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Abstract—The byte-addressable Non-Volatile Memory (NVM)
offers fast, fine-grained access to persistent storage, and a
large volume of recent researches are conducted on devel-
oping NVM-based in-memory file systems. However, existing
approaches focus on low-overhead access to the memory and
only guarantee the consistency between data and metadata. In
this paper, we address the problem of maintaining consistency
among continuous snapshots for NVM-based in-memory file
systems. We propose a Hybrid Memory Versioning File System
(HMVFS) that achieves fault tolerance efficiently and has low
impact on I/O performance. Our results show that HMVFS
provides better performance on snapshotting compared with
the traditional versioning file systems for many workloads.
Specifically, HMVFS has lower snapshotting overhead than
BTRFS and NILFS2, improving by a factor of 9.7 and 6.6, re-
spectively. Furthermore, HMVFS imposes minor performance
overhead compared with the state-of-the-art in-memory file
systems like PMFS.

1. Introduction

Emerging Non-Volatile Memory (NVM) combines the
features of persistency as disk and byte addressability as
DRAM, and has latency close to DRAM. As computing
moving towards exascale, storage usage and performance
requirements are expanding dramatically, which increases
the need for NVM-based in-memory file systems, such as
PMFS [1], SCMFS [2], and BPFS [3]. These file systems
leverage byte-addressability and non-volatility of NVM to
gain maximum performance benefit [4].

While NVM-based in-memory file systems allow a large
amount of data to be stored and processed in memory, the
benefits of NVM are compromised by hardware and soft-
ware errors. Bit flipping and pointer corruption are possible
due to the byte-addressability of NVM media. Moreover,
The applications that handle increasingly large-scale data
usually require long execution time and are more likely
to get corrupted by soft errors. To recover from these
failures, we need to reboot the system and restart the failed
applications from the beginning, which will have a severe
consequence on the run time of the workloads. Hence, it is
becoming crucial to provision the NVM-based in-memory
file systems with the ability to handle failures efficiently.

Versioning, snapshotting and journaling are three well
known fault tolerance mechanisms used in a large number
of modern file systems. Journaling file systems use journal
to record all the changes and commit these changes after
rebooting. Versioning file systems allow users to create con-
sistent on-line backups, roll back corruptions or inadvertent
changes of files. Some file systems achieve versioning by
keeping a few versions of the changes to single file and
directory, others create snapshots to record all the files in
the file system at a particular point in time [5]. Snapshotting
file systems provide strong consistency guarantees to users
for their ability to recover all the data of the file system to a
consistent state. It has been shown in [6] that multi-version
snapshotting can be used to recover from various error types
in NVM systems. Moreover, file data is constantly changing
and users need a way to create backups of consistent states
of the file system for data recovery.

However, the implementation of file system snapshotting
is a nontrivial task. Specifically, it has to reduce space
and time overhead as much as possible while preserving
consistency effectively. To minimize the overhead caused
by snapshotting, we require a space-efficient implementation
of snapshot that is able to manage block sharing well,
because the blocks managed by two consecutive snapshots
always have a large overlap. Therefore, snapshot imple-
mentations must be able to efficiently detect which blocks
are shared [7]. When a shared block is updated from an
old snapshot, the new snapshot can be created only if the
old snapshot is guaranteed to be accessible and consistent.
Moreover, if a block has been deleted, the file system must
be able to determine quickly whether it can be freed or it
is still in use by other versions. To ensure the consistency
among all snapshots, we need to maintain additional meta-
data structures or journals in the file system.

The state-of-the-art and widely used approach of imple-
menting consistent and space-efficient snapshot is Rodeh’s
hierarchical reference counting mechanism [8], which is
based on the idea of Copy-on-Write (CoW) friendly B-tree.
Rodeh’s method modifies the traditional B-tree structure
and makes it more CoW-friendly. This method was later
adopted by BTRFS [9]. However, such design introduces
unnecessary overhead to in-memory file systems due to the
following two reasons.

