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Abstract—Modern applications have their own update pro-
tocols to remain failure consistency. However, these protocols
are implemented without a comprehensive understanding of the
persistence properties of the underlying file systems and typically
optimized for disk-based storage. As a result, they are complex,
error-prone, and exhibit disappointing performance on emerging
fast non-volatile memories (NVMs) due to excessive data copies.

In this paper, we propose a novel file system optimized for non-
volatile main memories (NVMMs), FCFS, that offers a series of
easy-to-use file-based interfaces to enable both correctness and
high performance for applications to consistently update their
data on NVMM storage. Specifically, FCFS enables applications
to atomically and selectively update multiple files efficiently on
NVMM storage based on their consistency semantics. To this end,
FCFS employs an NVMM-optimized write-ahead logging (NoW)
mechanism to reduce the consistency cost by fully leveraging
NVMM’s byte addressability and high concurrency properties
but without relying on the page-cache layer, which consists of two
key techniques. First, Hybrid Fine-grained Logging decouples file
system metadata log and data log to avoid the false sharing of log
data and achieve a good tradeoff between the copy cost and log
tracking overhead. Second, Concurrently Selective Checkpointing
allows asynchronous checkpointing to be performed in parallel
and with minimum data copies in order to improve its efficiency.

Evaluations on an emulated NVMM device demonstrate that
FCFS’s failure-consistent update protocol outperforms conven-
tional protocols (i.e., write-ahead logging and shadow paging) by
up to 276 % and FCFS-based applications outperform the original
ones by up to 93%. Importantly, FCFS requires modifications
to no more than 0.06% of the original code for each ported
application in order to support failure consistency.

I. INTRODUCTION

Emerging fast non-volatile memory (NVM) technologies,
such as phase change memory (PCM), spin-torque transfer
RAM (STT-RAM), and resistive RAM (ReRAM), offer non-
volatility, high-speed, and byte-addressability. Placing NVM
to the main memory bus will produce non-volatile main
memory (NVMM), leading to memory-level performance for
storage [1], [2]. Since many important applications, including
text editors [3], relational databases [4], [5], and key-value
stores [6], [7], are currently implemented atop file systems
rather than directly on raw storage devices, the most straight-
forward way to use NVMM is building a file system on it
in which legacy applications can run on top of the NVMM-
based file system directly. Importantly, most of these appli-
cations need to update their data without risking corruption
after a failure as failure-consistent update is a fundamental
requirement for computer systems.

Nevertheless, existing NVMM-based file systems only pro-
vide mechanism for protecting their own metadata or data
from corruption while ignoring the corresponding protection
for application data, providing no consistent update protocols
for application data [8], [9], [10], [11], [12], [13]. As a result,
most applications shoulder the burden of implementing their
own update protocols to achieve failure consistency. However,
these update protocols are usually complex and error-prone
as applications are unaware of the persistence properties of
the underlying file systems [14], [15]. As an example, either
reordered durability due to the existence of write reordering
in the CPU caches or no guarantees for sector-granularity
atomicity in existing NVMM-based file systems may cause
applications to lose or corrupt data on system failures [14].
Moreover, most applications resort to the costly disk-optimized
logging mechanism to support failure consistency [4], [6],
[7], [5], leading to disappointing performance on emerging
NVMM storage due to excessive data copies.

In this paper, we propose a novel file system optimized for
non-volatile main memories, FCFS, that offers a series of easy-
to-use file-based interfaces to enable both correctness and high
performance for applications to consistently update their data
on NVMM storage. Though write-ahead logging (WAL) [16],
[17], [18], [19] and shadow paging [11] are the two dominate
approaches to support failure consistency, blithely applying
these techniques to ensure application’s failure consistency
in an NVMM-based file system can lead to disappointing
performance due to the following reasons.

First, WAL first writes the data to the log area which we
call logging. After the data has been completely written to
the log area, it can be copied to the data area which is called
checkpointing. While WAL works efficiently with hard disk
drive (HDD) as writing to the log area sequentially avoids
random disk access, this value is much lower for NVMM as
random and sequential access of NVMM are nearly identical.
In contrast, the overhead of double NVMM writes for every
update in WAL significantly reduces the system performance
due to the relatively long write latency of NVMM [1], [20].

Second, shadow paging performs an update to a new loca-
tion. Once the new data is persistent, it modifies the reference
to the old data to refer to the new data. However, it should
perform recursive out-of-place updates of the pointer blocks up
to the file system root to commit the updates. While the Short-
Circuit Shadow Paging (SCSP) technique is an optimization



for NVMM so that commit can happen at any locations in
the file system tree rather than must be propagated to the file
system root by leveraging NVMM’s byte addressability [11],
this optimization is mainly beneficial to single and small
atomic write operations which is ineffective for supporting
the application-level consistency in most cases, as applications
often require atomicity across multiple updates or files [21],
where atomic operations may span a large portion of the file
system tree, causing commit to occur at a common ancestor
which still incurs a significant amount of extra data copies.

To address these problems, FCFS implements an NVMM-

optimized WAL (NoW) scheme to support fast failure-
consistent updates on NVMM storage. NoW addresses the
challenges of how to efficiently use NVMM'’s byte address-
ability and high concurrency to enable fast and correct appli-
cation’s failure consistency in an NVMM-based file system.

Our proposed NoW scheme comprises two key ideas.

First, Hybrid Fine-grained Logging (HFL) decouples the file
system metadata log and data log to avoid the false sharing
of log data and achieve a good tradeoff between the copy
cost and log tracking overhead. To enable this, file system
metadata log is organized to use byte-level undo logging to
eliminate the high log tracking overhead. In contrast, HFL
uses specialized redo logging at the cacheline granularity for
file system data updates to achieve a good tradeoff between
the copy cost and log tracking overhead. To help applications
locate the latest uncheckpointed data in the redo log, FCFS
further employs a Two-Level Volatile Index (TLVI) to track
the uncheckpointed data versions at low cost in terms of
both performance and space. Second, Concurrently Selective
Checkpointing (CSC) allows committed updates to different
data blocks to be checkpointed concurrently to enhance the
concurrency of checkpointing, while committed updates of
the same data block are carefully handled using the Selective
Checkpointing Algorithm in order to ensure correctness and
reduce unnecessary data copies, thereby significantly improv-
ing the efficiency of checkpointing. To ensure correct failure
recovery due to out-of-order checkpointing, FCFS further
carefully handles the log deallocation by maintaining two
ordering properties.

This paper makes the following contributions.

e We are the first to design an NVMM-optimized file
system, FCFS, which supports application’s failure con-
sistency. Specifically, FCFS provides some easy-to-use
file-based interfaces so that applications can atomically
update multiple files according to their consistency se-
mantics. However, FCFS’s consistency protocol does not
rely on the page-cache layer.

o We propose Hybrid Fine-grained Logging (HFL) to avoid
the false sharing of log data and achieve a good tradeoff
between the copy cost and log tracking overhead by
decoupling the file system metadata log and data log.

o We propose Concurrently Selective Checkpointing (CSC)
to enhance the efficiency of checkpointing so as to
improve the overall performance. This technique allows
asynchronous checkpointing to be performed in parallel

and with minimum data copies.

« We implement FCFS in Linux kernel 3.11.0. Evaluations
on an emulated NVMM device demonstrate that FCFS’s
failure-consistent update protocol outperforms conven-
tional protocols (i.e., write-ahead logging and shadow
paging) by up to 276% and FCFS-based applications
outperform the original ones by up to 93%. Importantly,
FCFS requires modifications to no more than 0.06% of
the original code for each ported application in order to
support failure consistency.

II. BACKGROUND AND MOTIVATION
A. Failure Consistency

We borrow the concept from transaction management in
database systems to study the properties of failure consistency.
In database management systems, a transaction typically has
four properties: atomicity (A), consistency (C), isolation (I),
and durability (D). To provide ACID properties, transaction
management has two major component: (1) concurrency con-
trol to enable the execution of multiple transactions, and (2)
failure recovery to allow systems to recover from unexpected
failures [22], [23]. To distinguish from database-like ACID
transactions, failure consistency, in this paper, mainly refers
to failure recovery, which ensures the atomicity and durability
of application data so that the system is able to recover to a
consistent state from unexpected system failures. In contrast,
isolation of concurrent execution of multiple transactions is
the subject of concurrency control.

