwlear and flush log>

on restart. Getting this to work with ?
threads and locks is very hard

20 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. W

accounts[from] —-= amount;

accounts[to] += amount;

The Atlas programming model

persistent double accounts[2];

. - . . : transfer(
Programmer distinguishes persistent | transient int from, int to, double amount) {

Persistent data lives in a “persistent region” __atomic {
. Mappable into process address space (no DRAM 22283:%2 H;;’m] o :mga:z
buffers) } - ’
- Accessed via CPU loads and stores }
Programmer writes ordinary multithreaded _ _
code Updates in __atomic block are

- Automatic durability support at a fine granularity, either completely visible after

complete with recovery code crash or not at all
- Supports consistency of durable data derived from If updates in __atomic block are
concurrency constructs visible, then so are prior updates

- Process crash: works with existing architecture

- Tolerating kernel panics and power failures requires
NVRAM aind CPU wache flushes

21 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. w

Persistent Regions

Named container for all persistent data ~ ROOt

Analogous to file-backed memory mapping

Data outside persistent region considered transient

Easy to slide beneath complex (legacy) software

Transparent support preserves data integrity from crashes
Key mechanism: failure-atomic updates

All-or-nothing guarantee for a failure-atomic batch of updates
Admits several implementations

- Failure-atomic update of files via msync/fsync [Eurosys2013]

- Lexically-scoped atomic{} sections with durability semantics
[Mnemosyne, Nvheaps, ASPLOS11]

- Durability support for lock-based critical sections [Atlas, OOPSLA’14] @

22 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Example: a Persistent Queue

pr =find_or_create_ persistent_region(“queue”);

23

persistent q = get_root(pr);

if (g is absent) initialize g and call set_root

Thread 1

}

enqueue(val) {
pmalloc()
init_node()
__atomic {// lock

attach_node()
move_tail()

T

Thread 2

dequeue() {
__atomic {// lock
elem =read_head()
move head()

}

return elem

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Role of Compiler and Runtim

Time Thread 1

enqueue(val) {

pmalloc()
init_node()
L.lock()
attach_node()
move_tail()
L.unlock()

Thread 2

Shared Log

v

24

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

dequeue() {
L.lock()
elem =read_head()
move head()
L.unlock()
return elem

}

hb

P}

Wrapping up Everything changes...

: : : Hardware
Universal memory is coming \
_ _ _ . emory controller
Computing shifts to a persistent Architecture

Coherence/sharing model

world :
- Consistency model

Error handling, RAS

ond 1 Registers Software
oa
Store OS, memory management
orect Compilers and runtime
Access Non-volatile p
Pooled - Algorithms and data structures
| Storage class - Storage hierarchy

Bk —— Memory speed . Applications

nairec

Access __ Security and Protection

@

25 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Developed with

Learn more about The Machine HP Labs

The Machine provides new computing architecture
Specialized SoCs + massive shared NVM pool + photonic interconnects
Many opportunities for OS and application software innovation

Where to look for more information
http://www.hpl.hp.com/research/systems-research/themachine/

HP Discover 2014 talks on The Machine

« HP Labs Director Martin Fink's announcement: https://www.youtube.com/watch?v=Gxn5ru7kluQ
+ Kim Keeton'’s talk on technologies: https://www.youtube.com/watch?v=J6_ xg3mHnng

Dejan Milojicic’s keynote at Linaro Connect: http://connect.linaro.org/hkgl5/

Paolo Faraboschi’s keynote at HPCA/PPoPP/CGO

26 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. @

http://www.hpl.hp.com/research/systems-research/themachine/
https://www.youtube.com/watch?v=Gxn5ru7klUQ
https://www.youtube.com/watch?v=J6_xg3mHnng
http://connect.linaro.org/hkg15/

Thank You

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

