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Abstract—There are various methods to evaluate the
performance of file systems through the replay of file
system traces. Despite this diversity, little attention
was given on comparing the alternatives, thus bringing
some skepticism about the results attained using these
methods. In this paper, to fill this understanding gap,
we analyze two popular trace replay methods through
the lens of metrology. This case study indicates that
the evaluated methods provide similar, good precision
but are biased in some scenarios. Our results identified
limitations in the implementation of the replay tool as
well as flaws in the established practices to experiment
with trace replayers as the root causes of the measure-
ment bias. After improving the implementation of the
trace replayer and discarding inappropriate experimen-
tal practices, we were able to reduce the bias, leading to
lower measurement uncertainty. Finally, our case study
also shows that, in some cases, collecting only the file
system activity is not enough to accurately replay the
traces; in these cases, collecting resource consumption
information, such as the amount of allocated memory,
can improve the quality of trace replay methods.

I. Introduction
Performance evaluation has, for many years, helped the

adoption, development, and operation of file systems. In
this paper, we focus on performance evaluation based on
the replay of file system activity traces. Compared to
other performance evaluation methods, such as analytical
models [1], [2], simulations [3], [4], and micro and macro
benchmarks [5], trace-based performance evaluation is be-
lieved to provide the best representation of real workloads.

There are several methods for the replay of file system
traces. The main differences between them lie on the
code architecture followed by the replayer — compilation-
based or event-based — and on the replay model —
open or closed [6]. Compilation-based replayers [7], [8]
create the source code of a program that emulates the
activity captured in the trace: the workload is generated by
executing this program. Event-based replayers [9], [10] are
generic programs able to replay any arbitrary trace given
as input. Regarding the replay models, in closed ones, the
arrival of new requests may depend on the completion of
the previous requests while in open ones this is not the
case.

Given this diversity, how can one choose the best tool
for one’s purpose? To answer this question, it is instru-
mental to assess the quality of trace replay tools. These

methodological aspects have been neglected, thus bringing
some skepticism to the results attained using trace-based
performance evaluation [11], [12].

In a recent work, we have drawn upon metrology to
analyze the quality of trace capture methods [13]. We
found that trace capture shows significant bias in some
cases. Fortunately, the bias can be reduced by applying
a calibration procedure. We also found that trace capture
can be affected by background activity in the experimental
environment. As a consequence, gathering information
about the background activity is crucial for appropriate
bias correction. In this paper, we apply the same metrology
framework to improve the understanding of the replay of
file system traces. To the best of our knowledge, this com-
parison of the design of trace replayers was not considered
so far.

In our case study we adopted the ARTC trace replayer as
the compilation-based alternative [7], while we developed
an event-based trace replayer following the TBBT design [9]
and established practice on the implementation of such
systems [8], [14].

We captured and replayed two workloads of increasing
complexity levels. The first workload is generated by a
microbenchmark program that performs a sequence of file
system related system calls. The second, more complex,
workload is generated by the filebench [15] file system
benchmark which was configured to emulate the I/O
activity of a file-server.

Our evaluation metric is the file system response time as
perceived by the applications. In our analysis of response
time, we are interested in assessing some important charac-
teristics of the trace replay methods. These characteristics
include precision, bias, and uncertainty. Precision quanti-
fies the closeness of agreement between measured values
obtained by replicated trace replay experiments. Bias is
the closeness of agreement between the measured values
obtained with a trace replay method and a conventional
reference value, obtained. The precision and the bias found
empirically are combined in a single metric, the uncer-
tainty (Section III-F), which characterizes the dispersion
of the measured values within a interval with a confidence
level.

However simpler than real workloads, the workloads
generated by the microbenchmark and macrobenchmark



programs allow us to identify trace replay characteristics
and limitations. For example, the replay of the first work-
load indicates that the two methods that we evaluated are
precise; they show equivalent variability with the workload
they replay. On the other hand, we found that the trace
replay methods have different biases, with the event-based
method showing higher bias than the compilation-based
one. For instance, the uncertainty to replay sequential
read workloads, at the 95.5% confidence interval, was
up to 253% for the event-based replayer, while for the
compilation-based replayer it was no more than 20.7% .

We used the results of the bias analysis to identify the
sources of trace replay measurement errors. It turns out
that established practice on the design of such systems
has flaws that have been highlighted by our analysis.
Some of these error sources were mitigated by changes in
the implementation of the event-based replayer. After the
improvements, the uncertainty to replay sequential read
workloads was reduced from 253% to no more than 32.9%.

We also found that the mechanisms usually adopted
by the replayer tools to determine the duration of time
intervals are inappropriate to accurately replay traces with
delays between requests. For example, the uncertainty to
replay random write workloads without pause between
requests is no more than 10.9%, while the uncertainty to
replay random write workloads with pause is up to 22.5%.

The replay of the second workload indicates that the
trace replay methods are sensitive to divergences between
the capture environment and the replay environment. We
found that the replay tools have a smaller memory foot-
print than the traced program, thus increasing the amount
of memory available to the page cache. As a consequence,
in the replay environment, the requests to the file system
are more likely to be served by the memory subsystem
instead of by the disk.

Due to this effect, the uncertainty to replay the second
workload is higher than the uncertainty to replay the mi-
crobenchmark workload. For instance, for the compilation-
based replayer, the uncertainty to replay read and write
operations of the second workload are up to 92.72% and
33.79%, respectively, while the uncertainty to replay read
and write operations of the first workload are no more
than 20.7% and 1.3%, respectively. For the event-based re-
player, the uncertainty to replay read and write operations
of the second workload are up to 118.27% and 79.81%,
respectively, while the uncertainty to replay read and write
operations of the first workload are no more than 32.9%
and 1.6%, respectively.

Before presenting the case study, we present the general
aspects of metrology, including some metrology terminol-
ogy adopted and a method validation protocol (Section II).
Then, we describe how to apply the validation protocol in
our case study (Section III), and report the results of the
validation, in terms of precision, bias and uncertainty (Sec-
tion IV). We conclude the paper with recommendations
drawn from our results (Section V), a review of the related

literature contextualizing the contributions of this paper
(Section VI), and a discussion of some open problems that
we did not consider in our case study (Section VII).

II. Background
Metrology deals with the general problem of measuring

with imperfect instruments and procedures [16]. Since
the measurement is always imperfect, metrology provides
methods for estimating measurement errors and uncertain-
ties. Accurate determination of time intervals is key to
trace replay tools, otherwise they are not able to emulate
the delays between trace capture requests properly. A pos-
sible source of errors arises from the interference between
the measurement instrument and the measured objects,
since they share the same computer resources.

In this paper, we are interested in method validation or
method testing [17] — the branch of metrology respon-
sible for assessing the fitness to the purpose of a chosen
measurement method. It is specially important when there
is no standard measurement method established; this is
the case for trace replay methods, as we discussed in the
Introduction.

In this section, we review a protocol, widely applied in
other sciences, to conduct experimental method valida-
tions. This protocol accounts for the measurement errors
likely to be controlled within a single laboratory. The
protocol consists of the following steps: i) measurand
definition; ii) measurement procedure specification; iii)
uncertainty sources identification; iv) measurement char-
acterization; v) calibration analysis; and vi) determination
of measurement uncertainty.

In the first two steps, we consider the careful the defini-
tion of measurand1, i.e. the quantity intended to be mea-
sured, and the measurement method, which specifies
how to use a measurement instrument to obtain the
value of the measurand and the measurement conditions
(the environment) under which the measurements must be
conducted.