Firstly, the key to taking fast and reliable snapshots is
to reduce the amount of metadata to be flushed to persistent
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Figure 1. Lazy reference counting for CoW friendly B-tree. (A,x) implies block A with reference count x.

storage. CoW friendly B-tree updates B-tree with minimal
changes to reference counts, which is proportional to fan-out
of the tree multiplied by height. Nevertheless, the total size
of the file system is growing rapidly, which leads to a larger
fan-out and higher tree to writeback. GCTree [7] refers to
this kind of I/O as an update storm, which is a universal
problem among B-tree based versioning file systems.

Secondly, directory hierarchy is used as tree structure
base in most B-tree based file systems, which leads to an
unrestricted height. If we want to take a global snapshot, a
long pointer chain will be generated for every CoW update
from the leaf-level to the root. Some file systems confine
changes within the file itself or its parent directory to avoid
the wandering tree problem, which increases the overhead
of file I/O and limits the granularity of versioning from the
whole file system to single file.

To address these problems, we propose the Hybrid
Memory Versioning File System (HMVFS) based on
a space-efficient in-memory Stratified File System Tree
(SFST) to preserve consistency among continuous snap-
shots. In HMVFS, each snapshot of the entire file sys-
tem is a branch from the root of file system tree, which
employs a height-restricted CoW friendly B-tree to reuse
the overlapped blocks among versions. Unlike traditional
directory hierarchy tree with unrestricted height, HMVFS
adopts node address tree as the core structure of the file
system, which makes it space and time efficient for taking
massive continuous snapshots. Furthermore, we exploit the
byte-addressability of NVM and avoid the write amplifica-
tion problem such that exact metadata updates in NVM can
be committed at the granularity of bytes rather than blocks.
We have implemented HMVFS by applying SFST to our
ongoing project: HMFS, a non-versioning Hybrid Memory
File System. We evaluate the effectiveness and efficiency of
HMVFS, the results show that HMVFS has lower overhead
than BTRFS and NILFS2 in snapshotting, improving by a
factor of 9.7 and 6.6, respectively. The contributions of this
work are summarized as follows.
• We are the first to solve the consistency problem for

NVM-based in-memory file systems using snapshotting. File
system snapshots are created automatically and transpar-
ently. The lightweight design brings fast, space-efficient and
reliable snapshotting into the file system.
• We design a stratified file system tree SFST to rep-

resent the snapshot of whole file system, in which tree

metadata is decoupled from tree data. Log-structured up-
dates to files balance the endurance of NVM. We utilize
the byte-addressability of NVM to update tree metadata
at the granularity of bytes, which provides performance
improvement for both file I/O and snapshotting.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the background knowledge. Section 3 shows
our overall design and Section 4 describes our implemen-
tation. We evaluate our work in Section 5, present related
work in Section 6 and conclude the paper in Section 7.

2. Background

2.1. CoW Friendly B-Tree

Copy-on-Write (CoW) friendly B-tree is one of the
most widely used approaches to build efficient file systems
that support snapshotting. It allows CoW-based file systems
to better scale with the size of their storage and create
snapshots in a space-efficient mode.

Figure 1 shows an example of how insertion and deletion
change the reference counts of the nodes in B-tree. In
this section, node refers to the node in the abstract B-
tree, which is different from the node block mentioned in
the rest of the paper. Each rectangle in the figure repre-
sents a block in B-tree and each block is attached with a
pair (block id, reference count). Originally, the reference
count records the use count of the block, i.e. if a block
is used by n versions, its reference count is set to n. A
block is valid if its reference count is larger than zero. This
reference counting method can be directly applied to the
file system to maintain the consistency among continuous
snapshots. However, if the file system keeps reference counts
for every block, massive reference counts will have to be
updated when a new snapshot is created, which results in a
large overhead. To reduce the update overhead, Rodeh came
up with an improvement to the original CoW friendly B-
tree, which transforms a traversing reference count update
into a lazy and recursive one. Most updates in the refer-
ence counts of nodes are absorbed by their parent nodes.
Such improvement reduces the time complexity of updates
from O(#totalblocks) to O(#newblocks). This method is
adopted by B-tree based file systems like BTRFS as their
main data consistency algorithm.



