
Exploiting Latency Variation for Access Conflict
Reduction of NAND Flash Memory
Jinhua Cui∗, Weiguo Wu∗, Xingjun Zhang∗, Jianhang Huang∗, Yinfeng Wang†

∗Xi’an Jiaotong University
cjhnicole@gmail.com, {wgwu, xjzhang}@mail.xjtu.edu.cn, huangjhsx@gmail.com

†ShenZhen Institute of Information Technology
wangyf@mailst.xjtu.edu.cn

Abstract—NAND flash memory has been widely used in storage
systems by offering greater read/write performance and lower
power consumption than mechanical hard drives. Recently, the
tradeoff between endurance, write speed, and read speed has been
exploited from many ways for I/O performance improvement,
which also induce the read/write latency variation. In this paper,
the latency variation is exploited in I/O scheduling for access
characteristic guided read and write latency minimization. First,
with the understanding of the relationship among read latency,
write latency and raw bit error rates (RBER), different ways to
exploit the relationship for read and write latency reduction is
discussed. Then, an I/O scheduling scheme is proposed by using
hotness and retention age of accessed data to determine the speed
of writes or reads, giving scheduling priority to fast writes and
fast reads for conflict reduction. Experiments with various traces
reveal that the proposed technique achieves significant read and
write performance improvements.

I. INTRODUCTION

NAND flash-based solid-state drives (SSDs) have gained
tremendous popularity in data centers and personal computers
by offering several advantages over hard disk drives (HDDs),
including higher random access performance, lower power
consumption, shock resistance and lack of noise [1]. Over
the past decade, the capacity of NAND flash memory has
been increasing continuously, as a result of technology scaling
from 65nm to the latest 10nm technology and the bit density
improvement from 1 bit per cell to the latest 6 bits per cell
[2, 3]. Unfortunately, as flash density increases, NAND flash
reliability is significantly degraded by several sources of errors
including retention noise, read disturbance noise, cell-to-cell
program interference noise and program/erase (P/E) cycling
noise, which brings in new challenges [4]. On one hand, write
speeds are decreased to compensate for the lifetime reductions
and raw bit error rates (RBER) growths. On the other hand,
stronger error correction capability driven by more complex
Error Correction Code (ECC) schemes such as Low-Density
Parity-Check Code (LDPC) would increase access latency
(read/write/erase operations) remarkably. Thus, the search for
methods to improve flash I/O performance is motivated.

A promising technique for I/O performance improvement
is to take the tradeoff between RBER, write speed, and read
speed into consideration. Flash read speed is highly correlated
with the RBER of flash memory cell. The higher the RBER,
the stronger the required ECC capability, as well as the
higher the complexity of ECC scheme and the slower the

read requests. Besides, there is a close relationship between
RBER and the speed of write operations. Several works [7,
8, 9] point out that using a smaller program step size ∆Vp
of the incremental step pulse programming (ISPP) scheme,
which gradually accumulates voltage to transcend the thresh-
old voltage, would decrease RBER at the cost of write speed
degradation. Therefore, of the three objectives: low RBER,
fast read, and fast write, any two can be optimized at the cost
of compromising the third.

Specifically, increasingly significant process variation (PV)
observed in flash memory [5, 6, 7, 24] makes this tradeoff
tunable separately for different blocks in flash memory. PV is
the phenomenon that pages in different memory blocks may
have largely different worst-case RBER under the same P/E
cycling, equivalent to largely different P/E cycling endurance
within different memory blocks when given the same ECC. It
is caused by significant variability of oxide thickness and gate
width/length, which continues to increase with the technology
scaling. Thus, in making the described tradeoff, approaches
can either assume worst-case block behavior, or optimize
separately for different block strengths.

