
LLNL-PRES-671909 
This work was performed under the auspices of the U.S. Department  
of Energy by Lawrence Livermore National Laboratory under Contract  
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC 

Leveraging Flash in HPC Systems 
IEEE MSST 
June 3, 2015 



Lawrence Livermore National Laboratory LLNL-PRES-671909 
2 

§  HPC including node-local and near-line NVRAM 
•  NVRAM bridges memory/storage latency gap 

§  Use cases: 
•  Persistent data structures – reuse / save critical state 
•  In-situ data staging – platform for coupling analysis with simulation 
•  Extend memory – solve larger problems 

§  Use memory-mapping interface to access NVRAM 
•  Exposes file as linear memory region 
•  Simple load-store interface 
•  Handle external data as internal data structures 
•  Buffering and I/O are implicitly handled by O/S + runtime 

Opportunity 
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§  Today’s data-intensive HPC: 
•  Catalyst 
—  150 teraflop/s: 324 nodes, 7776 cores 
—  40 TB DRAM + 253 TB Flash 
—  Each node: 128 GiB DRAM + 800 GiB Flash 

§  Future NNSA’s ASC HPC: 
•  Sierra 
—  120-150 petaflop/s 
—  2.1-2.7 PB DRAM + 3.3-4.2 PB Flash 
—  Each node: 512GiB DRAM+HBM & 800 GiB NVMe Flash 

Bring NVRAM into HPC 
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§  Enable scalable out-of-core computations for data-
intensive computing. 

§  Effectively integrate non-volatile random access 
memory into the HPC node’s memory architecture. 

§  Address data-intensive computing scalability 
challenges: 
•  Use node-local NVRAM to support larger working sets  
•  DRAM-cached NVRAM to extend main memory 

§  Allow latency-tolerant applications to be oblivious to 
transitions from dynamic to persistent memory when 
accessing out-of-core data. 

Motivation 
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§  Linux memory map runtime: 
•  Optimized for shared libraries 
•  Does not expect memory-mapped data to churn 
•  Does not expect memory-mapped data to exceed 

memory capacity 

§  Data-Intensive Memory-Map runtime (DI-MMAP): 
•  Optimized for frequent evictions 
•  Optimized for highly concurrent access 
•  Expects to churn memory-mapped data 

Tuning memory-mapped I/O for data-
intensive applications 
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Advanced buffer management and 
caching techniques 

Minimize the amount of effort needed to find a page to evict: 

§  In the steady state a page is evicted on each page fault 

§  Track recently evicted pages to maintain temporal reuse 

§  Allow bulk TLB operations to reduce inter-processor interrupts 

DI-MMAP Buffer

Primary FIFO?

Hotpage FIFO

Eviction Queue

is a hot page

remove from
Page Tables

page fault

page 
evicted

Free Page List

TLB Flush / 
writeback page

DI-MMAP Buffer Page Location Table
 & Fault History Table

page recovered

Writeback Queue? dirty
clean

 

Fault
Sequence
Window 



Lawrence Livermore National Laboratory LLNL-PRES-671909 
7 

§  Large-scale graph analysis 
§  Metagenomic analysis 
§  Streamline tracing 

§  Characteristics of data-intensive applications: 
•  Large data sets 
•  Large working sets that exceed capacity of main memory  
•  Memory bound 

—  irregular data access 
—  latency sensitive 
—  minimal computation 

§  Methods of tuning applications for NVRAM (adding latency-tolerance): 
•  Concurrent I/O 
•  Avoid bulk synchronous communication  
•  Potentially asynchronous execution 

Experience with data-intensive 
applications 
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§  HavoqGT Graph Library 
•  BFS, SSSP, Connected components, K-core, PageRank 
•  Level-asynchronous 
•  Delegate-partitioning 
•  Highly concurrent 
—  Multi-process and multi-thread implementations 

Solving larger problems: 
§  Distributed memory (multi-process) (300 nodes) 