Figure 1(a) illustrates an original state of a simplified
CoW friendly B-tree with reference counts. In Figure 1(b),
a leaf node D is modified (i.e. a new D’ is written to storage).
We perform path traversal from block D to the root of the
tree (D→F→P), all the visited blocks are duplicated and
written to the new locations. As a consequence, we have a
new path D’→F’→Q. We set the reference count (count)
of the newly created nodes (i.e. D’, F’, Q) to 1, and for
the nodes that are directly referred by the nodes in the new
path, we increase their count by 1, i.e. the reference counts
of node C and E are updated to 2. Although the reference
counts of node A and B haven’t changed, they are accessible
by the newly created tree Q.

In Figure 1(c), we consider the scenario that tree P is
about to be deleted. We perform a tree traversal from node
P and decrease the reference counts of the visited nodes. If
count is larger than 1, the node is shared with other trees,
thus we decrease count by 1 and stop downward traversal.
If count is equal to 1, the node only belongs to tree P. We
set the count to zero and continue the traversal. The nodes
with zero count are considered invalid.

2.2. Hybrid Memory File System (HMFS)

HMFS is a log-structured non-versioning in-memory file
system based on the hybrid memory of DRAM and NVM.
HMFS utilizes log-structured writes to NVM to balance
the endurance, and metadata is cached in DRAM for fast
random access and update. HMFS also supports execute-
in-place (XIP) in NVM to reduce the data copy overhead
of extra DRAM buffer cache. The architecture of HMFS is
illustrated in Figure 2.

As is shown in Figure 3(a), HMFS splits the entire
volume into two zones that support random and sequential
writes, and are updated at the granularity of bytes and blocks
respectively. Each zone is divided into fixed-size segments.
Each segment consists of 512 blocks, and the size of each
block is 4KB. There are 5 sections in the random write
zone of HMFS which keeps the auxiliary information of
the blocks in the main area. The location of each section is
fixed once HMFS is formatted on the volume.

Superblock (SB) contains the basic information of the
file system, such as the total number of segments and blocks,
which are given at the time of formatting and unchangeable.

Segment Information Table (SIT) contains the status
information of every segment, such as the timestamp of the
last modification to the segment, the number and bitmap of
valid blocks. SIT is used for allocating segments, identifying
valid/invalid blocks and selecting victim segments during
garbage collection.

Block Information Table (BIT) keeps information of
every block, such as the parent node-id and the offset.

Node Address Table is an address table for node blocks.
All the node blocks in the main area can be located through
the table entries.

Checkpoint keeps dynamic status information of the file
system for recovery.

NVMDRAM

 HMFS/HMVFS
Cache Metadata Data

Application

Read, Write, 

Figure 2. Architecture of HMFS/HMVFS

There are two types of blocks in the sequential write
zone in HMFS. Data blocks contain raw data of files and
node blocks include inodes or indirect node blocks, they are
the main ingredients to form files. An inode block contains
the metadata of a file, such as inode number, file size, access
time and last modification time. It also contains a number of
direct pointers to data blocks, two single-indirect pointers,
two double-indirect pointers and one triple-indirect pointer.
Each indirect node block contains 1024 node-ids (NID)
of indirect or direct node blocks, each direct node block
contains 512 pointers to data blocks. NID is translated to
node block address with node address table.

The cascade design of file structure can support file
size up to 2TB and is still efficient for small files (less
than 4KB) with inline data. To support even greater need
of the maximum file size, a quadruple-indirect pointer or
a second triple-indirect pointer can be added to the inode,
which expands the maximum file size to 2PB or 4TB.

The idea of node and data blocks is inspired by
F2FS [10]. In the design of traditional log-structured file
system (LFS), any update to low-level data blocks will lead
to a series of updates in direct node, indirect node and
inode, resulting in serious write amplification. F2FS uses B-
tree based file indexing with node blocks and node address
table to eliminate update propagation (i.e. wandering tree
problem [11]), only one node block will be updated if a
data block has been modified.

3. Hybrid Memory Versioning File System

HMVFS is a versioning file system based on HMFS. We
implement a stratified file system tree (SFST) to convert the
original HMFS into HMVFS. HMVFS allows the existence
of multiple snapshot roots of SFST, as Figure 4 shows,
each root points to a version branch that represents a valid
snapshot of the file system.

3.1. NVM Friendly CoW B-tree

B-tree is widely used as the core structure of file sys-
tems, but trivial reference count updates hinder disk-based
file systems to achieve efficient snapshotting by causing the
entire block to be written again [7]. However, in memory-
based file systems, reference counts can be updated precisely
at variable bytes granularity, which motivates us to build an
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NVM-aware CoW friendly versioning B-Tree as a snapshot-
ting solution to a B-tree based in-memory file system.