B. Motivation

To make applications become simpler, easier to develop, and
more reliable, most prior transactional file systems [24], [25],
[26], [27], [28], [21] are built on the page-cache based two-
level architecture design, which are designed for block-based
storage devices (e.g., hard disk or NAND flash). However,
they are inefficient for NVMM storage due to the following
two main reasons. First, redundant data copies between the
DRAM page-cache and NVMM storage causes significant
copy overhead. Second, the generic block layer also incurs
high software stack overhead. Given the anticipated high
performance characteristic of emerging NVMMs, recent re-
search [10], [8] has reported that these two overheads can
significantly degrade the NVMM system performance.

To avoid such overheads, state-of-the-art NVMM-optimized
file systems [8], [9], [10], [11], [12] enable direct access to
NVMM storage by eliminating the page-cache layer. At first
glance, simply adopting the direct access policy may seem
to be enough to provide fast application’s failure-consistent
updates in an NVMM-based file system using existing trans-
action mechanisms. However, this is not the case because
existing transaction mechanisms, such as write-ahead logging,
are optimized for disk-based storage, leading to suboptimal
performance on NVMM storage due to excessive data copies.

To overcome this problem, we propose an NVMM-
optimized WAL (NoW) scheme to support fast application’s
failure-consistent updates in an NVMM-based file system by



making full use of NVMM’s byte addressability and high
concurrency but without relying on the page-cache layer.

On one hand, direct access to NVMM storage allows system
designers to use fine-grained logging [10], [17], [29] rather
than block-based logging to reduce the logging cost of WAL.
Moreover, asynchronous checkpointing [16] is also an efficient
approach to improve the WAL performance by moving the
checkpointing latency off the critical path under low storage
load. On the other hand, these two dominate optimizations for
the WAL technique are far from providing fast and correct
application’s failure-consistent updates in an NVMM-based
file system because there are three major challenges that need
to be overcome.

First, the logging granularity should be carefully se-
lected so that a log unit will not be shared by different
transactions in order to ensure correctness. Suppose that
two transactions, Tx1 and Tx2, are running. Assume that
Tx1 commits successfully and the system crashes before Tx2
commits. To achieve failure consistency, all relevant log data
of Tx1 should be persisted to the file system during recovery
while that of Tx2 should not. However, suppose that a log
unit is shared by Tx1 and Tx2, then some inconsistent data
of Tx2 in this log unit will be falsely persisted to the file
system during recovery, leading to inconsistency. As a result,
avoiding the false sharing of log data is necessary in order to
ensure correct failure recovery.

Second, there is a tradeoff between the copy cost and log
tracking overhead which is affected by both the logging
granularity and logging mode. Logging-based mechanism
provides two alternative modes, which stores new data updates
(redo logging mode) or old data values (undo logging mode)
during the logging phase. In the redo logging mode, new
data is written to the redo log area before the checkpointing
phase during a transaction, all read operations have to first
search the log area as the latest data may reside in the log
area before being checkpointed to the file system. On one
hand, redo logging allows the system to reduce the copy cost
by performing checkpointing asynchronously and redesigning
the checkpointing algorithm (see Section III-E). On the other
hand, redo logging also introduces an additional tracking
overhead for indexing the uncheckpointed data in the redo log
area. More importantly, finer logging granularity causes larger
log tracking overhead, posing a new challenge on deciding the
appropriate logging granularity. On the contrary, undo logging
first journals the old data and then performs in-place update
to the file system for the new data, eliminating the tracking
overhead for log data but requiring double writes for every
update in the critical path.

Finally, simply performing checkpointing asynchronous-
ly does not work well for improving system performance
under high storage load. Even with asynchronous check-
pointing, checkpointing may still occur in the critical path
with increasing data storage needs, because the foreground
program threads may stall until the background checkpointing
threads reclaim enough free log space. Therefore, enhancing
the efficiency of checkpointing is still important in order to

reduce the performance cost of checkpointing by making full
use of the limited idle time to perform checkpointing, thereby
boosting the overall system performance. Two main reasons
limit the checkpointing performance: (1) serially replaying the
centralized log in the strict commit order to ensure correctness
limits the concurrency of checkpointing, which also inhibits
the system scalability, and (2) checkpointing data to their
original location constantly for every log block introduces
large write amplification, significantly degrading the NVMM
system performance.

III. FCFS DESIGN
A. FCFS’s Transactional Model

To avoid enforcing only one transactional model at the
application level, FCFS provides a relaxed transactional model
at the file system level, which gives application developers
more freedom to achieve the required transactional model for
their applications according to specific application semantic.
Specifically, FCFS only guarantees the failure consistency of
application data, while leaving the responsibility of isolation
and concurrency control to the application level. As an ex-
ample, if concurrent modifications to the same block or file
should be avoided based on specific application semantic, the
application developer should carefully handle this situation by
using existing concurrency control primitives, such as file lock
or mutex, in order to avoid data races. This is reasonable
because different applications have different isolation seman-
tics. While some applications (e.g., SQLite [4]) require strong
isolation, others (e.g., Kyoto Cabinet [6]) have already relaxed
their isolation level for performance optimization without
compromising the correctness [21].

To be more specifically, failure-consistent updates of appli-
cation data guarantees that a set of file system operations are
completed in all or none fashion. In FCFS, we group this set
of operations into an AD-transaction (as opposed to ACID-
transaction), which ensures atomicity and durability. From
the file system’s view, an AD-transaction guarantees that “all
relevant metadata and data updates made by the transaction
must be persisted atomically”. For the remainder of the paper,
we refer to AD-transaction simply as transaction.

To make data durable on NVMM storage, we flush the data
from CPU caches to NVMM using the cl1flush/mfence
instructions, and assume that the c1flush instruction guar-
antees that the flushing data actually reaches the durability
point (i.e., NVMM device). While Intel has proposed new
instructions (CLWB/ CLFLUSHOPT/ PCOMMIT) to improve the
cacheline flush performance and CPU cache efficiency [30],
they are still unavailable in existing hardware. This paper
therefore does not take them into consideration.

B. FCFS’s Transactional Interfaces

FCFS offers four new API calls to support application’s
transaction : (1) tx_begin (TxInfo) creates a new trans-
action; (2) tx_add (TxID, Fd) relates a file descriptor
to a designated transaction after the transaction creation;



int fd1 = open(/filel, “O_RDWR”) ;

int fd2 = open(/file2, “O_RDWR”) ;

struct TxInfo { int num; int *fdSet;} ;

struct TxInfo info ;

info.num = 2 ;

info.fdSet = (int *) malloc(2 * sizeof(int)) ;
info.fdSet[@] = fd1, info.fdSet[1] = fd2 ;

// transaction begin

unsigned long TxID = tx_begin(&info) ;
write(fdl, “datal”) ;

write(fd2, “data2”) ;

tx_commit(TxID) ; // commit the transaction
// transaction end

free(info.fdSet) ;

Fig. 1. Sample Code to use FCFS. Code snippet that implements failure-
consistent updates of two existing files with FCFS'’s transactional interfaces.

(3) tx_commit (TxID) commits a transaction; and (4)
tx_abort (TxID) cancels a transaction entirely.

In FCFS, to process a set of file system operations atom-
ically, applications only need to start a new transaction
using the tx_begin () call before these operations and
end the transaction with tx_commit () (or cancel it with
tx_abort ()) after them, rather than implementing complex
consistent update protocols. To let the file system know
which operations belong to a specified transaction, application
developers should relate the corresponding file descriptors to
the transaction, passing these information to the file system
within the tx_begin () call or using the tx_add () call
lazily after the transaction creation. After that, all related file
operations before the end of the transaction belongs to this
transaction. To finish the transaction, tx_commit () will
make all related updates durable, and tx_abort () will undo
all operations related to this transaction. Note that FCFS does
not alter the existing file I/O interfaces within a transaction,
which largely simplifies the use of its APIs.