•  In-memory (DRAM Only): Scale 36 
•  External-memory (DRAM+NVRAM): Scale 40 

§  Single node 
•  In-memory (DRAM Only): Scale 28 
•  External-memory (DRAM+NVRAM): Scale 32 

Graph Analytics (BFS Graph500) 
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§  HavoqGT Graph Library – BFS 
§  Tied for 2nd in size and placed #4 in Nov. 2014 

•  when ranked by size (second only to full Sequoia BG/Q) 

§  Scale 40 graph (17.6 trillion edges) 
•  217 TB 

§  Catalyst cluster – 300 nodes 
•  24 cores per node 
•  128GB DRAM + 800 GB NVRAM per node 
•  24 processes per node 

§  DI-MMAP runtime 
•  2.4x improvement over Linux mmap 

Graph500 #4 – Distributed node-local 
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Search index is too large 
to fit in traditional memory 
so stored on the flash 
drive of each Catalyst 
node and accessed as if 
in memory. DI-MMAP 
provides 3-4x speedup. 

Large scale analysis Size Run time Result 
1000 Genome Project 
(2,646 people) 

90 Terabases 6 days Identified 8 million new 
genetic variants 

Human Microbiome 
(9,113 samples) 

18 Terabases 38 hours New human sequence and 
microbial species 

Metagenomic analysis conducted on an unprecedented 
scale using NVRAM and Catalyst 
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Larger, more accurate DB means 
better classification 
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§  Go beyond coarse system-level tuning 
•  Per-application or per-data structure tuning 
•  Data-dependent decisions 

§  Advanced features 
•  Variable sized I/O requests (runtime-level superpages) 
—  allow I/O at non-native page size 
—  optimize I/O transfer to maximize bus utilization 
—  tune per-buffer or data-structure  

•  Lightweight buffer introspection 
—  non-faulting page residency check (data-dependent scheduling) 
—  page NUMA-node location (spatial scheduling) 
—  page fault frequency (identify hot or cold pages) 

Next generation runtime interfaces 
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Mapping metrics back to application 
space 
§  Visualize (overlay) active buffer pages on application data structures 

•  Streamlines are shown from seed point (silver sphere) to termination 
•  Pink cubes show the active pages in the buffer for the current time step 

§  Spatial distribution of buffered pages w.r.t. streamlines illustrate reuse within streamline 
clusters 
•  Identifiers potential opportunity for intelligent pre-fetching 

§  Fully tracing long streamlines serially leads to less data reuse between seeds 
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State of the practice: 
§  Job allocation on stateless nodes 

•  Primary concern is node-allocation within routing 
topology 

Challenges: 
§  Is my data in the system 
§  How is my data laid out 

•  Does the data layout match the MPI rank layout 

§  Increased read activity to parallel file systems 

Managing NVRAM with HPC job 
scheduling 
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Current policy: 
§  Data-retention 

•  Leave on node (allows reuse) 
•  Flush on demand (job allocation) 
•  No guarantee from allocation to allocation 

§  Security 
•  Standard Linux user permissions 

Future work: 
§  Scheduling NVRAM resources 

•  Guarantee that there is sufficient capacity 
•  Re-allocating nodes that your data (in the correct distribution) 

§  Building global, distributed store 
•  State between HPC jobs 

Managing NVRAM with HPC job 
scheduling 
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§  With the right system software stack and algorithms: 
•  NVRAM can be an effective tier in the memory hierarchy 
•  Invisible to the application programmer as a separate resource.  

§  Solve larger problems 
§  Reduces the amount of main memory needed (thus reducing power) 

•  provides capacity 
•  unused capacity does not require dynamic power 

§  It requires a fresh look algorithm design: 
•  minimize latency sensitivity 
•  transform to be throughout driven 

§  I/O performance scales well with ratio of buffer size to problem size 
§  Optimized caching in runtime can minimize NVRAM perceived 

latency, wear, and power 

Conclusions: 
Leveraging NVRAM in HPC 