Up to now, much effort has been invested in attempts to
exploit the tradeoff for accelerating performance, which can
be categorized into three groups. The first group of work is
about taking advantage of PV. The sole existing work to date
is presented by Shi et al. [7], using coarser ∆Vp for strong
pages which do not accumulate errors as fast and allocating
hot data to them. The second group is about adapting cell
programming/read-out parameters based on data retention age
– the length of time since a flash cell was programmed. Lower
read-out thresholds can be applied as the actual age of the data
increases [4], while higher programming voltages [22] or finer
∆Vp [20] can be used when the estimated retention time is
higher. Another group is to identify read-only/write-only pages
so that read and write operations can be speed up dependently
with less effect between each other [23]. When exploiting the
described tradeoff for improved I/O performance, the requests
are only partially accelerated such as read/write hot requests,
which inevitably lead to the significant read and write speed
variation and hence motivate the search for methods to exploit
it for further optimization.

In this paper, we propose a retention-aware and hotness-
aware I/O scheduling algorithm (RHIO) for NAND flash

memory. Our key insight is that the speed variation induced by
tradeoff-aware techniques can be exploited for maximal benefit
by giving scheduling priority to fast writes and fast reads. First,
in order to amplify the benefit brought by strong blocks, hot
writes are scheduled in priority, where the data is allocated to
stronger blocks with low write latency. Second, read requests
are sorted based on the actual retention age of accessed data,
and hot reads with low read latency are also preferentially
scheduled. Thus, employing RHIO can achieve dramatic I/O
performance improvement by using three techniques including
PV-aware write speed regulation, retention-aware read speed
regulation, and shortest-job-first scheduling.

We evaluated the effectiveness of the proposed algorithm
through representative workload traces and trace-based sim-
ulations, and results show that RHIO can achieve significant
performance improvement by 39.11% and 29.92% for read
and write requests, on average. Furthermore, by collecting
the percentages of prioritized write and read requests with
RHIO scheduler, results clearly demonstrate the effectiveness
of RHIO in reducing I/O latency especially for read and write
intensive applications.

The rest of this paper is organized as follows. Section II
presents the background and related work. Section III de-
scribes the design techniques and implementation issues of our
I/O scheduling scheme for flash storage devices. Experiments
and result analysis are presented in Section IV. Section V
concludes this paper with a summary of our findings.

II. BACKGROUND AND RELATED WORK

In this section, we first pursue a better understanding of the
tradeoff between RBER, read speed and write speed. Then,
previous studies related to this tradeoff are introduced for
further work in this area.

A. Tradeoff between RBER, Write Speed and Read Speed

The tradeoff between RBER, write speed, and read speed
is due to two relationships: 1) ECC complexity, the error
correction capability and read speed. 2) RBER, the program
step size and write speed. In this work, we take LDPC as the
default ECC scheme, which brings superior error correction
capability as well as read performance degradation at the same
time.

The first relationship is due to soft-decision memory sens-
ing, which uses more than one quantization levels between
two adjacent storage states [9]. On the one hand, as the
number of quantization levels used between two adjacent
storage states increases, the read operations which aim to sense
and digitally quantize the threshold voltage of each memory
cell are delayed. On the other hand, the number of sensing
levels also affects the error correction strength of LDPC
code decoding. More sensing levels mean a preciser memory
sensing in the context of NAND flash memory, leading to more
accurate input probability information of each bit for LDPC
code decoding, which improves its error correction capability.
Therefore, the tradeoff between error correction capability and
read speed can be explored.

RBER

READ WRITE

ISPP

Program Step Size

LDPC

Sensing Level

Retention Age

Long/Short Age

Process Variation

Strong/Weak Block

Fig. 1. Tradeoff between RBER, read speed and write speed.

The second relationship is due to the ISPP scheme. To
program data into flash memory, the ISPP scheme is com-
monly applied, which uses Fowler-Nordheim (FN) tunneling
to increase the Vth of flash memory cells by a certain step size
∆Vp, where ∆Vp directly affects write speed and RBER. On
the one hand, larger ∆Vp means less steps to the desired level,
thereby, resulting in shorter write latency. On the other hand,
the margin for tolerating retention errors is reduced as ∆Vp
gets larger, leading to higher RBER. Therefore, the tradeoff
between RBER and write speed can be studied.