Figure 1 shows a simple example in C of how to use FCFS
to atomically update two files. The program first opens the two
files. It then starts a new transaction using the tx_begin ()
call. The parameter info in tx_begin () specifies two file
descriptors (£d1 and £d2) that belong to this transaction.
Next, it performs two file write operations. It makes both
write operations durable with the tx_commit () call. The
atomicity that tx_commit () provides guarantees that either
both writes become durable, or neither does.

C. Overview

The goal of FCFS is to enforce application’s failure consis-
tency at the file system level with both correctness and high
performance. To this end, we propose an NVMM-optimized
WAL (NoW) scheme, which consists of two key techniques.

o Hybrid Fine-grained Logging (HFL), which decouples
the file system metadata log and data log, to avoid the
false sharing of log data and achieve a good tradeoff
between the copy cost and log tracking overhead.

o Concurrently Selective Checkpointing (CSC), where com-
mitted updates to different data blocks are checkpointed
concurrently to enhance the concurrency of checkpoint-
ing, while committed updates of the same data block
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are carefully handled using the Selective Checkpointing
Algorithm to ensure correctness and reduce unnecessary
data copies.

FCFS Layout. FCFS data layout is shown in Figure 2.
The superblock is followed by a journal (FCFS-Log) and
dynamically allocated blocks. FCFS-Log is further divided
into two areas, metadata log and data log, for different
objectives. We will discuss the FCFS-Log layout in detail in
Section III-D.

Allocator. Data allocation in FCFS is block-oriented, while
journal allocation is based on the data structure (i.e., log entry).
To avoid high logging and ordering overhead, FCFS maintains
all the allocator structures in volatile memory using free lists
rather than journaling them to the costly NVMM storage. The
consistency of allocators will be discussed in Section III-F.

Creating and running transactions. When applications
call tx_begin (), FCFS will create a new transaction and
assign a transaction ID (TxID). In a running transaction,
instead of directly overwriting the old-version data in the
persistent data blocks, either old data (undo) or new data
(redo) is journaled first to protect the old-version data. When
a free log entry or block is allocated to this transaction, its
state will change from Free to Pending (Figure 3). To ensure



correctness and achieve a good tradeoff between the copy
cost and log tracking overhead, FCFS uses the Hybrid Fine-
grained Logging technique, which decouples the file system
metadata log and data log. To avoid the false sharing of
log data and high log tracking overhead, FCFS uses byte-
granularity undo logging for file system metadata updates in a
transaction. In contrast, file system data updates are organized
using specialized redo logging at the cacheline granularity, to
avoid significant performance degradation caused by the costly
double-write overhead in undo logging in the case of relatively
large transactional data updates. In addition, FCFS keeps track
of the cacheline-granularity data version in the redo log space
using an efficient Tvo-Level Volatile Index. Details of FCFS’s
logging techniques will be discussed in Section III-D.

Committing/Aborting transactions. To commit a transac-
tion, FCFS first persists all relevant metadata updates and data
updates’ logs (including the data log entries and the associated
pending blocks) of this transaction to NVMM storage. It then
appends a special commit log entry to the log area and make
it durable, to indicate the completion of this transaction. When
a transaction commits, the states of the log entries belonging
to this transaction move from Pending to Committed. To abort
a transaction, FCFS first undoes its relevant metadata log in
the correct order, and then deallocates all the metadata log
entries, data log entries, and pending blocks associated with it
before making response to the application, to prevent conflicts
and ensure forward progress. Aborting a transaction causes the
states of its relevant log entries and pending blocks to change
from Pending to Free.

Checkpointing transactions. Committed updates in the
data redo log are periodically checkpointed to the file system.
To improve the checkpointing performance, FCFS uses Selec-
tive Checkpointing in a Concurrent manner. To improve the
concurrency of checkpointing by leveraging NVMM’s high
degree of parallelism, instead of serially checkpointing the
committed log data in the strict commit order [16], committed
modifications to different data blocks are checkpointed in
parallel, while committed updates of the same data block are
carefully handled using the Selective Checkpointing Algorithm
to ensure correctness. In this algorithm, committed data is
checkpointed to a carefully-selected block, which is selected
from a set of relevant pending blocks and their common
original data block, rather than to the original data block
constantly, so as to reduce data copies. When checkpointing
completes, the corresponding log space can be deallocated
except the new permanent data block. We will discuss the
details of FCFS’s checkpointing technique in Section III-E.

D. Hybrid Fine-grained Logging

To avoid the false sharing of log data and achieve a good
tradeoff between the copy cost and log tracking overhead, we
propose the Hybrid Fine-grained Logging (HFL) technique,
which decouples the file system metadata log and data log.

For file system metadata, the updates are typically small
and the smallest unshared unit may be a single file system
data structure (e.g., directory entry), which can be of arbitrary

size. To avoid the false sharing of log data, the logging
granularity for metadata updates should be byte. However,
byte-granularity redo logging can significantly increase the log
tracking overhead (e.g., every byte of log data may require
at least 16 bytes of index data, 8 bytes for the index key
and 8 bytes for the index value). To eliminate such overhead,
the HFL technique uses byte-level undo logging for metadata
updates so that the newest metadata is always written directly
to the file system data area within a transaction.

In contrast, the same strategy cannot be efficiently applied
to the data log as the size of data update may range from a
few bytes to even several megabytes, depending on the access
characteristics of specific workload. The drawback of double
writes in the critical path for every update in undo logging
can cause serious copy overhead and the associated write
amplification, degrading system performance significantly in
the case of relatively large transactional data updates. To
balance this tradeoff, the HFL technique uses redo logging
at the cacheline granularity for file system data updates. On
one hand, redo logging offers a new opportunity to reduce the
write amplification by redesigning the checkpointing algorithm
(see Section III-E). On the other hand, cacheline-level logging
also enables us to design a novel redo log index in order to
efficiently search the log data, which we will discuss later.
Note that though data can be accessed at arbitrary size, a
cacheline block exclusively belongs to one file, thus no log
data will be shared by different transactions as applications
take the responsibility for ensuring that accesses of concurrent
transactions to a single file must be ordered to avoid data races
according to their semantics.

In a running transaction, instead of writing the journals to
the volatile memory before commit, they are directly written
to the FCFS-Log and the pending blocks on NVMM storage to
avoid the data copy overhead between memory and storage.
For file system metadata updates, FCFS first saves the old-
version data by appending one or more log entries to the
metadata log and making them durable before performing
in-place updates to the file system. In contrast, file system
data updates are logged to the newly-allocated pending blocks
at the cacheline granularity, while their headers (i.e., journal
metadata) are logged in the globally-visible data log area so
that the pending blocks can be found during recovery. The
decouple of log data and log header of the data log also offers
a new opportunity for FCFS to support large transactions, as
the size of transactional updates is mainly limited by the free
space in the file system rather than a constant journal size.

To be able to identify the partially written log entries during
recovery, FCFS includes a valid flag in each log entry. To
remove the ordering between the persistence of the log entry
and the valid flag, FCFS enforces that each log entry never
crosses two separate cachelines, and leverages the architectural
guarantee in the processor caching hierarchy that writes to the
same cacheline are never reordered [10] to write a log entry.
To achieve this, the valid flag is written last when writing a
log entry to FCFS-Log, before the log entry is made durable.
When deallocating a log entry, FCFS atomically set the valid
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flag of the log entry from 1 to 0 and make it durable by
exploiting the processor feature for 8-byte atomic writes [11].

Redo Log Index. To help applications locate the latest
uncheckpointed data in the pending blocks quickly, we should
build an efficient index to search them. The simplest way
to achieve this is to organize all the updated cachelines
in the pending blocks using a tree structure or hash table.
However, this approach incurs high overhead. As we discussed
before, each uncheckpointed cacheline data (i.e., 64 bytes)
requires at least 16 bytes of index data, demanding more
than 25% of the total space of the pending blocks (including
the space overhead of internal nodes). While limiting the log
size by frequent checkpointing relieves this problem, it (1)
increases the possibility of conflict between the background
checkpointing threads and the foreground program processes,
(2) decreases the opportunity of write coalescing of commit-
ted blocks across transactions during checkpointing, and (3)
prevents large transaction support.

