
LLNL-PRES-671909
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Leveraging Flash in HPC Systems
IEEE MSST
June 3, 2015

Lawrence Livermore National Laboratory LLNL-PRES-671909
2

§  HPC including node-local and near-line NVRAM
•  NVRAM bridges memory/storage latency gap

§  Use cases:
•  Persistent data structures – reuse / save critical state
•  In-situ data staging – platform for coupling analysis with simulation
•  Extend memory – solve larger problems

§  Use memory-mapping interface to access NVRAM
•  Exposes file as linear memory region
•  Simple load-store interface
•  Handle external data as internal data structures
•  Buffering and I/O are implicitly handled by O/S + runtime

Opportunity

Lawrence Livermore National Laboratory LLNL-PRES-671909
3

§  Today’s data-intensive HPC:
•  Catalyst
—  150 teraflop/s: 324 nodes, 7776 cores
—  40 TB DRAM + 253 TB Flash
—  Each node: 128 GiB DRAM + 800 GiB Flash

§  Future NNSA’s ASC HPC:
•  Sierra
—  120-150 petaflop/s
—  2.1-2.7 PB DRAM + 3.3-4.2 PB Flash
—  Each node: 512GiB DRAM+HBM & 800 GiB NVMe Flash

Bring NVRAM into HPC

Lawrence Livermore National Laboratory LLNL-PRES-671909
4

§  Enable scalable out-of-core computations for data-
intensive computing.

§  Effectively integrate non-volatile random access
memory into the HPC node’s memory architecture.

§  Address data-intensive computing scalability
challenges:
•  Use node-local NVRAM to support larger working sets
•  DRAM-cached NVRAM to extend main memory

§  Allow latency-tolerant applications to be oblivious to
transitions from dynamic to persistent memory when
accessing out-of-core data.

Motivation

Lawrence Livermore National Laboratory LLNL-PRES-671909
5

§  Linux memory map runtime:
•  Optimized for shared libraries
•  Does not expect memory-mapped data to churn
•  Does not expect memory-mapped data to exceed

memory capacity

§  Data-Intensive Memory-Map runtime (DI-MMAP):
•  Optimized for frequent evictions
•  Optimized for highly concurrent access
•  Expects to churn memory-mapped data

Tuning memory-mapped I/O for data-
intensive applications

Lawrence Livermore National Laboratory LLNL-PRES-671909
6

Advanced buffer management and
caching techniques

Minimize the amount of effort needed to find a page to evict:

§  In the steady state a page is evicted on each page fault

§  Track recently evicted pages to maintain temporal reuse

§  Allow bulk TLB operations to reduce inter-processor interrupts

DI-MMAP Buffer

Primary FIFO?

Hotpage FIFO

Eviction Queue

is a hot page

remove from
Page Tables

page fault

page
evicted

Free Page List

TLB Flush /
writeback page

DI-MMAP Buffer Page Location Table
 & Fault History Table

page recovered

Writeback Queue? dirty
clean

Fault
Sequence
Window

Lawrence Livermore National Laboratory LLNL-PRES-671909
7

§  Large-scale graph analysis
§  Metagenomic analysis
§  Streamline tracing

§  Characteristics of data-intensive applications:
•  Large data sets
•  Large working sets that exceed capacity of main memory
•  Memory bound

—  irregular data access
—  latency sensitive
—  minimal computation

§  Methods of tuning applications for NVRAM (adding latency-tolerance):
•  Concurrent I/O
•  Avoid bulk synchronous communication
•  Potentially asynchronous execution

Experience with data-intensive
applications

Lawrence Livermore National Laboratory LLNL-PRES-671909
8

§  HavoqGT Graph Library
•  BFS, SSSP, Connected components, K-core, PageRank
•  Level-asynchronous
•  Delegate-partitioning
•  Highly concurrent
—  Multi-process and multi-thread implementations

Solving larger problems:
§  Distributed memory (multi-process) (300 nodes)

•  In-memory (DRAM Only): Scale 36
•  External-memory (DRAM+NVRAM): Scale 40

§  Single node
•  In-memory (DRAM Only): Scale 28
•  External-memory (DRAM+NVRAM): Scale 32

Graph Analytics (BFS Graph500)