Based on the precondition that RBER should be within the
error correction capability of the deployed LDPC code, the
tradeoff between RBER, read speed and write speed can be
concluded from above two relationships. For blocks with lower
RBER, either read or write speed can be improved, and vice
versa. In this work, we focus on the read and write speed
variation induced by such tradeoff.

B. Related Work

Several methods for improving I/O performance have been
suggested for exploiting the tradeoff between RBER, read
speed and write speed. They include making full use of strong
blocks induced by PV, taking the data with short retention time
requirement into account, and regulating program step size and
sensing level based on access characteristics. Figure 1 shows
the multiple ways for exploiting the tradeoff. To the best of
our knowledge, this is the first presentation of such a diagram
with the utilization of the tradeoff between RBER, write speed,
and read speed. We believe that it will be enlightening to
system designers for further optimizations of the flash I/O
performance and endurance.

1) Process variation: PV is the phenomenon that pages in
different memory blocks may have largely different worst-case
RBER under the same P/E cycling, equivalent to largely dif-
ferent P/E cycling endurance within different memory blocks
when given the same ECC. Previous work [5] showed that
the RBER of flash blocks tends to follow a log Gaussian-like
distribution. PV results in blocks with stronger and weaker
cells, which accumulate bit errors more slowly or faster,
respectively. In this work, PV is measured by periodically
reading blocks and finding out how many bits have to be
corrected by ECC.

Recently, techniques exploiting PV have mostly been fo-
cused on wear-leveling for its ability to make full use of the
strong blocks within SSDs to maximize lifetime. For example,
Pan et al. [5] extended flash memory lifetime by using RBER
statistics as the measurement of memory block wear-out pace

for the wear-leveling algorithm. Woo et al. [6] introduced a
new measure that predicts the remaining lifetime of a flash
block more accurately than the erase count based on the
findings that all the flash blocks could survive much longer
than the guaranteed numbers and the number of P/E cycles
vary significantly among blocks. To the authors’ knowledge,
the PV-aware data allocation method presented by Shi et al.
[7] is the only one which considers both PV and the tradeoff
between RBER and write speed, using coarser ∆Vp for strong
pages which do not accumulate errors as fast and allocating
blocks in a way that hotter data are matched with faster blocks.
In this paper, our hotness-aware write scheduling algorithm
also takes advantage of strong blocks based on the PV-aware
data allocation.

2) Retention age variation: Data retention age is the length
of time since a flash cell was programmed. Data retention
error, which is caused by the charges leaking from floating
gates as time goes by, is one of the dominant errors. Therefore,
the retention age variation would result in different RBERs,
which could be exploited in the same way as PV-aware
techniques do.

The impact of data retention skew on storage system per-
formance has been thoroughly analyzed. Some works focus
on minimizing refresh cost. For example, Luo et al. [21]
introduced a write-hotness aware retention management pol-
icy called WARM for NAND flash memory, which allows
flash controller to relax the flash retention time for write-
hot data without the need for refresh, by exploiting the high
write frequency of this data. Most recently Di et al. [24]
proposed a refresh minimization method by writing the data of
long retention time requirement into high endurance blocks.
Another set of approaches adapt cell programming/read-out
parameters for improved performance. For example, Cai et al.
[4] presented a retention optimized reading (ROR) method that
periodically learns a tight upper bound and applies the optimal
read reference voltage for each flash memory block online.
Shi et al. [22] proposed a retention trimming approach for
wearing reduction by decreasing programming voltages when
the estimated retention time is lower. Liu et al. [20] achieved
write response time speedup based on the estimated retention
time, by adapting both the programming step size ∆Vp and
ECC strength. These studies demonstrate that retention age
variation in workloads is evident and useful. In this paper, our
retention-aware read scheduling algorithm takes advantage of
data with low retention age based on the retention-aware ECC
adaptation.

When using PV-based fast write and retention age-based
fast read, the requests are accelerated in varing degrees, which
inevitably lead to the significant read and write speed variation.
Fortunately, I/O scheduler is a good candidate for taking ad-
vantage of speed variations to improve read/write performance.
While most flash-based I/O schedulers focused on how to
reduce the access conflict and improve chip utilization by
exploiting the internal parallelism of SSDs [8, 15, 18, 19],
we focus on the reduction of access conflict latency when
conflicts are unavoidable anymore, by taking advantage of

speed variations.