To reduce the index overhead while retaining the benefits of
large log size, we propose a new technique, Two-Level Volatile
Index (TLVI), to support quick search to cachelines in the
pending blocks. As shown in Figure 4, the TLVI technique
organizes different update versions of a file system data block
into a linked list, which we call pending list, in the commit
order. Within each version’s pending block, TLVI employs a
cacheline bitmap to identify the updated cachelines during the
transaction execution. In general, the TLVI technique consists
of two indices to locate the block that contains the latest data
of a specified cacheline: (1) the first-level index uses
a per-file radix tree structure [31] to locate the pending list
head of a data block, because there is a well implementation
of the radix tree structure in the Linux kernel. To this end, all
pending list heads of the data blocks of a file are organized
into one radix tree structure and the root pointer of the
radix tree is stored in each file’s inode structure; and (2) the
second-level index traverses the pending list from the
newest version to the oldest one until the corresponding bit of
its bitmap is 1, and then return its block number.

Take an example from Figure 4, the latest data of the 1st
cacheline of data block D locates in the pending block Ds,
while the latest data of the 3rd cacheline lies in the pending

block D, because the corresponding bit in D3’s bitmap is 0.

The TLVI technique incurs low overhead in terms of both
space and performance, while also providing the file system
more opportunities to (1) perform checkpointing lazily during
idle time, (2) benefit more from write coalescing in check-
pointing, and (3) support large transactions.

From the perspective of space, for example, in the worst
case, each 4 KB pending block requires a 16-bytes key-
value pair for the first-level index and an 8-bytes bitmap for
the second-level index, thus the log index requires less than
1% of the total space of the pending blocks. In addition,
we expect that larger block size makes the TLVI technique
even better. From the performance’s view, the TLVI technique
significantly reduces the space overhead of the index so that
the index structure can be maintained in the small-but-fast
volatile memory completely. However, the major challenge of
the TLVI technique is how to limit the complexity of traversing
the pending list in the second-level index. To resolve this,
the concurrent checkpointing technique (see Section III-E)
enables out-of-order checkpointing, which allows the back-
ground checkpointing threads to checkpoint the committed
blocks in a pending list immediately as needed, rather than
waiting for the strict commit order, as long as the size of the
pending list is larger than a predefined threshold which is set
to five blocks by default and is configurable.

E. Concurrently Selective Checkpointing

In FCFS, committed updates in the data redo log should be
checkpointed to the file system data area eventually. During
checkpointing, we must ensure that the process never applies
the older version log data on top of a newer one, otherwise it
leads to inconsistency. Common approaches for resolving this
problem either use synchronous checkpointing [22] or employ
asynchronous checkpointing [16] but perform it in the strict
commit order. However, synchronous checkpointing forces the
checkpointing latency to be always occurred in the critical
path. In contrast, sequentially asynchronous checkpointing
cannot fully utilize the high degree of parallelism of NVMM,
which also inhibits the scalability. More importantly, both
approaches constantly checkpoint the committed data to the
original data block, incurring large write amplification.

In this section, we argue that enhancing the efficiency of
asynchronous checkpointing is important, in order to reduce
the performance cost of checkpointing by making full use of
the limited idle time to perform checkpointing, especially with
increasing data storage needs, thereby boosting the overall
system performance. Towards this end, we propose a new
technique, Concurrently Selective Checkpointing (CSC), which
allows asynchronous checkpointing to be performed in parallel
and with minimum data copies.

In FCFS, checkpointing happens periodically when the
number of free blocks drops below a predefined threshold
(CHECKPOINT_THRESH), which is set to 10% of the total
blocks by default. With asynchronous checkpointing, a data
block may have different versions of pending blocks that are



committed in different transactions. While the committed up-
dates to different data blocks can be checkpointed in parallel,
different updates to the same data block should be handled
carefully to ensure correctness. With TLVI, different versions’
pending blocks of a data block have already been organized
into a pending list. Therefore, the CSC technique processes
the checkpointing of committed pending blocks across differ-
ent pending lists concurrently using multiple threads, while
checkpointing all committed pending blocks within a pending
list in one group using the Selective Checkpointing Algorithm.

To ensure the correct failure recovery due to the out-of-
order checkpointing, FCFS maintains two ordering properties
during the log deallocation.

Ordering Property 1. Different versions’ redo log spaces
of a data block should be deallocated in the correct commit
order; including the redo log entries and their corresponding
pending blocks. Suppose that two different versions’ redo log
entries of a data block, L and Lo (Lo is a newer version),
finish the checkpointing process and begin to be deallocated.
Assume that Lo is deallocated successfully but the system
crashes before deallocating L;. Upon recovery, L; will be
checkpointed to the file system while L, will not because
it is already deallocated, which leads to inconsistency. The
CSC technique resolves this issue by deallocating the log
entries following the pending list order after the completion
of checkpointing on this pending list, because the pending list
has already ensured the correct commit order. Moreover, a redo
log entry is deallocated before its associated pending block.

Ordering Property 2. A commit log entry cannot be
deallocated until all of its relevant undo and redo log spaces
have been successfully deallocated. Though the log entries
for each transaction are written to the FCFS-Log in the non-
consecutive manner, FCFS maintains a global committed list
in the volatile memory (Figure 2), where the log entries for
each committed transaction are linked within a consecutive
list and the commit log entry is located at the end. When
deallocating a log entry, its corresponding linked point will
also be deleted from the global committed list. Thus, FCFS can
deallocate a commit log entry only when its previous linked
point in the global committed list does not point to a log entry
that belongs to this transaction, because this situation indicates
that all its relevant log entries have already been deallocated
successfully. It is worth noting that all relevant undo log entries
of a transaction can be deallocated immediately as long as it
commits.

Selective Checkpointing Algorithm. To ensure correctness
and reduce the copy overhead, FCEFS checkpoints all com-
mitted pending blocks within a pending list in one group
using the Selective Checkpointing Algorithm (Algorithm 1).
The rationale behind this algorithm is that: To minimize the
copy cost of checkpointing, a new permanent data block,
which has the largest number of latest cachelines, is carefully
selected among all committed pending blocks and the original
permanent data block of this logic block (Step 1). Then,
only the rest latest cacheline data, which does not lie in this
new permanent data block, needs to be copied from other

Algorithm 1: Selective Checkpointing Algorithm

Input: ino: inode, lbn: logic_block_no

Output: no output, this function checkpoints all commit-
ted pending blocks of a logic data block.

1 selective checkpointing (ino, [bn) begin

2 origin_pbn < f£s_get_blockno (ino, lbn) ;

3 // Step 1

4 new_pbn < origin_pbn ;

5 maz_lcn < (the number of latest cachelines in origin_pbn) ;

6 for (each committed pending block cbn belonging to lbn) begin

7 if ((the number of latest cachelines in cbn) > max_lcn) then

8 new_pbn < cbn ;

9 mazx_lcn < (the number of latest cachelines in cbn) ;

/ Step 2

or (each committed pending block cbn belonging to [bn) begin
12 if cbn # new_pbn then

13 L Copy the latest cacheline data from cbn to new_pbn and

make it durable ;
14 if origin_pbn # new_pbn then

._.
=
Hh >~

15 Copy the latest cacheline data from origin_pbn to new_pbn
| and make it durable ;

16 // Step 3

17 if origin_pbn # new_pbn then

18 Modify the reference to origin_pbn to refer to new_pbn and
| make it durable ;

19 // Step 4

20 for (each committed pending block cbn belonging to lbn) begin

21 if cbn # new_pbn then

2 L Deallocate cbn ;

23 if origin_pbn # new_pbn then

24 L Deallocate origin_pbn ;

| D; is the newly-selected permanent data block
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Fig. 5. A Simple Example of the Selective Checkpointing Algorithm. Dg-D3
refer to different versions of data block D, among which Dy is the original
permanent data block and D1-D3 are the committed pending blocks. C;;
means the jth cacheline in the ith version of block D. The red one indicates
the latest cacheline of block D located in each version’s data block.

committed pending blocks and the original permanent data
block to this block based on their cacheline bitmaps and made
durable (Step 2). Finally, only an additional 8-bytes file system
block pointer may need to be atomically modified and made
durable to redirect from the original permanent data block to
the new permanent data block (Step 3).