In the Uncertainty sources identification step, the pos-
sible sources of uncertainty and typical limitations of the
chosen measurement instruments are pinpointed. In this
part of the protocol, unknown factors may be overlooked,
and therefore measurement uncertainty may be underes-
timated.

In the Method characterization step, measurement ex-
periments are conducted to analyze the quality of the mea-
surement methods and instruments. These experiments
consider the effects of the source of uncertainty pinpointed
in the previous step, and are usually analyzed in terms of
precision and bias. These metrics quantify the impact of
two types of errors: random and systematic. A random
error is equally likely to underestimate or overestimate the
true value of the measurand in repeated measurements.

1Bold terms are metrology jargon found in the “international
vocabulary of basic and general terms in metrology (VIM)” [18].



On the other hand, a systematic error always goes in the
same direction, underestimating or overestimating the true
value of the measurand.

In the Calibration analysis step, the preliminary bias
results are analyzed. When the bias is significant, the bias
analysis is used to a calibration procedure which can be
latter applied to correct systematic errors.

Finally, the accuracy of the measurement method is
quantified in the Measurement uncertainty step based on
the results of the experiments conducted in the Measure-
ment characterization step. This is done after the calibra-
tion has been performed, if necessary and possible, in the
Calibration analysis step, in order to correct systematic
errors. The results of this last step facilitate deciding
whether the method fits within its purpose after correction
or there is a need to develop another one (or to relax some
of the requirements).

III. Trace replayers validation
In this section, we present how the classic validation

protocol described in the previous section can be used to
evaluate trace replay methods. We devote a subsection to
each of the protocol steps.

A. Measurand specification
Our measurand is the file system response time. This

measurand is considered in a sequence of events T , related
to the execution of the file system functions, generated by
the requests of the trace replayer. The event includes tim-
ing information and data such as arguments and returned
values from the replayed function.

Thus, each event tk ∈ T is a tuple 〈fk, bk, ek, ck〉,
representing the replay of file system function fk ∈ F ,
from the set of file systems functions F , where bk and ek
are the timestamps just before and after the replay of the
function, and ck is the relevant arguments and returned
values.

For each event tk = 〈fk, bk, ek, ck〉 of the sequence of
events T , the response time of event tk is given by the
time interval that elapses between the execution of the
last and first statements of fk, i.e. ek − bk.

B. Measurement procedure definition
In this section we consider the definitions of the meth-

ods used to replay traces. These definitions include the
measurement conditions (the environment) under which
the measurements must be conducted, the measurement
instruments (trace replay tools), and the measurement
procedures to use these instruments

1) Experimental environment: We conducted the mea-
surements in an Intel E6550 Core 2 Duo 2.33GHz work-
station, with 2 GB of main memory, running the Linux
2.6.32-41 kernel. This machine has two hard disks: a 7200
RPM SATA disk with a 8 MB cache, and a 5400 RPM
SATA disk with a 32 MB cache. We instrumented an ext4
file system, mounted in the second hard drive.

2) Measurement instruments: In this case study, we
adopted compilation-based and event-based trace replay
instruments. To experiment with the compilation-based
design, we adopted the ARTC trace replayer [7]. In our
experiments, we applied the ARTC without modification. To
experiment with the event-based design, we developed a
trace replayer based on TBBT design [9]; we had to develop
a new replayer because there was no public available event-
based tool, however, we did that following established
practice [8], [14], as will be discussed shortly.

The trace replayer function is adjusted by two important
controls: the ordering and the timing policies. An order-
ing policy defines the dependence relation that any two
requests may have, which defines an order in which these
requests should be replayed. A timing policy defines the
exact time at which the requests need to be replayed, when
processing the trace. These controls define the open or
closed nature of the trace replay model, as defined in the
Introduction.

The TBBT and the ARTC replayers define two equivalent
classes of order policies. The first class (composed by
the ROOT policy in the ARTC replayer and by the FS
dependency policy in the TBBT replayer) leverages the
semantics of file system operations to define the order
relation between requests. For example, a request to write
to a file cannot be replayed before the request that creates
that file. The second class (composed by the temporal
policy in the ARTC replayer and by the conservative policy
in the TBBT replayer) replays requests according to the
order found in the trace, that is, a request is replayed
only after the previous requests (based on the request
timestamps) have been replayed.

Since the TBBT and ARTC order policies are equivalent,
for ease the reading of the following sections, we refer
to the policies from the first class (ROOT policy in the
ARTC replayer and the FS dependency policy in the TBBT
replayer) as FS, and to the policies from the second class
(temporal policy in the ARTC replayer and the conservative
policy in the TBBT replayer) as temporal.

The TBBT and the ARTC replayers also have similar
timing policies. Both replayers implemented a fullspeed
timing policy. In this policy, any possible feedback between
requests is ignored and the requests are replayed as fast as
possible, as long as they respect the order policy. In addi-
tion to the fullspeed policy, the TBBT replayer implements
an additional policy, called timestamp. In this policy, the
requests are replayed as close as possible to the traced
timestamps, again, respecting the order policy.

The compilation and the event-based replayers work-
loads were generated based on the same traced data.
Table I describes the format of the trace.

The ARTC replayer, as a compilation-based alternative,
takes the captured trace as input and generates a source
code equivalent to the captured workload. The generated
source code includes a thread for each thread found in
the trace. The code statically defines the data associated



Table I: Captured trace format.
Trace field Description

pid The id of the process that called the file
system function.

tid The id of the thread that called the file
system function.

begin The timestamp for the time when the file
system function was called.

end The timestamp for the time when the file
system function returned.

function The name of the file system function called.
args The arguments of the file system function

called.
rvalue The returned value of the file system function

called.

to the requests, such as the arguments of file system
functions. The source code also defines the sequence of
requests that each thread will replay — again, as found
in the trace — and the dependency relation specified by
the selected order policy. To implement this order relation,
the representation of a request in the generated program
keeps track of the identification of the dependent requests.
At runtime, before executing a request, a thread will first
check if the predecessors requests were already completed,
blocking on a condition variable when it is not the case.

Our event-based implementation is based on the TBBT
design [9]. It avoids the code generation and compilations
steps. It takes the captured trace and formats it to a
more structured input file. This new structure includes
the order relation defined by the selected order policy.
The replayer parses this formatted file, and translates the
parsed requests to replayed systems calls. These operations
are performed by two groups of threads: coordinator and
workers. The coordinator thread generates events to be
replayed by the worker threads.

Event generation evolves according to the rules defined
by the selected order and timing policies and by the
progress made by the worker threads. To generate the
events, the replayer uses a color marking algorithm shown
in Figure 1. In this algorithm, a request has three possible
states: i) unavailable; ii) available; and iii) replayed. The
coordinator thread generates events to each available re-
quest and add these events to an available queue. A free
worker thread takes an event from this queue and executes
the related file system function. After the execution, the
worker thread adds the event into a replayed queue. The
coordinator thread takes the event from the queue and
changes the request state from available to replayed. Fol-
lowing, the coordinator changes the state of the successor
requests, according to the order relation, from unavailable
to available.