III. RETENTION-AWARE AND HOTNESS-AWARE I/O
SCHEDULING

In this section, a retention-aware and hotness-aware I/O
scheduling algorithm (RHIO) is proposed. The design princi-
ples of RHIO are based on the observation we draw from our
dataset and analyses: If a tradeoff-aware technique improves
I/O performance based on the variation characteristic of an
attribute, the detection of the attribute can be implemented in
I/O scheduling and thus the tradeoff induced speed variation
can be exploited for maximal benefit by giving scheduling
priority to fast writes and fast reads.

The basic idea of RHIO is to separate write requests into dif-
ferent queues depending on their hotness, while read requests
are separated based on the retention ages of accessed data.
For hot writes, their data are allocated to strong blocks using
fast write, given scheduling priority. For reads accessing data
with low retention ages, fast read is performed and scheduled
preferentially to minimize the access conflict latency of I/O
requests.

A. Hotness-aware Write Scheduling

Generally, the access latency of write requests is composed
of the access conflict latency, the data transfer latency and the
program latency. Compared with read requests, write requests
are more time-consuming, leading to serious access conflict
latency. The hotness-aware write scheduling scheme aims to
decrease access conflict latency by exploiting PV-induced
RBER variation, the tradeoff induced write speed variation
and the access characteristic induced hotness variation. The
advantages of separating data with different hotness have been
exploited in several researches [7, 10, 11, 12].

In the proposed hotness-aware write scheduling scheme, we
put hot data in strong blocks using fast write, and non-hot data
into normal blocks with normal writes. Hot data on strong
blocks is invalidated quickly, maximizing the benefit from
strong blocks which have low RBER growth rates per P/E
cycle. Furthermore, hot write requests are issued preferentially
to reduce the conflict latency of next few requests in the queue.
Note that the use of different hot/cold classification schemes
is orthogonal to the design of our scheme. In this work, we
identify hot/cold data according to the size of its file system
I/O request, which has been shown to be simple and effective
in several previous studies [7, 25]. It has been suggested that
the larger the request sizes, the colder the data. The hotness
groups are adopted as the main data structure to schedule the
requests with the same hotness into same groups.

The proposed method can guarantee that the high-hotness
write requests are not blocked by the low-hotness write
requests. However, it may cause the low-hotness requests
waiting in the queue for a long time without service. In
order to avoid potential starvation of cold requests, each
incoming request is assigned a deadline time that defines the
latest timepoint before which the request should be issued.
In a serial ATA (SATA) interface, the deadline information

Hotness Detection

Time Flow

W0

8

W1

2

W2

4

Request ID

Size

Hotness Groups

Hotness
Issued

Order

2

W3 W4

2

W5

4

W2

W5

4

W0

8

W1 W3 W4 W2 W5 W0

W1

W3

W4

2

Fig. 2. An example of hotness-aware write scheduling.

is configured by placing ’01b’ into the Priority (PRIO) field
of NCQ commands (READ FPDMA QUEUED and WRITE
FPDMA QUEUED) to mark them as isochronous, and then
filling the corresponding deadline values in the Isochronous
Command Completion (ICC) field [26]. Note that ICC Bit
7 is cleared to zero so that the time interval is fine-grained
which is 10 msec. The First In First Out (FIFO) queue which
links requests together in their arriving time order is adopted
by RHIO and periodically checked. When the head request
of the FIFO queue reaches the preset deadline restriction, the
request cannot be blocked anymore and will be immediately
processed to ensure that the hotness priority strategy does not
cause the potential starvation.