Figure 5 shows a simple example of the Selective Check-
pointing Algorithm. Suppose that each block consists of six
cachelines and each cacheline is 64 bytes. In the first step, D3
is selected as the new permanent data block because it contains
the largest number of latest cachelines. Then, cacheline data
in Cys, C13, and Cyjs is copied from Dy, D1, and Dg to D3,
respectively, in the second step. Finally, we modify the file



system block pointer to Dy to refer to D3, and deallocate other
blocks (i.e., Dg-Ds). In the conventional WAL scheme, the
checkpointing program needs to copy all cacheline data from
Di-Ds to Dy respectively, which generates 1152-bytes data
copies. By contrast, FCFS’s Selective Checkpointing Algorithm
generates only three 64-bytes cacheline data copies and one
8-bytes pointer modification, which equals to only 200-bytes
data copies, significantly reducing the copy cost of checkpoint-
ing by fully leveraging NVMM'’s byte-addressability.

FE Recovery

Fast recovery is important to provide high system availabil-
ity and avoid data loss in the event of a failure. On restart
after an unexpected failure, each log entry in the FCFS-Log
area has one of the three statues: invalid (free), uncommitted
(pending), and committed. To provide fast recovery, FCFS only
undoes the uncommitted metadata log entires to revert the
effects of any uncommitted transactions, while delaying the
checkpointing of committed data log entries to amortize the
cost of checkpointing by rebuilding necessary DRAM data
structures for uncheckpointed transactions.

Recovery steps are as follows:

(1) Building an Index for All Committed TxIDs. All the log
entries in the FCFS-Log area will be scanned in the first step.
The type of each log entry (i.e., metadata log entry, data log
entry, or commit log entry) is identified using the special fype
field in each log entry. The goal of the first step is to identify
all valid commit log entries and then build an efficient volatile
index (e.g., hash table) for all of the committed TxIDs.

(2) Rebuilding DRAM Data Structures for Uncheckpointed
Redo Logs. With the tx_id field in each log entry and the index
of the committed TxIDs built in the first step, the recovery
process extracts all committed data log entries and invalids all
uncommitted data log entries by scanning the data log area in
the second step. Then, it sorts all committed data log entries by
the TxID using sort algorithms to indicate the correct commit
sequence. Finally, these committed data log entries are added
to the global committed list and the redo log index one by one
following the commit sequence.

(3) Applying Uncommitted Metadata Undo Logs. In the final
step, all uncommitted metadata log entries can be detected
similar to the second step. Unlike redo log, uncommitted undo
log entries in the same transaction should be reapplied in the
reverse commit sequence, because the same metadata may
have been updated multiple times in a transaction and each
update has an independent undo log record. To address this
issue, each metadata log entry has an extra sequence_id field
to identify the different versions of the same metadata in a
transaction. Then, all uncommitted metadata log entries of
the same transaction are sorted by the sequence_id. At last,
they are reapplied in the reverse commit sequence so that the
foremost consistent value can be applied to the file system,
while the committed metadata log entries are invalided.

After the above three steps, while some committed data has
not been checkpointed to the file system, the newest versions
of the uncheckpointed data can be found using the redo log

FCFS Metadata FCFS Data
Logentry Logentry
/*Log Entry: 64 B*/ /*Log Entry: 64 B*/
typedef struct{ typedef struct{
u8 type; u8 type;
u64 TxID; u64 TxID;
u64 addr; u64 ino;
ulé sequence_id; ué4 logic_block no;
u8 size; ué4 pointer_ addr;
u8 valid flag; u64 pending block_no;
char data[43]; u64 Dbitmap;
}fcfs_metadata_ le; u8 valid_flag;
char reserve[l4];
}fcfs_data le;

Fig. 6. FCFS Metadata and Data Log Entry Structures.

index, and the checkpointing can be performed lazily using
the global committed list and the pending lists in the redo
log index. Also, the effects of any uncommitted metadata log
entries have been reverted by applying them to the file system
in the correct order. As such, the data is guaranteed to be
consistent.

After correct recovery, FCFS ensures the allocator con-
sistency by walking the file system metadata to rebuild the
data allocator structure and adding all invalid log entries to
the corresponding free lists to rebuild the journal allocator
structures.

G. Legacy Application Support

To be able to support legacy applications without any
modifications, FCFS treats every system call from legacy
applications to the file system as an independent transaction if
its corresponding file has not been related to any transactions.
To this end, such system call (e.g., a write operation) will be
assigned a new transaction ID and committed automatically by
the file system before making respond to the applications. At
this time, FCFS provides a special semantic which resembles
to the journal data mode in the conventional journaling file
system (e.g., Ext4 in data_journal mode).

IV. IMPLEMENTATION

FCEFS is implemented based on the PMFS [10] file system in
Linux kernel 3.11.0, which modifies 5,212 lines of the original
code. FCFS shares the file system data structures with PMFS
but adds FCFS’s transactional interfaces using new syscalls
and the corresponding failure-consistent update protocol.

Figure 6 shows the structures of FCFS-based log entries.
For a metadata log entry, the log data is stored along with the
log head. We extend PMFS’s log entry structure to implement
FCFS’s metadata undo log entry structure, in which the extra
sequence_id field is added to indicate the metadata update
sequence within a transaction. Different from the metadata
log entry, the data log entry in FCFS only comprises the log
head, which means the log data is stored in the separate space
from the log head. As a result, the pending_block_no points
to the pending block which stores the actual log data of this
data log entry. Moreover, the ¢no (i.e., file inode number) and
the logic_block_no fields are used for the recovery program
to add a valid committed log entry to a specified redo log
index because each file has an independent index structure.



To support the Selective Checkpointing Algorithm, FCFS also
needs to journal the file system block pointer address (i.e.,
pointer_addr) where it stores the block pointer to the file
system permanent data block of this logic block. Finally, the
reserve array field does not store valid data but guarantees
that the size of a data log entry equals to a cacheline size so
that a log entry never crosses two separate cachelines.

V. APPLICATION CASE STUDIES

We have ported three real-world applications to FCEFS
to illustrate how applications can use FCFS’s transactional
interfaces. The applications include the SQLite [4] relational
database, the MySQL [5] relational database, and the Kyoto
Cabinet [6] key-value store. To port these applications to
FCFS in order to simplify the complex failure-consistent
update protocols of existing applications, we reuse the original
concurrency control code in each ported application, while
replacing its failure-consistent update protocol with FCFS-
based transactional interfaces, so that the original isolation
level that is provided by each application is not compromised.

A. SQLite

SQLite [4] is an embedded SQL database engine which is
widely used in smartphones and mobile computing field. To
support the atomicity of transaction execution (i.e., failure con-
sistency), SQLite provides two optional approaches, including
rollback journaling (RBJ) [32] and write-ahead logging (W-
AL) [33], for users to choose flexibly. In the RBJ mode, SQLite
will write a copy of the original unchanged database content
into a separate rollback journal file before writing changes into
the database file, so that the uncommitted changes can always
be rolled back. However, the WAL approach inverts this, in
which the original content is preserved in the database file and
the changes are appended into a separate WAL file, so that any
committed changes can always be redone.

We have ported SQLite-3.8.11 to FCES by replacing the
RBJ and WAL approaches with FCFS-based transactional
interfaces while ensuring the same level of failure consistency
as them. Surprisingly, FCFS’s change requires modifications
to just 53 lines of code (LoC), or 0.03% of the original SQLite
source code (169,486 LoC).

B. MySQOL

We use an open-source implementation of the MySQL
database, namely MariaDB [5], as one of our application
case studies. MariaDB is an enhanced, drop-in replacement
for MySQL which is widely used. Moreover, it comprises a
rich ecosystem of storage engines, among which InnoDB [34]
is a popular transactional storage engine. To support failure
consistency, InnoDB employs an interesting technique called
double-write [35], which means it will write data twice when
it performs table space writes.

We replace the double-write mechanism that is used by orig-
inal MariaDB’s InnoDB engine with FCFS-based transactional
interfaces to port the MariaDB-10.0.16 database to FCFS,
which requires modifications to only 289 LoC, or 0.02% of
its original source code (1,366,215 LoC).