Our event-based tool runs as a real time process to avoid
the preemption of the replayer process by other processes

Figure 1: The event-based replayer uses a color marking
algorithm to produce events to be replayed by the worker
threads. A free worker thread executes available events
(grey). After execution, the coordinator marks the event
as replayed (black) and marks its unavailable (white)
successors as available (grey).

running in the experimental environment [8], [14] 2.
3) Measurement procedures: Before we can replay the

trace, we have to recreate the file system state in such
way that it reflects the file system content at trace capture
time. To recreate the file system state, we collected a
snapshot of the file system just before we gathered the
trace. After recreating the file system state, the mea-
surement procedure starts by flushing page, dentry and
inode caches. This is to ensure that changes in the file
system cache, after a trace replay measurement, do not
affect subsequent experiments. After cache flushing, we
start the trace replayer execution, wait for its termination
and gather the output generated by the trace replayer.
To reduce the interference between the storage of the
data generated by the trace replay tool and the workload
requests, both replayer input and output data trace are
stored in a different file system mounted in a different disk.

C. Uncertainty sources identification
In this section we describe the most important uncer-

tainty sources for trace replay methods, shown in Figure 2.
As we stated in Section II, the identification of uncertainty
sources is important because when uncertainty factors are
neglected, the measurement uncertainty may be underes-
timated.

2The material necessary to reproduce the results is released in the
https://github.com/thiagomanel/mass2016 web repository
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Figure 2: Uncertainty sources that contribute to trace re-
play measurement errors. In our within-laboratory evalu-
ation, we consider workload and trace replayer instrument
sources.

The workload impacts the behavior of the file systems
and of the operating system. For example, file system
flushes are governed by the number of dirty and free
pages (both factors depend on the workload) [19]. Since
the trace replay instruments, as user processes, are not
isolated from the file system and the operating system —
for instance, they share the machine’s CPU and memory
— the workload may also impact trace replay instruments,
thus affecting measurement errors.

A perfect trace replay instrument would be able to
reproduce a trace in such way that the measured values
(in our case, the file system response time) equals the
ones of the original traced applications running in the
reproduction environment.

Naturally, the pitfalls on the design and implementation
of the trace replayers undermine building an ideal mea-
surement instrument. For example, in both the event and
compilation-based replayers the concurrent access from
the replayer threads to critical regions has to be controlled;
the delays to control concurrent accesses are sources of
systematic errors. In the event-based replayer, since we
employ an extra component to coordinate the replay, the
systematic errors to control concurrent accesses are likely
to be even higher.

The replayer policies are also sources of errors. This is
because they shape the replayed workload, for example, by
modifying the concurrency level of the workload, and the
workload itself is a source of error, as previously described.

Finally, the testbed, composed of the hardware and
the system software, also impacts the measurement un-
certainty. For instance, the file system acts as a software
layer between the applications and the input/output sys-
tem. This interaction with the underlying system software
layers defines the file system performance. This uncer-
tainty source is particular important when one analyzes
reproducibility issues, for example, when measurements
from different laboratories are compared. In this paper,
however, since we evaluate the uncertainty sources that
affect measurements made within a single laboratory, we
not consider the testbed influence.

D. Measurement characterization
To characterize measurement, measured values are com-

pared to the true value of the measurand. As we described
in Section II, since this true value is unknown, reference
values are adopted as approximations to them.

There are two methods widely used to obtain reference
values: i) to measure with a reference method (a method
with known, lower errors); and ii) to measure reference
objects (an object with known measurand values, such as
standard-weights).

We cannot apply the first method, since there is no low-
error trace replayer to be applied as a reference method.
For this reason, we adopted the second method, based on
reference objects.

We adopted as reference values the measured file system
response time as shown in the captured trace. Note that
the capture method may also be a source of uncertainty.
To mitigate this problem, instead of adopting popular
trace capture tools such strace and SystemTap, we col-
lected the execution timestamps at the application level
(calls to the unix clock gettime function were added
to the traced program). This approach gives the closest
measurement of file system response time, as perceived
by the applications, thus closer to the true value of the
measurand.

In the characterization, we traced the execution of two
programs which generate workloads of increasing levels of
complexity. The first program is a microbenchmark that
generates file system related system calls at an specific
load level. The second program is the filebench [15], a file
system benchmark that we configured to generate a file-
server workload.

The load level of the microbenchmark is given by the
number of worker threads performing file system requests.
Each thread performs a configurable number of file system
requests. To generate the microbenchmark traces, we con-
sidered 4 load levels and 4 workload types. The load levels
range from 1 to 4. The workload types are determined
by the system call requested by the worker threads: i)
random read (pread system call); ii) random write (pwrite
system call); iii) sequential read (read system call); and
iv) sequential write (write system call). Each request reads
from or writes to files in blocks of 4096 bytes. Each worker
thread performed a sequence of 5000 requests.

In the microbenchmark workload, to evaluate the inter-
play between the file system and the storage subsystem, we
avoid having all the data set in memory. To this end, each
worker thread operates over a different 10GB file, following
the recommendation to use a file that is at least 4 times
larger than the amount of available memory [11]; it reduces
the probability that subsequent requests to random offsets
will hit the same page cache.

To each combination of load level and workload type,
we generated traces in three different modes: i) without
pause between requests; ii) with a 10µsec pause between
requests; and iii) with a 50µsec pause between requests.



The traces generated with the first mode are used by
the compilation and the event-based replayer, with the
fullspeed timing policy. The traces generated with the
remaining modes are replayed by the event-based tool,
with the timestamp timing policy.

The filebench workload we choose emulates the file
system activity of a file-server in which 4 threads perform
sequences of creates, deletes, appends, read, writes, and
operations to file attributes (stat calls) to a directory tree.
The target fileset under the directory tree is composed of
1000 files. The size of the files is given by a gamma dis-
tribution (with the mean and gamma parameters equal to
131072 and 1.5, respectively). Read and write operations
operate over the whole file contents. The mean append
size is of 16KB. The durations of each traced filebench
execution was 30 seconds.

Incidentally, the filebench workload is more complex
than the microbenchmark workload. For example, in the
filebench workload, the size of the files vary, thus each
thread performs a slightly different workload. Also, each
file may be two orders of magnitude smaller than the
files in the microbenchmark workload; thus, it is even
possible that a file fits completely in the page cache at
some point. Ultimately, this filebench workload highlights
the impact of the benchmark working set in the file system
performance.

In the following, we discuss the methods we applied to
analyze the precision, bias and linearity of the event-based
and compilation-based trace replay methods.

1) Determination of measurement precision: To ac-
count for measurement precision, we performed 10 repli-
cated experiments to each generated trace. The result of
the experiment is the average of the response time of all
operations performed in the experiment.

We analyzed the precision of trace replay methods by
comparing them to the precision of the reference values.
In other words, we aimed to verify if the compilation-
based and the event-based replayers increased variability
when compared to the reference variability. To this end,
we applied an F -test to compare replay precisions: for a
measurement method A, let u(RAw) be the precision of
method A, that is, the uncertainty component due to
random errors. In this way, we obtained evidence that
method B has poorer precision than method A if Fr >
Fα,NB−1,NA−1, where Fr is the ratio between the variances
of measurement methods:

Fr = u(RBw )2

u(RAw)2

and Fα,NB−1,NA−1 is the critical value of the F distribu-
tion with NB − 1 and NA − 1 degrees of freedom at a
significance level α [20].

2) Determination of measurement bias: The bias is
the difference between the expected value of trace replay
measurement and the reference values. To analyze the
bias we compared the replay measurements and reference

values we obtained in the determination of measurement
precision, for the same combinations of workload level and
workload type.

E. Calibration analysis
However useful the calibration may be, it is possible

that, in some cases, it cannot be applied — trace replay
included. This is because any calibration procedure is
specific to the measurement instruments and to the envi-
ronment used to determine the bias. Since the trace replay
method is usually applied to evaluate a system different
from the one used in the trace capture, or to evaluate
changes in the environment, such as a new hardware
component, the assumptions to apply the calibration do
not hold.