Figure 2 shows an example of hotness-aware write schedul-
ing. As shown in Figure 2, six write requests accessing the
same chip are added to the write request queue in the FIFO
order, from left to right, where Size(W0) = 8, Size(W1, W3,
W4) = 2, Size(W2, W5) = 4. Based on the hotness detection,
three hotness groups are created, where HG1 = {W1, W3,
W4}, HG2 = {W2, W5}, HG3 = {W0}. Finally, the hotness-
aware write scheduling scheme issues the I/O requests in
hotness groups, where all the hotness groups are processed
in the hotness order. By denoting PL(size) as the latency of
writing one page for requests which have size pages, N as the
number of requests enrolled in conflict and Oi as the issued
order of request i, the average request response time can be
defined as:

avg write =

(
N−1∑
i=0

[PL(sizei) ∗ sizei ∗ (N −Oi)]

)
/N (1)

In this example, we assume that PL(2)= 200µs, PL(4)=
220µs, and PL(8)= 240µs, the average request response time
of the proposed algorithm is 2053.3µs, while that of the normal
algorithm is 3320.0µs. Therefore, the write speed variation is
fully exploited in the hotness-aware write scheduling scheme
by preferentially scheduling the high hotness requests which
access strong blocks.

B. Retention-aware Read Scheduling

Similar to write requests, the access latency of read re-
quests is composed of the access conflict latency, the data
transfer latency and the sensing latency. Since overall system

Retention Detection

Time Flow

Request ID

Data Timestamp

Issued

Order

R4

14490900001449176400

R3R2

1449003600

R1

1448917200

R0

1448899200

R5

1448942400

R3 R4 R2 R5 R1 R0

Red-black Tree
R2

R3

R0

R1

R5 R4

Fig. 3. An example of retention-aware read scheduling.

performance tracks storages average read response time, per-
formance of read requests is critical. Therefore, read and write
separation is commonly used to prioritize the scheduling of
read requests, which guarantees that the read requests are not
blocked by the time-consuming write requests. In this work,
the retention-aware read scheduling scheme aims to decrease
read conflict latency by exploiting the tradeoff induced read
speed variation and the access characteristic induced data
retention variation.

In the retention-aware read scheduling scheme, the read
requests are sorted according to the retention age of the data to
be read. For reads accessing data with low retention ages, fast
read is performed and scheduled preferentially to minimize
the access conflict latency of I/O requests. The identification
of retention age can be achieved by extending each mapping
entry in the FTL with a timestamp field and recording the
timestamp when data is programmed. Different from the
size-based hotness detection in write scheduling, the hotness
detection in read scheduling is based on the retention age,
which is an actual time instead of prediction time. Note that
since PV has been exploited when writing, we only consider
the RBER accumulation as a function of the data retention
age, without taking the strength of blocks into consideration.

The scheme is implemented in the host interface logic
(HIL), where the knowledge of both SSD specific characteris-
tics and the data programming timestamp recorded in the flash
translation layer (FTL) contributes to better device-specific
scheduling decisions for I/O requests. Note that the FIFO
queue proposed in hotness-aware write scheduling scheme also
plays a role in preventing the occurrence of read starvation.

Figure 3 shows an example of retention-aware read schedul-
ing. As shown in Figure 3, six read requests accessing the same
chip are added to the read request queue in the FIFO order,
from left to right. Based on the retention detection, the red-
black tree is created. Since the timestamp of data accessed by
R3 is the largest, which means the data is newest, R3 is the
first request to be issued.

With the combination of hotness-aware write scheduling and
retention-aware read scheduling, the implementation of RHIO
needs to maintain a hotness group list and a red-black tree
in the I/O queue. Since the queue length of I/O scheduler is
limited, the storage cost is negligible. The major computation
overhead of the proposed method includes the time over-

m d s s r c p r n r s r c h s t g u s r w d e v w e b A V G
0 0

0 2

0 4

0 6

0 8

1 0

No

rm
aliz

ed
Re

ad
La

ten
cy

 N O O P
 P V - W
 R T - R
 R H I O

Fig. 4. Normalized average latency for read requests.

head incurred by finding the proper hotness group for write
requests and inserting read requests into the red-black tree,
where the complexity is proportional to the logarithm of the
queue length. In addition, the state-of-the-art I/O scheduling
algorithms, which exploit the internal parallelism of SSDs, are
somewhat orthogonal to our work.