C. Kyoto Cabinet

Kyoto Cabinet [6] is a library-based key-value store. Unlike
previous relational databases, it employs memory-mapped I/O
rather than file-based I/O to store the database content into
the underlying file system. Moreover, it supports the failure
consistency by using the write-ahead logging mechanism [36].

To port Kyotocabinet-1.2.76 to FCFS in order to replace its
write-ahead logging mechanism with FCFS’s failure-consistent
update protocol, we first alter all the database I/O operations
from using the memory-mapped I/O interface (i.e., memcpy())
to use the file-based I/O interfaces (i.e., read and write system
calls), and then add the corresponding FCFS-based transaction
begin (i.e., tx_begin()) and transaction end (i.e., tx_commit()
and tx_abort()) functions at the correct locations. The porting
efforts of this application requires changes to just 44 LoC, or
0.06% of its original code (73,945 LoC).

VI. EVALUATION

In this section, we present the evaluation results of FCFS
and answer the following questions:

(1) Does FCFS really preserve the consistency of application
data? (Section VI-B)

(2) How does FCFS’s failure-consistent update protocol com-
pare with existing protocols in terms of performance?
(Section VI-C)

(3) How sensitive are FCFS’s failure-consistent updates to the
variation of the transaction value size, the transaction idle
time, and the NVMM write latency? (Section VI-D)

(4) What is the failure-recovery performance of FCFS-based
protocol? (Section VI-E)

(5) How many performance benefits real-applications can
obtain from FCFS? (Section VI-F)

A. Experimental Setup

Because real NVMM device is not available for us yet,
we develop an NVMM performance emulator based on the
NVMM emulator used in Mnemosyne [16] to evaluate our
system. Our emulator uses DRAM to emulate NVMM and
emulates both the NVMM write latency and the NVMM write
bandwidth. The NVMM write latency is emulated by intro-
ducing an extra configurable software delay after executing
the clflush instruction, while the NVMM write bandwidth
is emulated by limiting the maximum number of concurrent
NVMM writing threads to (Byvarar/(1/Lnvaa)), where
Byv v indicates NVMM’s write bandwidth and L v prar
is NVMM’s write latency. Any overflow writing threads are
queued which will be woken up when one of the current
writing threads completes. To compare with conventional
transactional file system which is based on the block-based file
system, we also construct an NVMM-based block device em-
ulator NVMMBD) by modifying Linux’s RAM disk module
(brd device driver) and using the above NVMM performance
model to emulate the NVMM latency and bandwidth.

All the experiments are conducted on a x86_64 Linux
3.11.0 kernel machine which is configured with 2.1 GHz Intel
Xeon E5-2620 twelve-core processor and 16 GB physical



memory. Unless otherwise specified, we emulate NVMM by
setting the write latency and write bandwidth to 150 ns and 4
GB/s respectively, the configuration used in the Mnemosyne
project [16]. For all the experiments, each data-point is calcu-
lated using the average of at least 5 executions.

B. Correctness

FCFS should protect the consistency of application data
upon failures. However, the NVMM emulator does not actually
guarantee the data durability upon system failures because
of the volatility property of DRAM. As a result, we cannot
inject any real system failures (e.g., power interruptions or
kernel crashes) for the correctness evaluation of FCFS. To
simulate system failures as real as possible in order to verify
the correctness of FCFS, we inject two types of user-level
process failures into the FCFS-based MySQL database: failure
points and random process interruptions. Upon these user
process failures, we then unmount the FCFS file system
without cleaning the FCFS-Log space to simulate the system
failures. Finally, we mount the file system again to force failure
recovery, and then check the consistency of the database using
its own consistency checker tool to see whether FCFS can
preserve the integrity of application data.

First, we manually insert several failure points into the
FCFS-based MySQL database source code where we believe
are most likely to cause inconsistency (e.g., before or after
transaction commits). The result of triggering one of the failure
points in the database source code is that the running user
process will be terminated immediately. Then, we complement
the correctness evaluation by randomly interrupting the user
process when running the Sysbench [37] benchmark on the
FCFS-based MySQL database to further simulate sudden
failures. Upon restarting the file system from these process
failures, if mysglcheck [38] passes, then we conclude
that FCFS is failure-consistent for application data updates.
In our evaluations, we find that FCFS successfully passes
the mysglcheck in all failure simulation tests, including
18 failure-point tests and 200 random process interruptions.
Therefore, we conclude that FCFS preserves the consistency
of application data.

C. Overall Performance of Failure-Consistent Updates

To understand the performance benefits of FCFS-based
failure-consistent update protocol, we measure the perfor-
mance when running the microbenchmark of atomically over-
writing two existing files as shown in Figure 1. We compare
the FCFS-based failure-consistent update protocol with three
existing protocols (i.e., FG-WAL, SCSP, and Valor) and
a no-consistency (i.e., NC) system. We use PMFS [10] to
represent the NC system which has no guarantees for appli-
cation’s failure consistency. For a fair comparison, we choose
two representative and optimized implementation of the exist-
ing failure-consistent update protocols. The FG-WAL system
implements the failure-consistent update protocol in the NC
system using an optimized WAL scheme, namely fine-grained
(i.e., cacheline-level) write-ahead logging technique [10] for

file system data updates. The SCSP system implements the
failure-consistent update protocol in the NC system using
an optimized shadow paging scheme, namely short-circuit
shadow paging technique [11]. Finally, the Valor system is
an userspace implementation of the essential part of Valor [25],
which is built on the NVMMBD emulator and indicates the
conventional page-cache based transactional file system.

Microbenchmark: For each experiment, each running
thread performs 500,000 transactions. Inside each transaction,
it randomly chooses two files from the 1,000 existing 4 MB
files and performs two random 0-16 KB write calls in the two
files respectively. We set the NVMM size to 6 GB and the
background checkpointing process is triggered when there are
less than 10% free blocks.

1) Single-thread Evaluation: To focus on the consistency
effect, we first run the microbenchmark in a single thread
to prevent the effect of concurrency control. Figure 7(a)
shows the transaction latency (i.e., average execution time of
a transaction) of the afore-mentioned systems when running
the microbenchmark. As shown in this figure, the latency of
FCFS-based version is the lowest among all failure-consistent
versions - 49%, 78%, and 90% lower than the FG-WAL, SCSP,
and Valor system respectively, and it is only 6% higher than
the NC system. The source of this enhancement mainly comes
from three aspects: the fast data redo log index, the high
performance of the checkpointing process due to the concur-
rent execution and low data copy overhead of checkpointing,
and the elimination of the page-cache layer. As expected,
the NVMM write sizes of the three existing failure-consistent
protocols are surprisingly high as shown in Figure 7(b) - 67%,
267%, and 247% higher than the FCFS-based version for the
FG-WAL, SCSP, and Valor system respectively. Moreover, the
Valor system has comparative NVMM write size with the
SCSP system but introduces the page-cache layer overhead,
thereby having much higher latency than it.

2) Multi-thread Evaluation: To further evaluate the perfor-
mance with both consistency and concurrency control effects,
we run the microbenchmark in multiple threads and vary the
number of threads. To show the benefits of the concurrent
execution of checkpointing, we also compare FCFS with
FCFS-SO0C, which performs selective checkpointing for each
pending block asynchronously but in the strict commit order.
The result is shown in Figure 7(c).

Figure 7(c) shows the transaction throughput (i.e., aver-
age transactions per second). As shown in this figure, the
performance of Valor remains constant as the thread count
increases due to the strong isolation support only. In contrast,
the transaction throughput of FCFS increases as the number
of threads increases, demonstrating the benefits of relaxing the
isolation. However, the performance of FCFS-SOC remains
nearly constant when the thread count goes from 4 to 6. This
is because the transaction performance is constrained by the
strict-order checkpointing technique. In this figure, we also
observe that the performance gap between the FCFS system
and the NC system becomes large as the thread count increas-
es. This is because the background checkpointing threads in
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FCFS can hardly influence the performance of the foreground
processes when there is surplus NVMM write bandwidth in
the case of small thread count, while its performance is mainly
determined by the NVMM write size factor under large thread
count. Even with 6 threads, however, the FCFS-based version
still outperforms FG-WAL and SCSP by 74% and 276%
respectively due to the reduced NVMM write size.