Although in the trace replay case we cannot apply
the results of the bias analysis to define a calibration
procedure, these results can be used to identify problems
on the design and implementation of the replay tools. By
removing the sources of problems, it is possible to reduce
the systematic errors.

F. Determination of measurement uncertainty
To estimate the uncertainty of the measurement

method, the validation approach discriminates between
the precision and bias (caused by random and systematic
errors, respectively) found in the results of the experi-
ments conducted as described in the Section III-D. The
within-laboratory reproducibility component, u(Rw),
accounts for random errors, while the bias uncertainty
component, u(bias), accounts for systematic errors. These
components are combined into a single metric – the com-
bined standard uncertainty, uc – given by the following
equation [21]:

uc =
√
u(Rw)2 + u(bias)2

Both components are calculated based on the execution
of n replicated experiments. The experiment consists of
replicated measurements of the measurand.

The within-laboratory reproducibility component,
u(Rw), is given by the standard deviation of the
measurement results of the n experiments.

The bias uncertainty, u(bias), is based on both the
measurement results and on a collection of n reference
values. These references are used to calculate the bias (the
difference between a measured result and the reference
value) in each experiment. According to this blueprint, the
bias uncertainty u(bias) is defined as

u(bias) =
√
RMS2

bias + u(Cref )2

where RMSbias accounts for the root mean square of the
bias found in the n experiments and u(Cref ) stands for the
uncertainty of the adopted reference values (although more



reliable, there is still uncertainty in the reference mea-
surements). For the batch of n experiments, the RMSbias
component is given by

RMSbias =
√∑n

i=1(biasi)2

n

For each experiment i, the biasi is given by the relative
percentage error between the measured value xi and the
reference value refi: biasi = (xi − refi)/refi · 100.

The u(Cref ) component is given by

u(Cref ) =
√∑n

i=1 u(refi)2

n

where u(refi) is the uncertainty of the reference value used
in the i-th experiment.

The results of the uncertainty measurement are reported
as ym ± uc, where ym is the mean value of the replicated
experiments under controlled conditions. The combined
standard uncertainty indicates that the measured results
are within the interval [ym−uc, ym+uc] with a confidence
level of near 68%. For higher confidence levels, such as
95.5% and 99.7% there are expanded uncertainties of
ym ± 2 · uc and ym ± 3 · uc, respectively.

IV. Trace replayers uncertainty
In this section, we discuss the results of the validation

of the trace replay methods, including the results of the
characterization analysis as well as the determination of
measurement uncertainty, for both the microbenchmark
and the file-server workloads. To make the case of the
metrology framework, we explain in more details the
validation of the microbenchmark workload.

For this workload, in Section IV-A, we show the results
of the characterization of trace replay in terms of precision
(Section IV-A1), bias (Section IV-A2), and linearity of
precision and bias (Section IV-A3). In Section IV-B, we
focus on how to use the bias analysis to reduce systematic
errors.

From Section IV-A to Section IV-B, we show in detail
the results for the scenarios without pause between re-
quests, for both the event and compilation-based replay-
ers. The compilation-based replayer does not support the
timestamp timing policy, thus, the scenarios with pause
between requests are exclusive to the event-based replayer.
The results for the latter are summarized in Section IV-C1
in addition to the overall measurement uncertainty of the
scenarios without pause.

Finally, in Section IV-C2, we show the measurement
uncertainty for the file-server workload, for both the event-
based and compilation-based replayers.

A. Measurement Characterization
1) Measurement precision: In Table II we show the Fr

ratio, as defined in Section III-D1, for compilation-based
and event-based replayers, at the significance level of 0.05,
and NB−1 and NA−1 degrees of freedom equal to 9 (based

on 10 replicated experiments). The calculated value for
Fα,NB−1,NA−1 is 15.21.

As a rule, both the compilation and event-based re-
players do not boost the sources of random errors. The
compilation-based tool is less precise than the reference
values only in 2 of 32 scenarios, while the event-based tool
in less precise only in 3 of 32 scenarios. The sources of
random errors, when present, affected the sequential in-
stead of random workloads: this is because the magnitude
of random errors is small in comparison with expected
measured values for random workloads.
Table II: The compilation and event-based replayers are
precise; according to an F -test at the significance level of
0.05, only in 5 of 64 scenarios the precision of trace replay
measurements is lower than the precision of reference
values (bold values are higher than an Fα,NB−1,NA−1 of
15.21).

Workload Level
1 2 3 4

Random read (RR)
Compilation-based FS 1.2 1.5 1.6 1.8

Temporal 1.2 2.6 2.0 3.3
Event-based FS 0.1 1.1 0.2 0.6

Temporal 0.2 0.9 1.1 0.6
Random write (RW)

Compilation-based FS 1.4 6.0 3.8 4.1
Temporal 1.4 9.1 4.7 4.0

Event-based FS 0.3 0.8 0.4 2.9
Temporal 2.4 0.9 0.3 3.2

Sequential read (SR)
Compilation-based FS 7.5 12.7 11.0 18.6

Temporal 8.2 14.4 11.5 20.7
Event-based FS 0.3 17.3 1.4 7.5

Temporal 0.3 3.9 4.5 0.4
Sequential write (SW)

Compilation-based FS 0.9 0.7 0.5 0.6
Temporal 0.9 1.3 0.3 0.7

Event-based FS 0.2 17.6 13.3 10.8
Temporal 0.4 5.8 18.6 9.1

2) Measurement bias: Figure 3 shows the average re-
sponse time for the replicated trace replay experiments
and the average reference values, for all combinations of
workload levels and workload types.

A qualitative analysis of whether a given bias is accept-
able or not is clearly specific to each measurement pur-
pose. However, there is a purpose-independent criterion
to decide if the bias is significant, and as consequence the
measurement results should be subjected to bias correc-
tion. According to this criterion, the bias is significant
if its magnitude is larger than twice the bias standard
uncertainty [22].

Based on this criterion, the bias of compilation-based
replayer is insignificant, for all combinations of workload
type and levels. Based on the same criterion, the bias of the
event-based replayer is significant is some scenarios. These
scenarios include not only the expected sequential read
workload type (which is very sensitive to systematic errors,
since the measured values are small) but also random write
scenarios.



Figure 3: Bars show the average response time for trace re-
play measurements with the compilation-based and event-
based tools. Dashed lines show average reference values.
The bias is the difference between average response time
and average reference values.

3) Linearity: In trace replay linearity we consider the
impact of the increment of workload level on trace replay
measurement errors. Table III and Table IV show this
impact on the random and systematic errors, respectively.
Table III reports the coefficient of variation of trace replay
measurements, while Table IV reports the relative percent-
age between the average bias and the average reference
value.

As a rule, there is no clear trend on the precision and
on the bias due to the increment of the workload level.
The exception is the replay of random read workloads by
the event-based replayer. In this scenario, the relative bias
strictly increased as the workload level increased. In any
case, for the range of the workload level we considered, the
magnitude of bias in this scenarios is not significant.

B. Trace replay calibration (bias correction)
As we described in Section III-E, although we cannot

apply the results of the bias analysis to define a cali-
bration procedure, these results can be used to identify
problems on the design and implementation of the trace
replayers that, when removed, may reduce the systematic
errors. Based on the bias significance criterion adopted in
Section IV-A2, the bias shown by event-based replays of
random write and sequential read workloads indicate good
targets for improvement.

The sources of systematic errors for random write and
sequential read are likely to be different, as indicate the

Table III: Linearity of trace replay precision as the effect
of workload level on the coefficient of variation of event-
based and compilation-based replayes.

