Leveraging Flash in HPC Systems

|IEEE MSST
June 3, 2015

|!| Lawrence Livermore

National Laboratory

LLNL-PRES-671909

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Brian Van Essen, CASC




Opportunity

= HPC including node-local and near-line NVRAM
- NVRAM bridges memory/storage latency gap

= Use cases:
 Persistent data structures — reuse / save critical state
« In-situ data staging — platform for coupling analysis with simulation
- Extend memory — solve larger problems

= Use memory-mapping interface to access NVRAM
- Exposes file as linear memory region
- Simple load-store interface
- Handle external data as internal data structures
« Buffering and I/O are implicitly handled by O/S + runtime
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Bring NVRAM into HPC

= Today’s data-intensive HPC:

 Catalyst
— 150 teraflop/s: 324 nodes, 7776 cores
— 40 TB DRAM + 253 TB Flash
— Each node: 128 GiB DRAM + 800 GiB Flash

= Future NNSA's ASC HPC:

. Sierra
— 120-150 petaflop/s
— 2.1-2.7 PB DRAM + 3.3-4.2 PB Flash
— Each node: 512GiB DRAM+HBM & 800 GiB NVMe Flash
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Motivation

= Enable scalable out-of-core computations for data-
iIntensive computing.

= Effectively integrate non-volatile random access
memory into the HPC node’s memory architecture.

= Address data-intensive computing scalability
challenges:
« Use node-local NVRAM to support larger working sets
« DRAM-cached NVRAM to extend main memory

= Allow latency-tolerant applications to be oblivious to
transitions from dynamic to persistent memory when
accessing out-of-core data.
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Tuning memory-mapped I/O for data-
Intensive applications

= Linux memory map runtime:
« Optimized for shared libraries
« Does not expect memory-mapped data to churn

« Does not expect memory-mapped data to exceed
memory capacity

= Data-Intensive Memory-Map runtime (DI-MMAP):
« Optimized for frequent evictions
« Optimized for highly concurrent access
« Expects to churn memory-mapped data
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Advanced buffer management and
caching techniques

DI-MMAP Buffer Page Location Table
& Fault History Table
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Minimize the amount of effort needed to find a page to evict:
= |n the steady state a page is evicted on each page fault
= Track recently evicted pages to maintain temporal reuse

= Allow bulk TLB operations to reduce inter-processor interrupts
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Experience with data-intensive
applications

= [arge-scale graph analysis
= Metagenomic analysis
= Streamline tracing

= Characteristics of data-intensive applications:
« Large data sets
« Large working sets that exceed capacity of main memory

« Memory bound
— irregular data access
— latency sensitive
— minimal computation

= Methods of tuning applications for NVRAM (adding latency-tolerance):
- Concurrent 1/0O
 Avoid bulk synchronous communication
« Potentially asynchronous execution
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Graph Analytics (BFS Graph500)

= HavoqGT Graph Library
« BFS, SSSP, Connected components, K-core, PageRank
« Level-asynchronous
« Delegate-partitioning
« Highly concurrent
— Multi-process and multi-thread implementations

Solving larger problems:

= Distributed memory (multi-process) (300 nodes)

 In-memory (DRAM Only): Scale 36
« External-memory (DRAM+NVRAM): Scale 40

= Single node
« In-memory (DRAM Only): Scale 28
« External-memory (DRAM+NVRAM): Scale 32

Lawrence Livermore National Laboratory LLNL-PRES-67190%uL'



Graph500 #4 — Distributed node-local

HavogGT Graph Library — BFS
Tied for 2" in size and placed #4 in Nov. 2014

- when ranked by size (second only to full Sequoia BG/Q)

Scale 40 graph (17.6 trillion edges)
« 217 TB

Catalyst cluster — 300 nodes

« 24 cores per node
- 128GB DRAM + 800 GB NVRAM per node
« 24 processes per node

DI-MMAP runtime

« 2.4x improvement over Linux mmap
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Metagenomic analysis conducted on an unprecedented
scale using NVRAM and Catalyst
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Large scale analysis Size Run time Result

1000 Genome Project 90 Terabases 6 days |[dentified 8 million new
(2,646 people) genetic variants
Human Microbiome 18 Terabases 38 hours New human sequence and
(9,113 samples) microbial species
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Larger, more accurate DB means
better classification
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Next generation runtime interfaces

= Go beyond coarse system-level tuning
« Per-application or per-data structure tuning
- Data-dependent decisions

= Advanced features

- Variable sized I/O requests (runtime-level superpages)
— allow I/O at non-native page size
— optimize /O transfer to maximize bus utilization
— tune per-buffer or data-structure
« Lightweight buffer introspection
— non-faulting page residency check (data-dependent scheduling)
— page NUMA-node location (spatial scheduling)
— page fault frequency (identify hot or cold pages)
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Mapping metrics back to application
space

= Visualize (overlay) active buffer pages on application data structures
« Streamlines are shown from seed point (silver sphere) to termination
« Pink cubes show the active pages in the buffer for the current time step

. Slpatial distribution of buffered pages w.r.t. streamlines illustrate reuse within streamline
clusters

Identifiers potential opportunity for intelligent pre-fetching

= Fully tracing long streamlines serially leads to less data reuse between seeds
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Managing NVRAM with HPC job
scheduling

State of the practice:

= Job allocation on stateless nodes

« Primary concern is node-allocation within routing
topology

Challenges:
= |s my data in the system

= How is my data laid out
« Does the data layout match the MPI rank layout

= Increased read activity to parallel file systems
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Managing NVRAM with HPC job
scheduling

Current policy:

= Data-retention
- Leave on node (allows reuse)
« Flush on demand (job allocation)
« No guarantee from allocation to allocation

= Security
- Standard Linux user permissions

Future work:

= Scheduling NVRAM resources
« Guarantee that there is sufficient capacity
« Re-allocating nodes that your data (in the correct distribution)

= Building global, distributed store
- State between HPC jobs
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Conclusions:
Leveraging NVRAM in HPC

= With the right system software stack and algorithms:
« NVRAM can be an effective tier in the memory hierarchy
« Invisible to the application programmer as a separate resource.

= Solve larger problems

= Reduces the amount of main memory needed (thus reducing power)
« provides capacity
« unused capacity does not require dynamic power
= |t requires a fresh look algorithm design:
« minimize latency sensitivity
- transform to be throughout driven
= |/O performance scales well with ratio of buffer size to problem size

= Optimized caching in runtime can minimize NVRAM perceived
latency, wear, and power
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