Leveraging Flash in HPC Systems IEEE MSST June 3, 2015

Lawrence Livermore National Laboratory

Brian Van Essen, CASC

LLNL-PRES-671909

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Opportunity

- HPC including node-local and near-line NVRAM
 - NVRAM bridges memory/storage latency gap
- Use cases:
 - Persistent data structures reuse / save critical state
 - In-situ data staging platform for coupling analysis with simulation
 - Extend memory solve larger problems
- Use memory-mapping interface to access NVRAM
 - Exposes file as linear memory region
 - Simple load-store interface
 - Handle external data as internal data structures
 - Buffering and I/O are implicitly handled by O/S + runtime

Bring NVRAM into HPC

- Today's data-intensive HPC:
 - Catalyst
 - 150 teraflop/s: 324 nodes, 7776 cores
 - 40 TB DRAM + 253 TB Flash
 - Each node: 128 GiB DRAM + 800 GiB Flash
- Future NNSA's ASC HPC:
 - Sierra
 - 120-150 petaflop/s
 - 2.1-2.7 PB DRAM + 3.3-4.2 PB Flash
 - Each node: 512GiB DRAM+HBM & 800 GiB NVMe Flash

Motivation

- Enable scalable out-of-core computations for dataintensive computing.
- Effectively integrate non-volatile random access memory into the HPC node's memory architecture.
- Address data-intensive computing scalability challenges:
 - Use node-local NVRAM to support larger working sets
 - DRAM-cached NVRAM to extend main memory
- Allow latency-tolerant applications to be oblivious to transitions from dynamic to persistent memory when accessing out-of-core data.

Tuning memory-mapped I/O for dataintensive applications

- Linux memory map runtime:
 - Optimized for shared libraries
 - Does not expect memory-mapped data to churn
 - Does not expect memory-mapped data to exceed memory capacity

- Data-Intensive Memory-Map runtime (DI-MMAP):
 - Optimized for frequent evictions
 - Optimized for highly concurrent access
 - Expects to churn memory-mapped data

Advanced buffer management and caching techniques



Minimize the amount of effort needed to find a page to evict:

- In the steady state a page is evicted on each page fault
- Track recently evicted pages to maintain temporal reuse
- Allow bulk TLB operations to reduce inter-processor interrupts

Experience with data-intensive applications

- Large-scale graph analysis
- Metagenomic analysis
- Streamline tracing
- Characteristics of data-intensive applications:
 - Large data sets
 - Large working sets that exceed capacity of main memory
 - Memory bound
 - irregular data access
 - latency sensitive
 - minimal computation
- Methods of tuning applications for NVRAM (adding latency-tolerance):
 - Concurrent I/O
 - Avoid bulk synchronous communication
 - · Potentially asynchronous execution

Graph Analytics (BFS Graph500)

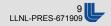
- HavoqGT Graph Library
 - BFS, SSSP, Connected components, K-core, PageRank
 - Level-asynchronous
 - Delegate-partitioning
 - Highly concurrent
 - Multi-process and multi-thread implementations

Solving larger problems:

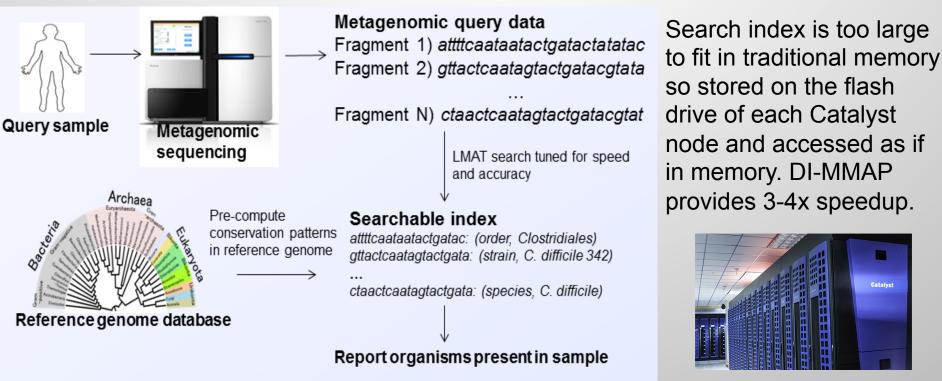
- Distributed memory (multi-process) (300 nodes)
 - In-memory (DRAM Only): Scale 36
 - External-memory (DRAM+NVRAM): Scale 40
- Single node
 - In-memory (DRAM Only): Scale 28
 - External-memory (DRAM+NVRAM): Scale 32

Graph500 #4 – Distributed node-local

- HavoqGT Graph Library BFS
- Tied for 2nd in size and placed #4 in Nov. 2014
 - when ranked by size (second only to full Sequoia BG/Q)
- Scale 40 graph (17.6 trillion edges)
 - 217 TB
- Catalyst cluster 300 nodes
 - 24 cores per node
 - 128GB DRAM + 800 GB NVRAM per node
 - 24 processes per node
- DI-MMAP runtime
 - 2.4x improvement over Linux mmap



Metagenomic analysis conducted on an unprecedented scale using NVRAM and Catalyst