Workload Level
1 2 3 4

Random read (RR)
Compilation-based FS 0.1% 0.2% 0.2% 0.4%

Temporal 0.1% 0.2% 0.3% 0.5%
Event-based FS 0.2% 0.7% 0.3% 0.4%

Temporal 0.3% 0.6% 0.6% 0.4%
Random write (RW)

Compilation-based FS 0.1% 1.5% 0.4% 0.6%
Temporal 0.1% 0.8% 0.4% 0.7%

Event-based FS 0.2% 1.3% 0.5% 1.4%
Temporal 0.5% 1.3% 0.5% 1.5%

Sequential read (SR)
Compilation-based FS 0.3% 0.4% 0.4% 0.2%

Temporal 0.6% 0.2% 0.2% 0.3%
Event-based FS 0.9% 9.6% 3.1% 6.7%

Temporal 0.9% 4.5% 5.1% 1.6%
Sequential write (SW)

Compilation-based FS 0.1% 0.1% 0.1% 0.1%
Temporal 0.1% 0.6% 0.1% 0.1%

Event-based FS 0.2% 0.8% 0.4% 0.5%
Temporal 0.2% 0.4% 0.4% 0.4%

Table IV: Linearity of trace replay bias as the relative
percentage (to the average reference value) of event-based
and compilation-based replayers.

Workload Level
1 2 3 4

Random read (RR)
Compilation-based FS 0.1% 0.0% 0.3% 0.6%

Temporal 0.1% 0.0% 0.3% 0.6%
Event-based FS 1.1% 1.6% 2.2% 2.3%

Temporal 1.1% 1.8% 2.1% 2.5%
Random write (RW)

Compilation-based FS 0.1% 0.0% 0.3% 0.6%
Temporal 0.6% 1.8% 1.8% 1.2%

Event-based FS 1.0% 17.9% 14.9% 9.2%
Temporal 1.3% 17.4% 14.7% 9.0%

Sequential read (SR)
Compilation-based FS 1.8% 3.9% 0.9% 7.5%

Temporal 2.7% 5.2% 2.0% 8.8%
Event-based FS 108.1% 115.8% 107.2% 126.1%

Temporal 109.0% 117.4% 125.1% 114.7%
Sequential write (SW)

Compilation-based FS 0.2% 0.1% 0.2% 0.2%
Temporal 0.2% 0.5% 0.1% 0.0%

Event-based FS 3.6% 1.7% 1.4% 2.0%
Temporal 3.5% 1.5% 1.5% 1.5%

magnitude of bias shown in Figure 3; the bias for sequential
read workload is no more than a few microseconds, while
for the random write workload is at the millisecond scale.

Since the sources of errors are different, we must take
different actions to mitigate them.

To reduce the systematic errors shown in the sequential
read workload we evaluated the influence of the coordina-
tor component adopted in the event-based replayer. We
modified the original design by removing the coordinator
component and distributing its responsibility among the



worker threads. In the new design, the events that a worker
thread will execute are assigned to it at the beginning
of trace replay. A condition variable is associated to each
event to enforce the ordering policy; this guard signalizes
whether the predecessor of an event has already been
executed.

To reduce the systematic errors shown in the random
write workload we abandoned literature advice of running
the replayer tool as a real time process [8]. As we described
in Section III-B2, this was originally suggested as a way to
prevent the replayer tool from being preempted by other
tasks. This configuration generated at least one collateral
effect in our experiments: the replayer worker threads
exhibit a different scheduling pattern from the captured
workload. After preemption (usually due to blocking for
an IO operation), the replayer worker threads were taking
longer to be resumed. This leads to larger response time
as viewed by the applications.

Figure 4 shows the reduction of systematic errors, for
the random write and sequential read workloads, due to
the above modifications in the event-based trace replayer.
Both modifications were effective. The first one, when ap-
plied to the sequential read workload, reduced the relative
bias from up to 126.1% to no more than 15.6%. However
useful for the sequential read workloads, this optimization
was not able to deliver the same reduction of systematic
errors for the random write workloads. This was because
the typical measured value in the random write workload
is one order of magnitude higher than the typical value
in the sequential read workload; thus, the relative impact
of the reduction of this error source in the random write
workload is lower.

Only after abandoning the practice of running the trace
replayer as a real time process we were able to achieve
substantial reduction on the systematic errors for the
random write workloads. Figure 4 shows that the relative
bias is reduced from up to 17.9% to no more than 3.8%.

C. Determination of measurement uncertainty
In the previous sections we described the replay methods

and characterized their error sources to replay a simple
microbenchmark workload. In this section, after modifying
the event-based replayer to reduce systematic errors, we
complete the validation protocol by calculating the com-
bined uncertainty uc for the trace replay measurements of
the microbenchmark (Section IV-C1) and a more complex,
file-server workload (Section IV-C2).

1) Microbenchmark workload: Table V shows the com-
bined uncertainty we found for the event-based and the
compilation-based tools for all combinations of workload
types and workload levels, as well as the ordering policies.
This table reports the results for the scenarios without
pause between requests, replayed with the fullspeed timing
policy. For the event-based replayer, we also report the un-
certainty before the changes we described in the previous
section (in parentheses). The combined uncertainty, as de-

Figure 4: Relative percentage bias (to the average refer-
ence value) of the event-based replayer before (original)
and after (no coordinator and no coordinator +
scheduler) improvements. Bias is reported for random
write and sequential read workloads. The workload levels
range from 1 to 4.

scribed in Section III-F, is reported as ym±2·uc, where ym
is the mean of the replicated experiments under controlled
conditions. It is regarded as the expected uncertainty of
measurements using the procedure we defined within our
laboratory, at a 95.5% confidence level.

Before the improvements made in the event-based re-
player, the combined uncertainty of the compilation-based
tool is lower than the combined uncertainty of the event-
based tool. This rule holds true for all workload types,
workload levels and replay policies. For the random read
workload, the uncertainty of the compilation-based tool
is up to 3.3%, and up to 5.1% to the event-based tool.
For the random write workload, the uncertainty of the
compilation-based tool is up to 9.1%, and up to 36.1%
for the event-based tool. For the sequential read workload,
the uncertainty of the compilation-based tool is no more
than 20.7% while the uncertainty of the compilation-based
replayer is up to 253.0%. For the sequential write workload,
the uncertainty of the compilation-based replayer is up to
1.3%, and up to 7.2% for the event-based replayer.

After the improvements, the uncertainties of the
compilation-based and the event-based tools were equiv-
alent in most of the scenarios. Due to the reduction of
systematic errors, the uncertainty of event-based replayer
was greatly reduced. For example, with the original event-
based design, the combined uncertainty of sequential read
workload was up to 253%, while after the redesign, the
uncertainty could be reduced to no more than 32.9%. Also,



for the random write workload the original event-based
uncertainty was up to 36.1%, while the uncertainty for
the redesigned event-based replayer the uncertainty was
no more than 10.9%.

In addition to the scenarios with no pause between the
requests, we also show the uncertainty for the scenarios
with pause between requests. Table VI reports the results
for the event-based tool for all combinations of workload
types and workloads levels, as well as the ordering policies
replayed with the timestamp timing policy. We considered
two different pause delays when generating the traces: i)
10µsec; and ii) 50µsec.

