Panel: Leveraging FLASH in Integrated, Scalable Systems

Chris Jordan TACC Mike Vildibill DDN Brian Van Essen LLNL Gary Grider LANL

UNCLASSIFIED

Slide 2

Panel Focus and Questions

- Explain the scalable system you deployed/deploying flash into
- Explain scalable speed / feeds
- Explain scalable operation use cases/software you have added to make the solution useful
- Why flash was chosen?
- What aspect of FLASH helped you achieve your scalability goals simplified management, performance (latency, bandwidth), other?
- How/why did you make the tradeoff of giving up capacity to add flash (for whatever reason)?
- How do you deal with durability/lifetime mgmt at scale in your application/system
- How is maintenance regarding wear dealt with, replacement or expendable or other

UNCLASSIFIED

Deeper Storage Hierarchy for Trinity Probably too Deep

Gary Grider

Division Leader High Performance Computing Division Los Alamos National Laboratory <u>ggrider@lanl.gov</u> Excerpts from LA-UR 14-26443 Oct 2014

UNCLASSIFIED

HPC at LANL The Edge of the Computing Envelope for Decades

 Helios (Cray XK) Data Intensive

Operated by Los Alamos National Security, LLC for NNSA

MATIONAL LABORATORY

UNCLASSIFIED

HPC Requires Pretty Big Infrastructure

- ~2 TB/sec SAN -> 10sTB/sec
- 16 PB Scratch File Systems _> .5 EB
- .5 EB Parallel Tape Archives -> 10 EB of Archive
- 20 MW -> 40 MW
- 100-200 M Gallons Water/Yr Evap

- EST.1943 -Operated by Los Alamos National Security, LLC for NNSA

And the need for bigger machines just keeps growing!

Trinity

- ~21,000 nodes
- 1-2 M cores
- ~3 PB dram
- 6-8 PB flash burst buffer (4-6 TB/sec)
- 80-100 PB parallel file system (1-2 TB/sec)
- 300-500 PB campaign storage (50-100 GB/sec) growing to EB
- 8-12 Mwatts of power
- Begin install summer 2015

Typical 3D run might be 1 PB DRAM over ~1M cores for 6 months to 1 year!

UNCLASSIFIED

What are all these storage layers? Burst Buffers? Campaign Storage?

- Why do we need all those layers?
- Economics and maturity

UNCLASSIFIED

Why Burst Buffers and Campaign

Economic modeling for large burst of data from memory shows bandwidth / capacity better matched for solid state storage near the compute nodes

Economic modeling for archive shows bandwidth / capacity better matched for disk

Hdwr/media cost 3 mem/mo 10% FS

What about this campaign storage thing?

- Campaign storage will grow to Exabytes in a few years
- Bandwidth needs too high for parallel tape
- Number of disks implies the need for erasure based systems
- Why not borrow from the cloud storage community, object erasure systems. After all we are the same as Dropbox except our single images are a little bigger (say 5 orders of magnitude).
- Very parallel use of object erasure systems has promise for this need

UNCLASSIFIED

What did you mean by maturity?

If the Burst Buffer does its job very well and campaign storage is works out well, do we need a parallel file system anymore, or an archive? Maybe just a bw/iops tier and a capacity tier.

Panel Focus and Questions

Explain use cases/software you have added to make the solution useful

- Checkpoint, Out of core, In Transit Analysis
- Looks like a parallel file system, prejob stage, postjob destage (even on job failure)
- Why flash was chosen
 - Hybrid solution, Flash cheapest for BW and Disk cheapest for Capacity
 - Both procurement costs and power costs due to idle.
- The tradeoff of giving up capacity to add flash (for whatever reason)?
 - We bought what we needed of both
- Durability/lifetime mgmt at scale in your application/system
 - Write limited per job/flash allocation to rate of 10 overwrites/day
- How is maintenance regarding wear dealt with
 - In maintenance contract but only with rate limiter turned on

UNCLASSIFIED

Thank You and RIPFS

UNCLASSIFIED

Slide 14