Lawrence Livermore National Laboratory LLNL-PRES-671909
9

§  HavoqGT Graph Library – BFS
§  Tied for 2nd in size and placed #4 in Nov. 2014

•  when ranked by size (second only to full Sequoia BG/Q)

§  Scale 40 graph (17.6 trillion edges)
•  217 TB

§  Catalyst cluster – 300 nodes
•  24 cores per node
•  128GB DRAM + 800 GB NVRAM per node
•  24 processes per node

§  DI-MMAP runtime
•  2.4x improvement over Linux mmap

Graph500 #4 – Distributed node-local

Lawrence Livermore National Laboratory LLNL-PRES-671909
10

Search index is too large
to fit in traditional memory
so stored on the flash
drive of each Catalyst
node and accessed as if
in memory. DI-MMAP
provides 3-4x speedup.

Large scale analysis Size Run time Result
1000 Genome Project
(2,646 people)

90 Terabases 6 days Identified 8 million new
genetic variants

Human Microbiome
(9,113 samples)

18 Terabases 38 hours New human sequence and
microbial species

Metagenomic analysis conducted on an unprecedented
scale using NVRAM and Catalyst

Lawrence Livermore National Laboratory LLNL-PRES-671909
11

Larger, more accurate DB means
better classification

1

10

H
um

an
 c

on
te

nt
 in

cr
ea

se
 fa

ct
or

w/GenBank add 1000 G

Lawrence Livermore National Laboratory LLNL-PRES-671909
12

§  Go beyond coarse system-level tuning
•  Per-application or per-data structure tuning
•  Data-dependent decisions

§  Advanced features
•  Variable sized I/O requests (runtime-level superpages)
—  allow I/O at non-native page size
—  optimize I/O transfer to maximize bus utilization
—  tune per-buffer or data-structure

•  Lightweight buffer introspection
—  non-faulting page residency check (data-dependent scheduling)
—  page NUMA-node location (spatial scheduling)
—  page fault frequency (identify hot or cold pages)

Next generation runtime interfaces

Lawrence Livermore National Laboratory LLNL-PRES-671909
13

Mapping metrics back to application
space
§  Visualize (overlay) active buffer pages on application data structures

•  Streamlines are shown from seed point (silver sphere) to termination
•  Pink cubes show the active pages in the buffer for the current time step

§  Spatial distribution of buffered pages w.r.t. streamlines illustrate reuse within streamline
clusters
•  Identifiers potential opportunity for intelligent pre-fetching

§  Fully tracing long streamlines serially leads to less data reuse between seeds

Time
Step
307

Time
Step
327

Lawrence Livermore National Laboratory LLNL-PRES-671909
14

State of the practice:
§  Job allocation on stateless nodes

•  Primary concern is node-allocation within routing
topology

Challenges:
§  Is my data in the system
§  How is my data laid out

•  Does the data layout match the MPI rank layout

§  Increased read activity to parallel file systems

Managing NVRAM with HPC job
scheduling

Lawrence Livermore National Laboratory LLNL-PRES-671909
15

Current policy:
§  Data-retention

•  Leave on node (allows reuse)
•  Flush on demand (job allocation)
•  No guarantee from allocation to allocation

§  Security
•  Standard Linux user permissions

Future work:
§  Scheduling NVRAM resources

•  Guarantee that there is sufficient capacity
•  Re-allocating nodes that your data (in the correct distribution)

§  Building global, distributed store
•  State between HPC jobs

Managing NVRAM with HPC job
scheduling

Lawrence Livermore National Laboratory LLNL-PRES-671909
16

§  With the right system software stack and algorithms:
•  NVRAM can be an effective tier in the memory hierarchy
•  Invisible to the application programmer as a separate resource.

§  Solve larger problems
§  Reduces the amount of main memory needed (thus reducing power)

•  provides capacity
•  unused capacity does not require dynamic power

§  It requires a fresh look algorithm design:
•  minimize latency sensitivity
•  transform to be throughout driven

§  I/O performance scales well with ratio of buffer size to problem size
§  Optimized caching in runtime can minimize NVRAM perceived

latency, wear, and power

Conclusions:
Leveraging NVRAM in HPC