Table VI indicates that the uncertainty of the scenarios
with pause between requests is higher than the uncertainty
of the scenarios without pause. The reasons for this are
threefold: i) the sources of errors we reported in Table V,
which also act in the scenarios with pause, postpone the
execution of the requests; ii) the common time delay
functions used in trace replayers are imprecise (we used
the nanosleep function); and iii) the timestamp timing
policy defines that a request should be replayed as close
as possible of the traced timestamps [9]. When combined,
these conditions imply that the replayer, in many cases,
does not wait before executing a request, since it is already
delayed. As a consequence, replayer worker threads are
less likely to be preempted by blocking, thus reducing
response time; as Table VI shows, for the random read
and random write workloads, the typical measured values
are lower than the reference values (in contrast, Figure 3
shows that, for the scenarios without pause, the typical
measured values are higher than then reference values).

2) Fileserver workload: After the analysis of the uncer-
tainty of the microbenchmark workload and the improve-
ments made to the event-based replayer, we analyzed the
uncertainty to replay the file-server workload. Table VII
shows the combined uncertainty we found for the event-
based and the compilation-based tools. In addition to the
combined uncertainty, we also show the mean reference
value as observed in the file-server traces. As in the anal-
ysis of microbenchmark traces, we report the combined
uncertainty as ym ± 2 · uc, where ym is the mean of the
replicated experiments under controlled conditions, at a
95.5% confidence level.

Table VII shows only the results for the FS ordering
policy; as in the previous analysis, there is no significant
difference between the results of FS and Temporal ordering
policies. Also, Table VII shows only the uncertainty for the
read and write operations which have more impact on the
performance of the file-server workload than the metadata
operations such as file creation and file removal.

Table VII indicates that, the accuracy of the replay of
the file-server workload, for both the event-based and the
compilation-based tools, is lower than the accuracy of the
replay of the simpler microbenchmark workload.

For example, for the read operations of the file-server
workload, the uncertainty of the compilation-based tool

Table VI: Combined measurement uncertainty ym±2·uc at
a 95.5% confidence level for the event-based replay of the
microbenchmark workload with pause between requests.

Event-based
Workload

Level FS Temporal Reference

Thread request delay = 10µs

Random read (RR)
1 10435.8 ± 1.4% 10435.1 ± 1.5% 10414.95
2 14744.2 ± 2.3% 14720.6 ± 2.4% 14823.34
3 18543.7 ± 4.5% 18551.4 ± 4.4% 18934.93
4 22727.3 ± 4.2% 22750.4 ± 4.0% 23169.52

Random write (RW)
1 10579.3 ± 5.2% 10683.6 ± 7.8% 10555.51
2 13955.5 ± 10.4% 13513.4 ± 14.8% 14458.26
3 18375.7 ± 14.1% 18410.0 ± 15.6% 19425.76
4 23529.7 ± 11.1% 23071.2 ± 14.2% 24582.37

Sequential read (SR)
1 4.0 ± 10.4% 4.0 ± 10.4% 3.84
2 3.8 ± 18.7% 3.8 ± 19.0% 3.66
3 3.4 ± 19.2% 3.4 ± 18.3% 3.61
4 3.8 ± 20.6% 3.8 ± 20.8% 3.57

Sequential write (SW)
1 100.7 ± 2.3% 100.7 ± 2.2% 101.78
2 103.5 ± 1.8% 103.4 ± 2.3% 104.43
3 103.5 ± 1.7% 103.5 ± 1.6% 104.28
4 103.7 ± 1.3% 103.8 ± 1.1% 104.30

Thread request delay = 50µs

Random read (RR)
1 10394.6 ± 1.3% 10399.4 ± 1.4% 10372.18
2 14625.0 ± 4.9% 14651.1 ± 4.6% 14925.17
3 18741.7 ± 4.8% 18706.0 ± 5.1% 19150.70
4 22804.2 ± 7.2% 22746.7 ± 7.7% 23624.56

Random write (RW)
1 10610.6 ± 10.5% 10611.8 ± 10.0% 10881.93
2 14009.2 ± 9.9% 13748.1 ± 12.8% 14510.74
3 18304.0 ± 16.9% 17670.9 ± 22.5% 19723.34
4 23070.0 ± 21.5% 23056.5 ± 21.8% 25677.56

Sequential read (SR)
1 4.1 ± 28.3% 4.1 ± 28.3% 3.67
2 3.8 ± 7.9% 3.9 ± 7.9% 3.80
3 3.8 ± 13.7% 3.9 ± 15.3% 3.76
4 4.0 ± 25.9% 4.0 ± 27.5% 3.60

Sequential write (SW)
1 101.1 ± 2.0% 101.2 ± 1.7% 102.00
2 103.6 ± 1.8% 103.1 ± 2.6% 104.48
3 103.7 ± 1.2% 103.5 ± 1.5% 104.20
4 103.8 ± 1.1% 103.6 ± 1.6% 104.37



Table V: Combined measurement uncertainty ym±2·uc at a 95.5% confidence level for the replay of the microbenchmark
workload. Measured values are shown in microseconds. In parentheses we show combined uncertainty for the event-based
tool before improvements to reduce systematic errors.

Event-based Compilation-based
Workload Level FS Temporal FS Temporal

Random read (RR)
1 10221.2 ± 2.0% (10253.7 ± 2.5%) 10214.2 ± 1.8% (10257.2 ± 2.6%) 10154.1 ± 1.2% 10155.2 ± 1.2%
2 14255.1 ± 1.9% (14437.4 ± 3.8%) 14252.4 ± 1.7% (14466.2 ± 4.1%) 14201.2 ± 1.5% 14100.2 ± 2.6%
3 18477.8 ± 2.2% (18727.6 ± 4.6%) 18507.9 ± 2.9% (18710.0 ± 4.6%) 18371.8 ± 1.6% 18235.2 ± 2.0%
4 22579.0 ± 2.4% (22891.6 ± 4.8%) 22627.1 ± 2.7% (22925.6 ± 5.1%) 22243.5 ± 1.8% 22046.4 ± 3.3%

Random write (RW)
1 10286.5 ± 0.9% (10357.9 ± 2.2%) 10335.7 ± 3.4% (10389.0 ± 2.9%) 10293.4 ± 1.4% 10312.3 ± 1.4%
2 13909.0 ± 10.9% (15871.6 ± 36.1%) 13846.5 ± 8.6% (15803.5 ± 35.1%) 13660.0 ± 6.0% 13211.2 ± 9.1%
3 18435.0 ± 9.4% (20411.4 ± 29.8%) 18117.6 ± 5.4% (20372.9 ± 29.4%) 18024.8 ± 3.8% 18089.9 ± 4.7%
4 22946.1 ± 3.2% (24807.6 ± 18.7%) 22915.4 ± 4.3% (24764.2 ± 18.4%) 23076.0 ± 4.1% 22988.3 ± 4.0%

Sequential read (SR)
1 4.1 ± 24.9% (7.6 ± 216.4%) 4.1 ± 24.7% (7.6 ± 218.1%) 3.7 ± 7.5% 3.7 ± 8.2%
2 3.9 ± 23.2% (7.7 ± 233.0%) 3.9 ± 22.8% (7.8 ± 235.4%) 3.7 ± 12.7% 3.8 ± 14.4%
3 3.9 ± 17.5% (7.5 ± 214.7%) 3.9 ± 17.4% (8.2 ± 250.8%) 3.7 ± 11.0% 3.7 ± 11.5%
4 4.0 ± 32.9% (7.8 ± 253.0%) 4.0 ± 32.4% (7.4 ± 229.7%) 3.7 ± 18.6% 3.8 ± 20.7%

Sequential write (SW)
1 102.5 ± 1.6% (106.9 ± 7.2%) 102.6 ± 1.4% (106.9 ± 7.1%) 103.0 ± 0.9% 103.0 ± 0.9%
2 105.4 ± 0.6% (107.5 ± 3.8%) 105.2 ± 1.6% (107.2 ± 3.2%) 105.7 ± 0.7% 105.1 ± 1.3%
3 105.3 ± 1.2% (107.1 ± 2.8%) 105.5 ± 0.6% (107.3 ± 3.1%) 105.9 ± 0.5% 105.6 ± 0.3%
4 105.6 ± 1.3% (107.7 ± 4.2%) 105.8 ± 0.6% (107.1 ± 3.2%) 105.8 ± 0.6% 105.5 ± 0.7%

is up to 94.79% while the uncertainty of the same tool
for the read workload in the microbenchmark (SR) is no
more than 20.7%. For the write operations of the file-
server workload, the uncertainty of the compilation-based
tool is up to 33.79% while the uncertainty for the write
workload in the microbenchmark (SW) is no more than
1.3%. Note that, as we described in Section III-D, read and
write operations in the file-server workload are sequential
ones.