IV. EXPERIMENT AND ANALYSIS

A. Experimental setup

In this paper, we use an event-driven simulator to further
demonstrate the effectiveness of the proposed RHIO. We
simulate a 128GB SSD with 8 channels, each of which is
connected to 8 flash memory chips. The RBER growth rate
s that follows a Bounded Gaussian distribution is used to
simulate the process variation of flash memory, where the
mean µ and the standard deviation σ are set as 3.7×10−4

and 9×10−5 respectively [5]. We use 600 µs as the 2bit/cell
NAND flash memory program latency when ∆Vp is 0.3, 90 µs
as memory sensing latency and 80 µs as data transfer latency
when using LDPC with seven reference voltages [8]. All these
settings are consistent with previous works.

For validation, we implement RHIO as well as baseline
NOOP scheduling, PV-W and RT-R. PV-W implements PV-
aware write performance improvement without conflict-aware
reordering, while RT-R implements retention-aware read per-
formance improvement without reordering I/O requests se-
quence. We evaluate our design using real world workloads
from the MSR Cambridge traces [14], which are widely used
in previous works to study SSD performance [13, 16, 17].

B. Experimental Results

In this section, the experiment results are presented and
analyzed. Read and write latency are commonly used to
evaluate scheduling performance. Figure 4 and Figure 5 show
the normalized average latency for read and write requests,
respectively. Compared with the traditional NOOP, RHIO
achieves significant read and write performance improvement.
For read requests, benefit from both retention induced read
speed variation and conflict-aware reordering, RHIO reduces
read latency by 39.11% on average. For write requests, RHIO
achieves 29.92% write latency reduction by giving scheduling
priority to hot write requests and allocating their data to strong

m d s s r c p r n r s r c h s t g u s r w d e v w e b A V G
0 0

0 2

0 4

0 6

0 8

1 0

No
rm

aliz
ed

Wr
ite

La
ten

cy

 N O O P
 R T - R
 P V - W
 R H I O

Fig. 5. Normalized average latency for write requests.

m d s s r c p r n r s r c h s t g u s r w d e v w e b A V G
0

1 0

2 0

3 0

4 0

Pe
rce

nta
ge

of
Pri

ori
tize

dR
equ

est
s(%

) W r i t e
R e a d

Fig. 6. Percentage of prioritized read and write requests in RHIO.

blocks with fast write. In addition, RHIO outperforms RT-R
and PV-W with read latency reduction by 7.04% and 38.56%
on average, respectively. This is because the retention-aware
read scheduling scheme reduces the conflict latency by pref-
erentially issuing fast read requests. Similar to read requests,
RHIO achieves 29.71% and 7.12% write latency reduction
compared to RT-R and PV-W respectively, by exploiting fast
write requests for conflict reduction.

However, the read and write performance improvements for
different traces are very different from each other. For exam-
ple, compared to PV-W, the greatest write latency reduction
observed in mds is 12.42%, while the smallest reduction ob-
served in web is only 2.82%. Compared to RT-R, the greatest
read latency reduction observed in src is 27.13%, while the
smallest reduction observed in mds is only 0.1%. In order to
understand the reason for different performance improvement
among traces, the percentages of prioritized write requests and
read requests collected with RHIO scheduler are presented in
Figure 6. By comparing the results with the write performance
improvements shown in Figure 5, it can be observed that the
write latency reduction compared to PV-W is larger when the
prioritized write ratio is higher. For example, the average write
latency for most traces whose prioritized write ratios are more
than 25% is significantly reduced, while that for usr and web
which only have 0.34% and 0.56% prioritized writes in RHIO,
compared to PV-W, is slightly reduced by 3.34% and 2.82%,
respectively. This is because more intensive I/Os in some
traces would induce more conflicts and longer conflict latency,
which have been reduced in our proposed RHIO by scheduling

more write requests that have fast speeds in priority. The
observation is also supported by the results of read. The
percentages of prioritized read requests for most applications
are within 5%, while for src, prn, usr and wdev, there are more
than 5% of read requests prioritized, which induces improved
read performance compared to RT-R. Overall, these results
clearly demonstrate the effectiveness of RHIO in reducing the
read and write latency, especially for read and write intensive
applications.