D. Sensitivity Analysis

1) Sensitivity to the Transaction Value Size: We measure
the transaction throughput by varying the transaction value size
in the file write calls from 64 B to 16 KB, rather than choosing
it randomly, when running the previous microbenchmark.

Figure 8 shows the normalized transaction throughput with
different value sizes. From this figure, we observe that, as the
value size increases, the performance improvement of FCFS
over FG-WAL increases, while the performance degradation
of FCFS compared to NC decreases. For instance, the FCFS-
based system outperforms the FG-WAL system by only 3.5%
in the case of 64 B value size, but improves the performance
by more than 90% over FG-WAL when the value size is no
less than 4 KB. The main reason is that the storage overhead
is less significant than the software overhead (e.g., system call,
user-kernel mode switch, and the additional redo log index)
when the I/O size is small in the NVMM system. Conversely,
it can dominate the NVMM system performance degradation
when the I/O size becomes larger. We conclude that the price
FCFS pays for failure-consistency is modest for relatively
large transactional updates. In other words, FCFS gains more
benefits in workloads with larger transaction value sizes.
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2) Sensitivity to the Transaction Idle Time: To demonstrate
that FCFS can make full use of the limited idle time to perform
checkpointing thereby minimizing the consistency cost, we
run the previous microbenchmark and vary the percentage of
the transaction idle time from 0% (no idle time) to 90%.
Moreover, we compare FCFS with NC, FCFS-SOC, and
FCFS-SYNC. FCFS-SYNC implements a synchronous check-
pointing technique, which checkpoints the pending blocks to
the file system during the transaction commit phase using the
Selective Checkpointing Algorithm.

Figure 9 shows the transaction throughput of all evaluated
systems with different percentages of the idle time. We observe
that, when the percentage of the idle time is no less than
50%, both FCFS and FCFS-SOC have better performance than
FCFS-SYNC, and they outperform FCFS-SYNC by 34-36%.
This is mainly because the idle time is large enough so that the
background checkpointing speed can keep up with foreground
transaction execution speed even though the checkpointing is
performed in the strict commit order. However, with no more
than 10% idle time, FCFS-SOC underperforms FCFS-SYNC
by up to 53% (0% idle time) due to that the performance
of FCFS-SOC is constrained by the strict-order checkpoint-
ing technique. In contrast, the FCFS-based protocol enables
concurrent checkpointing by making full use of the NVMM
bandwidth which eliminates such bottleneck, thereby always
showing better performance than both FCFS-SOC and FCFS-
SYNC even in the case of small transaction idle time.

3) Sensitivity to the NVMM Write Latency: Figure 10
shows the transaction throughput performance when we vary
the NVMM write latency from 50 ns to 1600 ns running
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previous microbenchmark. In this figure, we observe that the
relative performance of FCFS to the NC system increases as
the NVMM write latency becomes longer. The main reason
is that, when the write latency of NVMM is close to that
of DRAM, the overhead of the redo log index (i.e., the TLVI
technique) can affect FCFS’s performance to some extent even
though the index structures are located in DRAM. In contrast,
when the write latency of NVMM is much larger than that
of DRAM, this overhead can be ignored because the large
performance gap between DRAM and NVMM decides that
all index accesses only account for a small portion of the total
overheads.

E. Recovery

To study the impact of the total log size (i.e., the size
of FCFS-Log and Pending Blocks) on the recovery time,
we change the CHECKPOINT_THRESH, the frequency of
checkpointing the pending blocks, to vary the total log size
from 1 GB to 5 GB to measure its implication on the
recovery time. To demonstrate the benefits of FCFS’s recovery
mechanism, we compare the recovery time of FCFS and
FCFS-IR. FCFS—-1IR is a version of FCFS which checkpoints
all committed transactions instantly during the recovery phase.

Figure 11 shows the recovery time of FCFS and FCFS-
IR for different log size configurations. In this figure, we
observe that, although both FCFS’s and FCFS-IR’s recovery
time increase almost linearly, the recovery time of FCFS-IR
is much longer than that of FCFS. For example, the recovery
time of FCFS is only 406 ms while that of FCFS-IR is close
to 13 seconds when the log size is 5 GB. Because FCFS’s
recovery mechanism relieves the burden of NVMM write
operations caused by checkpointing, this recovery performance
improvement with FCES is due to the amortized checkpointing
overhead. Therefore, FCFS provides high system availability.

FE. Real Application Performance

In this section, we present the evaluation results for three
real-world applications, including SQLite [4], MySQL [5], and
Kyoto Cabinet [6], respectively, to see how many performance
benefits they can obtain from FCFS. We compare the per-
formance and the NVMM write size of the FCFS-based ap-
plications, the original versions, and the no-consistency (NC)
versions. The results are shown in Figure 12 and Figure 13
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Fig. 11. Impact of Log Size on the Recovery Time. The log includes the
FCFS-Log and the associated pending blocks.

respectively. The original version represents the unmodified
application which guarantees data consistency. In contrast, the
NC version turns off the transactional part of each application
which provides no consistency guarantees. Both the original
and the NC versions run on an NVMMe-optimized file system
where we choose PMFS [10] by default. The performance of
the NC version indicates the corresponding theoretical lower
bound for providing data consistency in each application.

1) SQLite: We use the mobibench [39] benchmark tool to
evaluate the SQLite performance. This benchmark randomly
performs 10,000 database row update operations with a single
thread. The value size is randomly selected from O to 16 KB.
The SQLite is configured to use 4 KB page size by default.
Moreover, the original SQLite runs in two modes, including
the roll-back journal (RBJ) mode and the write-ahead logging
(WAL) mode, respectively, while the NC version runs in the
journal off mode.

We observe that the FCFS-based SQLite outperforms the
original SQLite with the RBJ and WAL mode by 80% and 46%
respectively. This performance gain is due to FCFS’s efficient
failure-consistent update protocol. The original SQLite with
the WAL mode runs checkpointing until the WAL becomes
about 1,000 pages in size [33]. Therefore, the NVMM write
size of the WAL method is 24% lower than that of the RBJ
approach because some writes can be combined during check-
pointing. However, the WAL-based SQLite still generates 56%
more writes than the FCFS-based one due to the constant
checkpointing mechanism. Moreover, the checkpointing of
the WAL-based SQLite will be run automatically by the
foreground process by default, which also impacts the system
performance. On the contrary, FCFS performs checkpointing
asynchronously and concurrently, thereby getting better per-
formance than both the RBJ and WAL approaches.

2) MySQL: We use two popular database benchmark tools,
including Sysbench [37] and YCSB [40], to evaluate the
performance of the MySQL database. We set Sysbench to the
OLTP mode and run the benchmark on a MySQL database
table that has 10,000,000 rows with 16 client threads for
10 minutes. YCSB provides six workloads to imitate web
applications’ data access models. We only evaluate workload
A using the MySQL implementation of the YCSB benchmark,
because the rest workloads are read-intensive where the FCFS-
based MySQL yields performance similar to the original



w
o

5

[N | L ~ Kyoto
-§,2 sl SQLite , MySVQL * Cabinet
o Mobibench Sysbench YCSB-A Kctreetest
< 1% [0 APPSR

= .10 201 493195 196
§20 s | o i
“(-"é """ o o N
N

c

[ 1.00

- 1.0

o L

N

IS

£ 0.5

o

z

o
o

Or. Or. R N Ors R N~ Op R N~ Oy R
’/g/b’/ A CpSO f/g/bCpSC ’/9/)7 CpSC‘ f/‘g/bCpSC‘
Uy, 3/ 3/ Y

8%,

Fig. 12. Performance Comparison for Real-Application Evaluations. Normal-
ized to the performance of the original application.

version. The NC-based MySQL server is started with the
innodb_doublewrite option being set to the off mode.