In SFST, we decouple these reference counts and other
block-based information from B-tree blocks. As Figure 3(b)
shows, the auxiliary information is stored at a fixed location
and updated with random writes, whereas the actual blocks
of B-tree are stored in the main area and updated with
sequential writes. We adopt the idea of CoW friendly B-
tree [9] to the whole file system on version basis, in which
continuous file system snapshots are organized as SFST with
shared branches, as shown in Figure 4. With the idea of lazy
reference counting [8], we achieve efficient snapshotting
and also solve the block sharing problem which involves
frequent updates to the reference counts of shared blocks.

3.2. Stratified File System Tree (SFST)

We implemented SFST (Figure 4) in HMFS to convert it
into a Hybrid Memory Versioning File System (HMVFS),
the layout of HMVFS is shown in Figure 3(b). SFST is
a 7-level B-tree where the levels can be divided into four
different categories: one-level checkpoint layer, four-level
node address tree (NAT) layer, one-level node layer and one-
level data layer. We convert the original checkpoint into a
list of checkpoint blocks (CP) to keep status information
of every snapshot the file system creates. We convert node
address table into node address tree (NAT) which contains
different versions of the original node address table. We
also move NAT and CP to sequential write zone to better
support block sharing in SFST. Each node in SFST is a
4KB block located in the main area of HMVFS, and yields
strictly sequential writes as Figure 3(b) shows.

The reference counts of tree nodes are stored in BIT.
The decoupled design of auxiliary information and blocks
can be applied to other in-memory B-tree based file systems
to achieve efficient snapshotting as well. We discuss the
auxiliary information of SFST in Section 3.5.

In SFST, Data Layer contains raw data blocks. Node
Layer is a collection of inodes, direct nodes and indirect
nodes. Each node is attached with a 32-bit unique NID,
which remains constant once the node is allocated. In order
to support larger number of files, we can increase the NAT
height to support more nodes in the file system. For each

update to a node, a new node is written with the same NID
as the old one, but in a different version branch of SFST.

Node Address Tree (NAT) is a CoW friendly B-tree
which contains the addresses of all valid node blocks within
every version, it is an expansion of node address table with
added dimension of version. The logical structure of NAT
in NVM is shown in Figure 4. Node blocks are intermediate
index structures in files (relative to data blocks), and node
address tree keeps the right addresses of nodes with respect
to different versions. NAT is further discussed in Section 3.3.

Checkpoint block (CP) is the root of every snapshot.
It contains snapshot status, such as valid node count, times-
tamp of the snapshot. The most important part of CP is the
pointer to the NAT root, which is exclusive to every snap-
shot. Snapshot information in CP is crucial to recovering the
file system. The structure and management of checkpoint
blocks are further discussed in Section 3.4.

In DRAM, HMVFS keeps metadata caches as residents,
these caches provide faster access to metadata and are writ-
ten back to NVM when taking snapshots. We use journaling
for SIT entry updates and radix tree for NAT cache. The
structure of Checkpoint Information Tree (CIT) is a red-
black tree. The nodes of CIT are recently accessed check-
point blocks of different snapshots, which are frequently
used during garbage collection.

The blocks of files from different versions are located
in the main area. They are updated through log-structured
writes and managed by our in-memory stratified file system
tree (SFST). To look up a file F in the directory D, we
search the data of D and traverse its directory entries with
hash lookup to find the entry with file name F. Once the
directory entry is located, we can extract the inode number
i from it. After that, we perform a top-down search in the
NAT of current version in DRAM to locate the address of
the node block with the inode number i. The address in that
NAT entry will point to the inode block of file F.