V. CONCLUSION

In this paper, we have proposed a retention-aware and
hotness-aware I/O scheduling algorithm (RHIO) for NAND
flash-based SSDs. Different from previous works, the latency
variation among blocks is exploited to guide both read and
write latency minimization. The key insight behind the design
of RHIO is that a hotness-aware write scheduling scheme can
reduce write conflict latency by giving scheduling priority to
hot write requests and allocating their data to strong blocks
with fast write, and a retention-aware read scheduling scheme
can reduce read conflict latency by preferentially scheduling
read requests which access data with low retention ages using
fast read. Extensive experimental results and detailed compar-
isons show that the proposed technique achieves significant
performance improvement by 39.11% and 29.92% for read
and write requests, on average.

ACKNOWLEDGMENT

The authors would like to thank our shepherd Peter
Desnoyers and the anonymous reviewers for their valuable
feedback. This work was supported in part by the Na-
tional Natural Science Foundation of China under grant
NO.91330117, National High-tech R&D Program of China
(863 Program) under Grant No.2014AA01A302, the Shenzhen
Scientific Plan under Grant No.JCYJ20130401095947230 and
No.JSGG20140519141854753.

REFERENCES

[1] C. Min, K. Kim, H.J. Cho, S.-W. Lee, and Y.I. Eom, “SFS: random write
considered harmful in solid state drives,” In Proceedings of Conference
on File and Storage Technologies(FAST), 2012, Feb., pp. 12-28.

[2] K.C. Ho, P.C. Fang, H.P. Li, C.Y. Wang, and H.C. Chang, “A 45nm 6b/cell
charge-trapping flash memory using LDPC-based ECC and drift-immune
soft-sensing engine,” in Proceedings of International Solid-State Circuits
Conference (ISSCC), 2013, Feb., pp. 222-223.

[3] S. Zuloaga, R. Liu, P.Y. Chen, and S. Yu, “Scaling 2-layer RRAM
cross-point array towards 10 nm node: A device-circuit co-design,”
in Proceedings of International Symposium on Circuits and Systems
(ISCAS), 2015, May, pp. 193-196.

[4] Y. Cai, Y. Luo, E.F. Haratsch, K. Mai, O. Mutlu, “Data retention in MLC
NAND flash memory: Characterization, optimization, and recovery,” in
Proceedings of International Symposium on High Performance Computer
Architecture (HPCA), 2015, February, pp. 551-563.

[5] Y.Y. Pan, G.Q. Dong, and T. Zhang, “Error rate-based wear-leveling
for NAND flash memory at highly scaled technology nodes,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21,
no. 7, pp. 1350-1354, 2013.

[6] Y.J. Woo, and J.S. Kim, “Diversifying wear index for MLC NAND flash
memory to extend the lifetime of SSDs,” in Proceedings of International
Conference on Embedded Software (EMSOFT), 2013, Sep., pp. 6-16.

[7] L. Shi, Y.J. Di, M.Y. Zhao, C.J. Xue, K.J. Wu, and H.-M. Sha, “Exploiting
Process Variation for Write Performance Improvement on NAND Flash
Memory Storage Systems,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 99, no. 7, pp. 1-4, 2015.

[8] Q. Li, L. Shi, C.M. Gao, K.J. Wu and et al, “Maximizing IO performance
via conflict reduction for flash memory storage systems,” in Proceedings
of Proceedings of the 2015 Design, Automation Test in Europe Conference
Exhibition(DATE), 2015, March, pp. 904-907.

[9] K. Zhao, W.Z. Zhao, H.B. Sun, T. Zhang, X.D. Zhang, and N.N. Zheng,
“LDPC-in-SSD: making advanced error correction codes work effectively
in solid state drives,” In Proceedings of Conference on File and Storage
Technologies(FAST), 2013, pp. 243-256.

[10] Y. Gala, E. Yaakobi, and A. Schuster, “Write once, get 50% free: Saving
SSD erase costs using WOM codes,” In Proceedings of Conference on
File and Storage Technologies(FAST), 2015, pp. 257-271.