For the event-based tool, the uncertainty to replay the
read operations of the file-server workload is up to 120.97%
while the uncertainty to replay the read workload (SR)
in the microbenchmark is no more 32.9%. For the event-
based tool, the uncertainty to replay the write operations
of the file-server workload is up to 124.03% while the
uncertainty to replay the read workload (SW) in the
microbenchmark is no more 1.4%.

Table VII: Combined measurement uncertainty ym±2 ·uc
at a 95.5% confidence level for the replay of the file-server
benchmark. Trace replay tools applied the FS ordering
policy in combination with the fullspeed timing policy.

Event-based Compilation-based Reference

Read 20.73 ± 118.27% 27.21 ± 92.72% 50.72
Write 50.45 ± 79.81% 69.79 ± 33.79% 83.95

We noticed that two sources of errors account for the
uncertainty of the file-server workload. The first source
is negative (it reduces the measurand) and greatly con-
tributes to the bias. The second source is positive (it

increases the measurand) and explains the difference be-
tween the uncertainty of the event and the compilation-
based replays.

The first source of error is caused by a difference on the
capture and replay environments. More specifically, the
memory footprints of the replay tools are smaller than the
memory footprint of the filebench benchmark. As a result,
during the trace replay, there is more memory available to
the page cache and the file system operations are more
likely to hit the memory subsystem instead of the disk,
thus reducing the file system response time.

The second source of error is related to the limitations of
the replay tools to correctly match the concurrency of the
traced workload. Figure 5 shows the empirical cumulative
function of the concurrency level, as the number of active
requests at a given time, that we found for the captured
workload and the replayed workloads for both the event-
based and the compilation-based replayers.

Figure 5 shows that the event-based replayer reduces
the concurrency while the compilation-based one increases
it, in comparison with the concurrency of the reference
workload. There is no more than one active request in
up to 75% of the requests replayed with the event-based
tool, while for the compilation-based tool in more than
half of time there are at least 3 active requests. The
higher the concurrency, the higher is the chance to have
a thread being preempted by another worker thread, thus
increasing its response time by the off-cpu period.



Figure 5: Empirical cumulative distribution function of
the concurrency level for the replays of the file-server
workload and the reference workload. The number of
current requests is given by number of active requests at
a given time.

V. Discussion
The state-of-practice in file system trace replay is

marked by a number of disparate replay tools, designs and
measurements procedures. In this scenario, by character-
izing the quality of the available methods, the validation
protocol not only helps guiding the choice of a trace replay
alternative but also helps refining replay best practices —
ultimately, this contributes towards the development of a
standard trace replay method.

An important finding of this case study was that some
known measurement procedures are flawed. In particular,
we observed that the choice of operating system scheduler
policy, prescribed as good practice in the literature to
isolate trace replayer processes from the influence of other
processes in the experimental environment (in metrology
terms, to increase the selectivity of the trace replay
method), has a collateral effect on the systematic errors.

We argue that we can abandon this procedure nowa-
days. In most cases, the experimental environment where
the traces are replayed is well controlled. That is, it
is possible to avoid running disturbing applications and
services. More important, this finding also indicates that
we must be careful with practices that used to work in the
past. This is because, operating system and hardware also
impact replay methods, and these past conditions may be
different today.

After adopting the best practices and optimizing the

implementation of the trace replayers to reduce systematic
errors, as described in Section IV-B, the event and com-
pilation based replayers are roughly equivalent to replay
the microbenchmark workload, based on the uncertainty
shown in Table V.

For the random read and sequential write workloads,
there is no clear difference between the uncertainty of the
replayers. Also, the uncertainty is low in both cases.

If one targets sequential read workloads, we also argue
that the compilation and event-based replayers are equiv-
alent choices (however, due to a more subtle reason). In
this scenario, even after the improvements made in the
event-based replayer, the uncertainty of the compilation-
based tool is clearly lower, for all combinations of workload
level and replayer policies. However, the difference between
the expected measured values is within the microsecond
range. That is, although we have a considerable difference
in the relative bias, the difference we observe in the bias
magnitude is unlikely to lead to any practical consequence
for the performance analysis of file systems.

When targeting random write workloads, one faces a
situation similar to the random read case, where the
event-based replayer shows similar uncertainty to the
compilation-based replayer uncertainty. However, this un-
certainty, in some scenarios, is higher than random read
uncertainty: it is up to 10.9% for the event-based replayer
and it is up to 9.1% for the compilation-based replayer. For
some specific uses, it may could be the case that neither
of the tools is appropriate to be used in this scenario.

We found that the event-based trace replayer has limita-
tions to replay traces with pause between requests — the
uncertainty is higher than to replay traces without pause.
For example, for random read workload without pause the
combined uncertainty is up to 5.1%, while for random read
workload with pause it is up to 7.7%. For the random
write workload without pause the uncertainty is no more
than 10.9, while for the corresponding workload with pause
it is up to 22.5%. This finding indicates that, when one
measures a sensitive metric such as the one we adopted
in this case study (response time), the common linux
keeping functions may be inappropriate to the timestamp
timing policy. In metrology terms, this imposes a limit
of quantification at sub-millisecond range. One possible
workaround to reduce the uncertainty in these scenarios is
to adopt a timing control with higher resolution and lower
overhead, although less portable, such as busy-wait loops
based on TSC hardware counter.

Another important finding is that, similarly to our
observations for trace capture [13], in some cases, to
accurately replay file system traces it is important to
collect more information from the traced environment, in
addition to the file system activity. As the uncertainty of
the file-server workload shows, resource usage such as the
amount of allocated memory may affect the measurement
results.

In addition to improving the quality of the trace replay



methods, the validation results can also be used in other
practical situations. For example, an important applica-
tion is to find atypical measurement results. Naturally,
in these cases, the causes of the aberrant results should
be investigated. However, it is also desirable to report
an acceptable result despite the atypical measurements.
There are metrology protocols that help calculating the
additional number of experiments to find such acceptable
result and to state the obtained results [20].

Another practical application of metrology is to check
the stability of measurement results [20]. This is specially
important when the measurements are assessed over a long
period. In this scenario, trace replay measurements are
periodically executed, for example, to evaluate changes in
the design of the file system or the impact of recently col-
lected traces. During this long run, the operator may fail to
correctly follow the measurement procedure, for example,
when configuring the file system or preparing the traced
data. In addition to operation errors, unnoticed updates
in the system software and hardware malfunctioning may
happen during the long run. All these factors can increase
the random systematic errors beyond the expected limits
defined in the method validation study.

