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Dept. of Energy “FastForward” Program

•  Goal: Deliver Exascale computing ~2020

•  FastForward RFP provides funding for R & D

•  Sponsored by 7 leading US national labs

•  RFP elements were Processor, Memory and Storage 

•  Whamcloud led group won the Storage portion:
§  HDF Group for HDF5 modifications and extensions

§  EMC for Burst Buffer manager and I/O Dispatcher
§  Cray for large scale testing
§  DDN for versioning object storage



Background: Posix running out of steam
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•  1988 Standard for local file system

•  Parallel computing with multiple 
kernel images has made it difficult to 
preserve semantics of standard

•  Heroic efforts kept up with Top500

•  Layers of SW libraries added to 
smooth out I/O (File per process) 
and to get beyond stream-of-bytes 
interface

•  Survived Tera -> Peta, but don’t 
expect it to lead going -> Exascale

Data Model Library

Parallel File System

Application

Parallel/Collective I/O Library
MPI-IO, PLFS, GLEAN, …



Background: Emerging Trends 

Increased computational power…

§  Huge expansion of simulation data volume & 
metadata complexity

§  Complex to manage and analyze

…achieved through parallelism

§  100,000s nodes with 10s millions cores

§  More frequent hardware & software failures

Tiered storage architectures

§  High performance fabric & solid state storage on-cluster

§  Low performance, high capacity disk-based storage off-cluster



Background: Primary HPC Driver is Checkpoint
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Checkpoint/restart is the primary driver for sustainable bandwidth to parallel FS 
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I/O Distribution with Large Jobs 



Disruptive Change with NVRam

NVRAM

§  Byte-granular storage access

§  Sub-µS storage access latency

§  With ~µS network latency

Conventional storage software

§  Block granular access
§  False sharing

§  High overhead
§  10s µS lost to communications S/W

§  100s µS lost to storage S/W

§  1,000s µS lost to disk latency

New I/O stack requirements

§  Minimal software overhead
§  OS bypass

–  Communications
–  Latency sensitive I/O

§  Security negotiated at container open

§  Persistent Memory storage
§  Filesystem & application metadata

§  Hot data

§  Block storage
§  SSD – warm data

§  Disk – lukewarm data



Storage Architecture

Compute Node NVRAM

§  Hot data

§  High valence & velocity

§  Brute-force, ad-hoc analysis

§  Extreme scale-out

§  Full fabric bandwidth

§  O(1PB/s)→O(10PB/s)

§  Extremely low fabric & NVRAM latency

§  Extreme fine grain 

§  New programming models

I/O Node NVRAM/SSD

§  Semi-hot data / staging buffer

§  Fractional fabric bandwidth
§  O(10TB/s)→O(100TB/s)

Parallel Filesystem

§  Site-wide shared warm storage
§  SAN limited – O(1TB/s)→O(10TB/s)

§  Indexed data

Archive
§  Cold storage – O(100GB/s)→O(1TB/s)

Compute 
Nodes (NVRAM)

I/O Nodes 
(NVRAM, SSD)

Compute 
Fabric

Site-wide 
Storage 
Fabric

Parallel Filesystem
(NVRAM, SSD, Disk)

Compute Cluster



Distributed Application Object Storage

Exascale I/O stack

§  Extreme scalability, ultra fine grain

§  Integrity, availability, resilience

§  Unified model over site-wide storage

Multiple Top Level APIs

§  Domain-specific APIs: HDF5*, SciDB,* ADIOS*

§  High-level data models: HDFS, Spark, Graph A.

§  Posix

Caching and Tiering

§  Data migration over storage tiers
§  Guided by usage metadata

§  Driven by system resource manager

Sharding and Resilience

§  Scaling throughput over storage nodes

§  Redundancy across storage nodes

Persistent Memory Object Storage

§  Ultra-low latency / fine grain I/O

§  Fine-grain versioning  & global consistency

§  Location (latency & fault domain) aware

Applications 

Top-level APIs 

Sharding & Resilience 

PM Object Storage 

Tools 

Caching & Tiering 



DAOS-M Object Storage

Multiple Independent Object Address Spaces

§  Versioning Object PGAS

§  Container = {container shards} + metadata
§  Container Shard = {objects}

–  Object = KV store or byte array
–  Sparsity exposed

§  Metadata = {shard list, commit state}
–  Minimal
–  Resilient (Replicated state machine)

Maximum concurrency

§  Byte-granular MVCC

§  Deferred integration of mutable data

§  Writes eagerly accepted in arbitrary order

§  Reads sample requested version snapshot

Distributed Transactions

§  Prepare: Send updates tagged with version ‘t’

§  Commit: Mark version ‘t’ committed in container MD
§  Version ‘t’ now immutable and globally consistent

§  Abort: Discard version ‘t’ updates everywhere

Low latency

§  End-to-end OS bypass

§  Persistent Memory server 

§  Userspace fabric drivers
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Epoch transactions

§  Epoch based transactions

§  General purpose Atomic, Consistent, Independent, Durable update
–  Arbitrary numbers of collaborating processes and storage targets

§  Versions become visible on commit
–  Finish ‘x’ signals all writes in epoch ‘x’ done
–  Epoch ‘x’ committed when it & all prior finished
–  Readers see consistent data / atomic changes
–  Arbitrary rollback

§  Multi-version concurrency control

§  Byte granularity to eliminate false block sharing conflicts & alignment sensitivity

§  Eliminates blocking, locking and other unnecessary serializations
–  Writers don’t block readers: readers can always read HCE
–  Readers don’t block writers: read from immutable version whereas write to new transactions
–  Writers don’t block writers: they operate on different transactions

§  Leveraged by I/O middleware

§  Consistency: end-to-end integrity, replication & erasure coding

§  Versioning: incremental replication / sync
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Global Namespaces

System Namespace

§  “Where’s my stuff”

Object Namespaces (Containers)

§  “My stuff”

§  Entire simulation datasets

Data Movement possibilities 
§  Data shared on the system – In situ

§  Checkpoints need not traverse network

`
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