3.3. Node Address Tree

Node address tree (NAT) is the core of SFST. We design
NAT as a multi-version node address table. To access the
data of a file, one must follow the link of blocks like:
inode⇒indirect node⇒direct node→data. However, in the
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file structure of HMVFS, the connection between nodes
(⇒) is not maintained by pointers but NIDs, i.e. an indirect
node contains only NIDs of direct nodes. In order to acquire
the block address of the next node on the link, file system
has to lookup the node address table of the current version.
For file system versioning, to access the node blocks with
the same NID from different versions, NAT must maintain
different views of node address table for different versions.
It is a challenging task to implement NAT such that NAT
can be updated with low latency and be constructed space-
efficiently. Fortunately, the byte-addressability of NVM al-
lows us to update the variables of auxiliary information
with fine-grained access, which inspired us to build a strat-
ified versioning B-tree with block-based reference-counting
mechanism without any I/O amplification.

We implement NAT with a four-level B-tree, as Figure 4
shows. The leaf blocks of NAT consist of NID-address pairs
(NAT entries) and other tree blocks contain pointers to lower
level blocks. The B-tree design ensures low access overhead
as well as space-efficiency for snapshotting.

In the tree of file structure, the parent node contains
NIDs of the child nodes (unless the child nodes are data

blocks, then it contains data block addresses), which remain
unchanged in any later version during the existence of the
file. For example, consider an inode that contains two direct
nodes (NID = 2,3). NAT of the current version has two
entries for NID and block address: {2,0xB}, {3,0xC}. In
the next version, if a modification to this file requires to
write a new node #3 (due to Copy-On-Write), NAT in
DRAM should write a dirty entry {3,0xD} and keep other
clean entries traceable. During snapshot creation, these dirty
entries will be written back to NVM and form a new branch
of B-tree (like the right part of Figure 4). An important thing
to notice is that throughout the entire data update procedure,
the inode that contains NID 2 and 3 is never modified, it
is still traceable by the original version of file system. The
overhead of snapshotting is only caused by NAT updates
which is much less than that of traditional schemes. CoW
friendly B-tree [8] helps us to keep minimum modification
size as well as the integrity of NAT among multiple versions.

The design of NAT not only reduces the overhead
of block updates within files, but also excludes directory
updates from file updates. In SFST, the directories con-
tain inode numbers, which remains unchanged during file
updates. In some file-grained versioning approaches (like
NILFS [12], ZFS [13]), a directory containing different
versions of a file has different pointers to each version of the
file. Not only does it amplify the overhead of file updates,
but it also increases unnecessary entries in the directory
which leads to a longer file lookup time.

3.4. Checkpoint

As is shown in Figure 4, checkpoint block is the head of
a snapshot. In HMVFS, checkpoint block stores the status
information of the file system and a pointer to the NAT root
block. All the blocks of snapshots are located in the main
area, and follow the rule of log-structured write in order
to simplify the design and improve the wear-leveling of
NVM. HMVFS separates data and node logging in the main
area with data and node segments, where data segments
contain all the data blocks and node segments contain all the
other types of blocks (inodes, direct nodes, indirect nodes,
checkpoint blocks and NAT blocks).

Checkpoint blocks are organized with doubly linked
list in NVM. There is a pointer in superblock that always
points to the newest checkpoint block for the purpose of
system rebooting and crash recovery. In HMVFS, we have
also implemented a Checkpoint Information Table (CIT) in
DRAM that keeps checkpoint block cache for faster lookup.

3.5. Auxiliary Information

Compared to HMFS, the random write zone in HMVFS
contains the following three sections as the auxiliary infor-
mation of SFST.

Superblock (SB) in HMVFS not only contains static
information of the file system, but also maintains the list
head of all snapshots and a pointer to the newest one as
the default version for mounting. SB also contains a state



indicator of the file system, it can be set to checkpointing,
garbage collection, etc.

Segment Information Table (SIT) in HMVFS is the
same as the SIT in HMFS, but we revise the process of SIT
updates to ensure stronger consistency for versioning.

Block Information Table (BIT) is expanded from the
BIT in HMFS to keep more information for snapshotting. It
contains not only the node information of the block, but also
maintains the start and end version number which indicates
the valid duration of a block. BIT also contains reference
counts of each block in SFST, and manages these blocks to
form a CoW friendly B-tree with lazy reference counting.

The auxiliary information of these sections occupies
only a small fraction of total space, which is about 0.4%
since we use a 16B BIT entry to keep the information of
each 4KB block.

4. Implementation

In this section, we provide implementation details of
SFST. We first illustrate how to manage snapshots with
snapshot operations. We then show the metadata operations
on which SFST relies to ensure consistency and how garbage
collection handles block movements in multiple snapshots.
Finally, we demonstrate how to recover using snapshots.