[11] J. Xavier, N. David, and P. Ienne, “Wear unleveling: improving NAND
flash lifetime by balancing page endurance,” In Proceedings of Confer-
ence on File and Storage Technologies(FAST), 2014, pp. 47-59.

[12] O. Saher, and Y. Cassuto, “NAND flash architectures reducing write
amplification through multi-write codes,” In Proceedings of Symposium
on Mass Storage Systems and Technologies (MSST), 2014, June, pp. 1-10.

[13] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S.Zhang, “Performance
impact and interplay of SSD parallelism through advanced commands,
allocation strategy and data granularity,” In Proceedings of Proceedings
of the international conference on Supercomputing, 2011, May, pp. 96-
107.

[14] W. Schrder-Preikschat, J. Wilkes, R. Isaacs, D. Narayanan, and et al,
“Migrating server storage to SSDs: analysis of tradeoffs,” In Proceedings
of the 4th ACM European conference on Computer systems(EuroSys),
2009, p. 145.

[15] C. Gao, L. Shi, M. Zhao, C. Xue, K. Wu and E. Sha, “Exploiting
parallelism in i/o scheduling for access conflict minimization in flash-
based solid state drives,” In Proceedings of Symposium on Mass Storage
Systems and Technologies (MSST), 2014, June, pp. 1-11.

[16] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo and C. Ren, “Exploring and
exploiting the multilevel parallelism inside ssds for improved performance
and endurance,” IEEE Transactions on Computers, 62(6): 1141-1155,
2013.

[17] M. Jung and M. Kandemir, “An evaluation of different page allocation
strategies on high-speed ssds,” In Proceedings of Conference on File and
Storage Technologies(FAST), 2012, pp. 9.

[18] M. Bo and S. Wu, “Exploiting request characteristics and internal
parallelism to improve ssd performance,” In International Conference on
Computer Design (ICCD), 2015, October, pp. 447-450.

[19] M. Jung, W. Choi, S. Srikantaiah, J. Yoo and M. Kandemir, “HIOS:
a host interface I/O scheduler for solid state disks,” ACM SIGARCH
Computer Architecture News, 42(3): 289-300, 2014.

[20] R. Liu, C. Yang and W. Wu, “Optimizing NAND Flash-Based SSDs via
Retention Relaxation,” In Proceedings of Conference on File and Storage
Technologies(FAST), 2012.

[21] Y. Luo, Y. Cai, S. Ghose, J. Choi and O. Mutlu, “WARM: Improving
NAND Flash Memory Lifetime with Write-hotness Aware Retention
Management,” In Proceedings of Symposium on Mass Storage Systems
and Technologies (MSST), 2015, May, pp. 1-14.

[22] L. Shi, K. Wu, M. Zhao, C. Xue, D. Liu and E. Sha, “Retention
Trimming for Lifetime Improvement of Flash Memory Storage Systems
,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 35(1): 58-71, 2016.

[23] Q. Li, L. Shi, C. Xue, K. Wu, C. Ji, Q. Zhuge and E. Sha, “Access
Characteristic Guided Read and Write Cost Regulation for Performance
Improvement on Flash Memory,” In Proceedings of Conference on File
and Storage Technologies(FAST), 2016, February, pp. 125.

[24] Y. Di, L. Shi, K. Wu and C. Xue, “Exploiting Process Variation for
Retention Induced Refresh Minimization on Flash Memory,” the 19th
Design, Automation Test in Europe (DATE), Dresden, Germany, March,
2016.

[25] S. Im and D. Shin, “ComboFTL: Improving performance and lifespan
of MLC flash memory using SLC flash buffer,” Journal of Systems
Architecture, 56(12): 641-653, 2010.

[26] D.J. Molaro, F.R.F. Chu, J.C. De Souza, A. Kanamaru, T. Kawa, and
D.C. Le Moal, “Data storage devices accepting queued commands having
deadlines,” U.S. Patent 8,539,176, issued September 17, 2013.