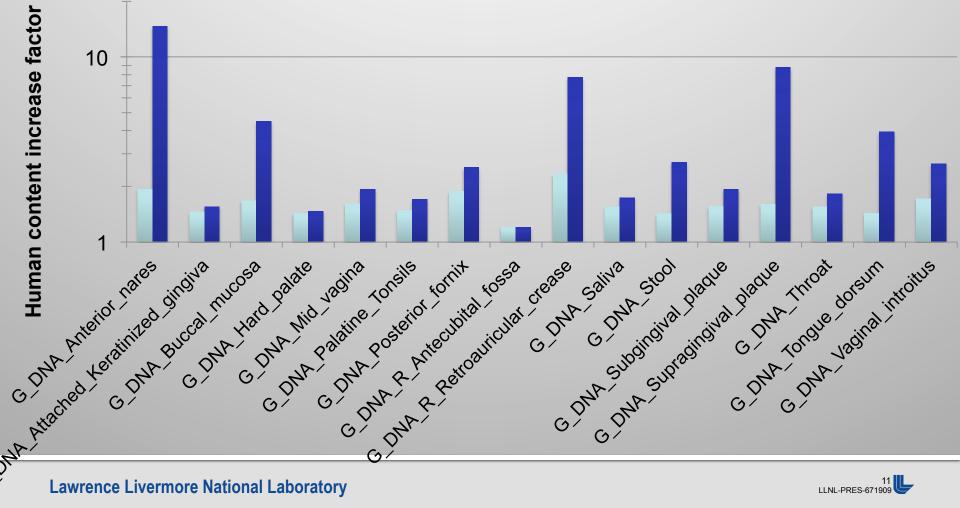
Large scale analysis	Size	Run time	Result
1000 Genome Project (2,646 people)	90 Terabases	6 days	Identified 8 million new genetic variants
Human Microbiome (9,113 samples)	18 Terabases	38 hours	New human sequence and microbial species

Lawrence Livermore National Laboratory

Catalyst

Larger, more accurate DB means **better classification**

w/GenBank add 1000 G

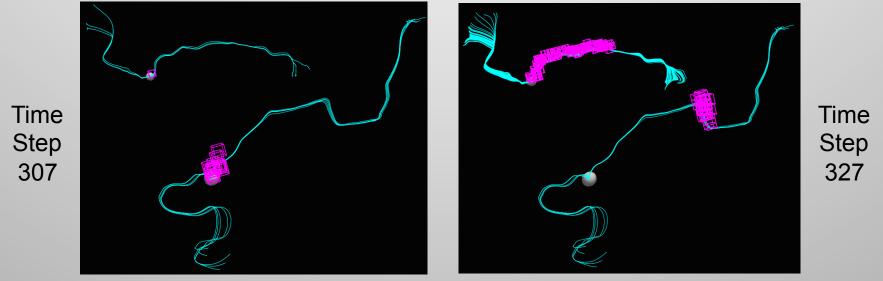


Next generation runtime interfaces

- Go beyond coarse system-level tuning
 - Per-application or per-data structure tuning
 - Data-dependent decisions
- Advanced features
 - Variable sized I/O requests (runtime-level superpages)
 - allow I/O at non-native page size
 - optimize I/O transfer to maximize bus utilization
 - tune per-buffer or data-structure
 - Lightweight buffer introspection
 - non-faulting page residency check (data-dependent scheduling)
 - page NUMA-node location (spatial scheduling)
 - page fault frequency (identify hot or cold pages)

Mapping metrics back to application space

- Visualize (overlay) active buffer pages on application data structures
 - Streamlines are shown from seed point (silver sphere) to termination
 - Pink cubes show the active pages in the buffer for the current time step



- Spatial distribution of buffered pages w.r.t. streamlines illustrate reuse within streamline clusters
 - · Identifiers potential opportunity for intelligent pre-fetching
- Fully tracing long streamlines serially leads to less data reuse between seeds

Lawrence Livermore National Laboratory

Managing NVRAM with HPC job scheduling

State of the practice:

- Job allocation on stateless nodes
 - Primary concern is node-allocation within routing topology

Challenges:

- Is my data in the system
- How is my data laid out
 - Does the data layout match the MPI rank layout
- Increased read activity to parallel file systems

Managing NVRAM with HPC job scheduling

Current policy:

- Data-retention
 - Leave on node (allows reuse)
 - Flush on demand (job allocation)
 - No guarantee from allocation to allocation
- Security
 - Standard Linux user permissions

Future work:

- Scheduling NVRAM resources
 - · Guarantee that there is sufficient capacity
 - Re-allocating nodes that your data (in the correct distribution)
- Building global, distributed store
 - State between HPC jobs

Conclusions: Leveraging NVRAM in HPC

- With the right system software stack and algorithms:
 - NVRAM can be an effective tier in the memory hierarchy
 - Invisible to the application programmer as a separate resource.
- Solve larger problems
- Reduces the amount of main memory needed (thus reducing power)
 - provides capacity
 - unused capacity does not require dynamic power
- It requires a fresh look algorithm design:
 - minimize latency sensitivity
 - transform to be throughout driven
- I/O performance scales well with ratio of buffer size to problem size
- Optimized caching in runtime can minimize NVRAM perceived latency, wear, and power