We observe that the FCFS-based version shows 84% and
93% better performance than the original version for the Sys-
bench and YCSB benchmark respectively. This performance
gain is attributed to two main reasons: (1) we find that the
default InnoDB page size is 16 KB, implying that the /O
size of most database operations is no less than 16 KB,
which makes the storage overhead becomes the main system
performance bottleneck as Section VI-D1 discussed, and (2)
the large reduction of the NVMM write size of the FCFS-
based protocol compared to the original InnoDB’s double-
write mechanism significantly reduces the storage overhead,
thereby leading to improved performance.

3) Kyoto Cabinet: We use Kyoto Cabinet’s kctreetest [6]
utility to evaluate the performance of Kyoto Cabinet. We run
kctreetest with 6 concurrent threads and each thread randomly
inserts 10,000 key-value pairs, with each pair containing O-
16 KB of randomly generated data, and then reads the keys
10,000 times. In addition, the database is opened with the
auto transaction option to ensure data consistency. The NC-
based Kyoto Cabinet is implemented by manually annotating
the journal area in the original source code.

As shown in the figures, the original Kyoto Cabinet gener-
ates about 2x more writes than the NC-based version because
it uses the write-ahead logging technique to support data
consistency. As a comparison, the FCFS-based version only
has about 1.16x more writes than the NC-based version which
is attributed to the effects of the Selective Checkpointing
Algorithm. The large reduction of the NVMM write size makes
the performance of the FCFS-based version 70% higher than
the original one.

VII. RELATED WORK

File System Consistency. In the past several decades, file
systems have devised a variety of different techniques to
prevent their data structures from corruption. Journaling [41],
[10], [42], [43], [44], copy-on-write [11], [45], [46], [47],
and soft updates [48] can handle inconsistency upon system
failures. In addition, recent study NOVA [13] also employs
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Fig. 13. NVMM Write Size Comparison for Real-Application Evaluations.
Normalized to the NVMM write size of the NC system.

a log-structured file system instead of journaling to provide
strong consistency guarantees on NVMM storage. However,
NOVA uses block-based (i.e., 4 KB) copy-on-write for each
file update, which would incur large write amplification for
small write operations because it needs to copy the unmodified
data from the old block to the new block. By contrast, while
FCEFS also writes the latest data to a new block (i.e., pending
block) at the logging phase, it only needs to perform the
copy-on-write at the cacheline granularity. Therefore, FCFS’s
transaction mechanism can work well with both small and
large transactional updates.

More importantly, none of the above-mentioned file systems
provides transactional primitives for applications to perform
multiple file operations selectively and atomically (see Ta-
ble I), implying that they can only guarantee the file system
level consistency rather than the application-level consistency.
For this reason, applications use their own ad-hoc update
protocols (e.g., journaling) to achieve failure consistency when
running on these file systems. Unfortunately, these application-
specific update protocols are complex and error-prone be-
cause they are unaware of the persistence properties of the
underlying file systems [14], [15]. Moreover, because these
file systems can not eliminate the journaling overheads of
the applications, they also hurt application’s performance.
Therefore, FCFS is the first work to provide the application-
level consistency with high performance on NVMM storage.

As PMEFS is not going to be maintained publicly [49]. We
believe our proposed mechanisms can also work on top of
NOVA which is sort of PMFS’s subsidiary. To this end, we
can alter NOVA’s block-based copy-on-write scheme with a
cacheline-level one, and then add our proposed volatile index
(i.e., the TLVI technique in Section III-D) to track the fine-
grained file data and the proposed checkpointing technique
(i.e., the CSC technique in Section III-E) to reduce the
overhead of checkpointing. Moreover, FCFS’s transactional
interfaces are also needed to be integrated to support the
application-level transactions.

Transactional File Systems. To support application’s trans-
action at the file system level, a series of transactional file



TABLE I
COMPARISON OF DIFFERENT FILE SYSTEMS ON NVMM STORAGE.

Property File System
=
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Atomicity
Single Metadata Operation Y Y Y Y Y Y Y Y
Single Data Operation N N Y Y N Y Y Y
Selective Multiple Operations | N N N N N N Y Y
Consistency Level F F F F F F A A
Performance L L L H H H L H

Note: To better distinguish the consistency guarantees among traditional
block-based file systems, we assume that NVMM provides sector-level atomic-
ity. Legend: Y - Yes, N - No; F - File System (i.e., file system level consistency),
A - Application (i.e., application-level consistency); L - Low, H- High. We
observe that only FCFS provides the application-level consistency with high
performance on NVMM storage.

systems [24], [25], [26], [27], [28], [21] have been proposed
to enable transactional file accesses. These transactional file
systems can be partitioned into two categories: (1) transac-
tional file systems providing full ACID properties [24], [25],
[26], [27] implement both failure consistency and concurrency
control but support only strong isolation, which prevent appli-
cations from optimizing their performance by the relaxation
of isolation; and (2) transactional file systems providing only
AD properties [28], [21], however, only guarantee failure con-
sistency, thereby giving application developers more freedom
to optimize the application performance according to different
isolation semantics.

FCFS is motivated by the second category but is designed
and optimized for NVMM storage rather than block-based
storage devices (e.g., hard disk or NAND flash). In contrast, all
existing transactional file systems are designed and optimized
for block-based storage devices, which highly rely on the
careful management of the in-memory structures in the OS
page cache. Therefore, they will introduce the high copy
and software stack overheads between the OS page cache
and NVMM storage, leading to disappointing performance
on NVMM storage [10], [8]. Moreover, Valor [25] resorts
to the costly disk-optimized logging technique to support
transactions which further introduces redundant data copies.
CFS [21] eliminates the logging overhead but relies on the
transactional flash storage. [28] also requires the file system to
support per-file writable snapshots. Therefore, none of them is
applicable to NVMM storage because of the poor performance
of the page-cache based design on NVMM storage and the
additional hardware or software requirements.

To overcome this issue, FCFS is designed to address the
challenges of how to provide fast transactional file accesses on
NVMM storage by leveraging NVMM’s unique characteristics
of byte addressability and high concurrency but without rely-
ing on the page-cache layer. Note that FCFS’s design does not
introduce the page cache and generic block layer overheads,
because both logging and checkpointing operations are directly
performed to NVMM storage via the memory interface.

Transactional Programming Models for NVMM Stor-
age. To eliminate the kernel and file abstraction overheads in
order to enable fast user-mode access to NVMM storage, there
have been a lot of efforts to provide new transactional models
or interfaces for programming with NVMM storage [16],
[22], [23], [17]. In such cases, while applications can fully
exploit the NVMM performance, they also lose the important
file system features such as sharing semantics and global
naming [9]. Different from them, FCFS provides transactional
accesses based on file I/O interfaces so that applications can be
ported to it more easier, because most existing applications [3],
[4], [5], [6], [7] are built and implemented using traditional
file I/O interfaces.

Hardware-based Transaction Mechanisms for NVMM
Storage. To overcome inefficiencies associated with logging
and shadow paging, recent research [50], [S1] has proposed
to extend the CPU hardware to guarantee failure consistency
efficiently on NVMM storage. For example, Kiln [50] employs
a non-volatile last-level CPU cache to enable atomic in-place
updates. However, this design cannot efficiently accommodate
large-granularity persistent updates in database and file system
applications due to the limited capacity of the non-volatile
cache [52]. By contrast, FCFS’s transaction mechanism can
support large transactions of even several gigabytes which
is more suitable for file system applications. ThyNVM [51]
also uses a hardware-assisted checkpointing approach to sup-
port software-transparent failure consistency. While Kiln and
ThyNVM effectively improve the transaction performance on
NVMM storage, both of them require hardware modifications
inside CPUs. Different from them, FCFS reduces the overhead
towards supporting failure consistency using a software-based
approach which does not require hardware support.

VIII. CONCLUSION

FCFS is the first NVMM-optimized file system which
enables both correctness and high performance for applica-
tions to consistently update their data on NVMM storage.
To enforce failure consistency efficiently on NVMM storage,
FCFS provides a series of easy-to-use file-based interfaces
and employs an NVMM-optimized WAL scheme to reduce
the overhead towards supporting failure consistency by fully
leveraging NVMM’s byte addressability and high concurrency
but without relying on the page-cache layer. Our experiments
demonstrate that FCFS’s failure-consistent update protocol and
FCFS-based applications significantly outperform convention-
al protocols and original applications, respectively.
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