VI. Related work
In this section, we review the related literature in trace-

based file system performance evaluation. We are inter-
ested here on how past work relate to metrology concepts
(even if not explicitly declared), rather than discussing
their effectiveness. We also review computer science litera-
ture – not related to file system performance evaluation –
that has explicitly applied a branch of metrology in their
research methodology.

DFSTrace [23] is a kernel-based trace capture tool
developed under the umbrella of the Coda file system
project [24]. The DFSTrace authors referred to trace cap-
ture bias as overhead. They determined the overhead by
collecting the elapsed time to run the Andrew benchmark
over a file system without instrumentation, and comparing
this to the time required to run the same workload over an
instrumented file system. Their evaluation is in fact a bias
estimation. Nevertheless, they failed to follow metrology
advice concerning correction of the estimated bias.

Trace-based tools are popular not only in the file system
area. For example, Müller et al. developed the Vampir
tool set to analyze MPI parallel programs [25]. Simi-
larly to DFSTrace authors, they evaluated Vampir trace
capture bias as overhead. They determined the bias by
comparing the elapsed time to run MPI programs without
instrumentation with the elapsed time to run them after
instrumentation. They observed considerable bias in most
of the evaluated cases. As the DFSTrace authors, Müller
et al. also missed the correction of capture measurements
by calibration.

Later, in a joint performance measurement effort by
the HPC community, the Vampir trace capture tool was

replaced in favor of the Score-P instrumentation tool [26].
The main improvement of the latter alternative was to
store data in pre-allocated memory chunks. This improve-
ment minimized the overhead of allocating these chunks
at runtime, as observed by comparing the runtime of
running a MPI program without instrumentation with
the runtime to run the same program with Vampir and
Score-P instrumentation.

Anderson et al. developed Buttress to improve timing
control in IO trace replays [27]. They analyzed replay
timing by measuring the issue error, i.e. the difference
between the intended timestamp to replay a request and
the actual replayed timestamp. They also evaluated issue
error as a function of the number of I/O replayed requests
per seconds. This is in the direction of metrology linearity
analysis.

The TBBT event-based replayer was the first tool that
has dealt with the differences between capture and replay
environments [9]; in metrology terms, reproducibility
concerns. To cope with this requirement, they developed
ordering and timing policies to shape replayed workloads.
Although TBBT policies are a solid proposal, the authors
overlooked evaluating the fidelity of their system. Instead,
they evaluated TBBT ability to scale request dispatching
(however, more recently, Pereira et al. have shown that
the choice of TBBT timing and ordering policies have a big
impact on measured performance [10]). As the work by
Anderson [28], scalability analysis is related to metrology
definitions of rated and limiting operating conditions.

Zev et al. revisited the order discovery problem with the
ARTC replayer [7]. They suggested collecting extra informa-
tion, such as process and thread ids, to infer request order.
Similar to our approach, they evaluated their ARTC re-
player by comparing the time to execute microbenchmark
programs with the time to replay the corresponding trace.
They also evaluated ARTC behavior when trace replay takes
place in an environment different from the one used in
the capture — in metrology terms, they evaluated the
measurement method under reproducible conditions.

Metrology definitions and methods are not tied to any
particular application. As a result, metrology has been
broadly applied in physics [29], [30], chemistry [31], [32]
and biology [33], for example. Although not as mainstream
as it became in other sciences, metrology has already been
explicitly applied in computer science area (in particular,
using the GUM modeling approach instead of the empir-
ical approach we adopted in our case study). Betta et al.
evaluated the uncertainty in face recognition systems [34].
Metrology was also applied to the dependability analysis
of distributed systems. For example, the synchronization
uncertainty analysis of reliable clocks [35].

VII. Conclusions
This paper reported a validation of trace replay meth-

ods through a metrology protocol popular in other sci-
ences. The validation indicated that both the event and



compilation-based methods we evaluated provide good
precision however the event-based method shows signifi-
cant bias. The results of the validation also guided the
reduction of the bias by: i) identifying limitations in
the concurrent access to replayer data structures, and
ii) showing that the practice of controlling the operating
system scheduler policy to isolate the replay process has
a collateral effect on measurement bias.

We considered workloads generated by a micro and
macrobenchmarks to validate the trace replay methods.
Although these workloads allowed us to find problems in
current practice and to solve some trace replay shortcom-
ings, we are not able to tell the uncertainty to replay more
complex traces. We plan to apply the same metrology
framework to evaluate other workloads, including replays
of real applications.

In the metrology validation protocol we adopted, the
variability of measurement results, calculated in the pre-
cision component of the measurement uncertainty, arises
despite the tight controlled experimental conditions — the
protocol assumes repeated experiments in which identical
materials are applied with no changes in the environment
nor in the measurement instruments. However, when used
in practice, some factors can increase the variability of
measurement results even more. This is the case, for
example, of applying different machines to replay the
traces — very common when one needs to compare results
obtained by different laboratories. Since the protocol we
adopted cannot estimate these uncertainty sources, the
accounted uncertainty is, in fact, a lower bound. We
plan to extend our case study by considering uncertainty
arising from these other uncertainty sources, leading to a
reproducibility metrology analysis.
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[26] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm,
D. Eschweiler, M. Geimer, M. Gerndt, D. Lorenz, A. D. Malony,
et al., “Score-P: A Joint Performance Measurement Run-Time
Infrastructure for Periscope, Scalasca, TAU, and Vampir.,” in
Tools for High Performance Computing, pp. 79–91, Berlin:
Springer, 2011.

[27] E. Anderson, M. Kallahalla, M. Uysal, and R. Swaminathan,
“Buttress: A toolkit for flexible and high fidelity I/O bench-
marking,” in Proceedings of the 3rd USENIX Conference on File
and Storage Technologies, FAST’04, pp. 45–58, 2004.



[28] E. Anderson, “Capture, conversion, and analysis of an intense
NFS workload,” in Proccedings of the 7th USENIX Conference
on File and Storage Technologies, FAST’09, pp. 139–152, 2009.

[29] S. Rabinovich, “General information about measurements,” in
Measurement Errors and Uncertainties: Theory and Practice,
pp. 1–28, New York: Springer-Verlag, 3rd ed., 2005.

[30] P. Fornasini, The Uncertainty in Physical Measurements: An
Introduction to Data Analysis in the Physics Laboratory. New
York: Springer-Verlag, 1st ed., 2008.

[31] D. Massart, B. Vandeginste, L. Buydens, S. D. Jong, P. J.
Lewi, and J. Smeyers-Verbeke., “Handbook of Chemometrics
and Qualimetrics: Part A,” in Data Handling in Science and
Technology, vol. 20, pp. 1–867, New York: Elsevier, 1997.

[32] H. Czichos, T. Saito, and L. E. Smith, Springer Handbook of
Metrology and Testing. Berlin: Springer-Verlag, 2nd ed., 2011.

[33] Office for Official Publications of the European Communities,
Luxembourg, Metrology in Chemistry and Biology: A Practical
Approach, 1998.

[34] G. Betta, D. Capriglione, M. Corvino, C. Liguori, and A. Pao-
lillo, “Estimation of influence quantities in face recognition,” in
IEEE International Instrumentation and Measurement Tech-
nology Conference, pp. 963–968, 2012.

[35] A. Bondavalli, A. Ceccarelli, and L. Falai, “Assuring Resilient
Time Synchronization,” in Proceedings of the 2008 Symposium
on Reliable Distributed Systems, pp. 3–12, 2008.