4.1. Snapshot Management

We implement our snapshots with space and time ef-
ficiency in mind. Our snapshot is a height-restricted CoW
friendly B-tree, with total height of 7. In the current proto-
type, we choose NAT height to be 4 to support up to 64PB of
data in NVM. NAT height can be increased to adapt future
explosive needs of big data (each additional level of NAT
expands the support of the total size of NVM by 512x).

Checkpoint is a function that creates a valid snapshot
of the current state. If a data block update is the only
difference between two consecutive versions, SFST applies
a bottom-up CoW update with 7 block writes, only 5 blocks
of NAT and CP are actually written on Checkpoint
because node and data blocks are updated in run time by
XIP scheme. Moreover, these NAT nodes are updated only
when new nodes are allocated, for the best case of sequen-
tial writes to a file, approximately 512MB (An NAT leaf
contains 256 NAT entries and a direct node block contains
512 pointers to data blocks, thus size ≈ 256×512×4KB =
512MB) of newly written data requires one new NAT leaf
update. Even for an average case, node updates are fewer
compared with other B-tree based versioning file systems
which suffer from write amplification problem. Therefore,
Checkpoint in SFST is fast and space-efficient because
it only contains few updates of NAT blocks.

Checkpoint is triggered on one of these occasions:
(1) after an fsync system call from the applications; (2)
after garbage collection; (3) when explicitly specified by the
user. Background garbage collection is carried out every five
minutes automatically, hence Checkpoint is conducted at

most 5 minutes since last execution. Also, Checkpoint
only builds NAT and the checkpoint block of SFST in the
main area, as node blocks and data blocks are updated
directly using XIP. With the space and time efficient design
of snapshots, we manage to do frequent checkpoints with
low impact on performance.

Snapshot deletion is triggered by the user manually or by
background cleaning. A snapshot is considered old enough
for deletion if the version number is much earlier than
current version number and is not specified to be preserved
by the user.

We can keep up to 232 different versions of the file
system (due to the 32-bit version number). We also provide
interfaces for users to delete snapshots manually, or set up
preserve flags and time of effective to delete old and un-
wanted snapshots while maintaining the important ones. For
most file systems, taking snapshots at such high frequency
automatically and preserving a lot of snapshots hurt the I/O
performance and waste a large amount of space, but SFST
creates space-efficient snapshots that imposes little overhead
in snapshotting and I/O performance.

4.1.1. Snapshot Creation.

When Checkpoint is called, the state of HMVFS will
be set to checkpointing and file I/O will be blocked until
Checkpoint is done. The procedure of creating a snapshot
is shown in List 1, the snapshot becomes valid after step 4.

List 1 Steps to Create a Snapshot

1) Flush dirty NAT entries from DRAM and form a new
NAT in NVM in a bottom-up manner;

2) Copy SIT journal from DRAM to free segments in the
main area in NVM;

3) Write a checkpoint block;
4) Modify the pointer in superblock to this checkpoint;
5) Update SIT entries;
6) Add this checkpoint block to doubly linked list in NVM

and CIT in DRAM;

To create a snapshot, we build a new branch of SFST
from the bottom up, like the right part of Figure 4. With XIP
in mind, updates in node layer and data layer have already
been flushed to NVM at runtime. Therefore, we start from
the NAT layer.

In step 1, since NAT caches are organized in radix
tree, we can retrieve dirty blocks effectively. We write back
the dirty blocks and follows the bottom-up procedure to
construct NAT of this version. New child blocks create
parent blocks that contain pointers to both these new blocks
and adjacent blocks from old snapshots. The old blocks are
shared with this new NAT and their reference counts are
increased by one. We then recursively allocate new blocks
till NAT root to construct the NAT of this version.

Segment Information Table (SIT) contains information
of segments which are updated frequently. We use SIT
journal in DRAM to absorb updates to SIT in NVM, and



update SIT only during snapshot creation. In step 2, SIT
journal in DRAM is copied to the free segment of main
area without any BIT update. Step 4 is an atomic pointer
update in superblock, which validates of the checkpoint. If
the system crashes before step 4, the file system will start
from the last completed snapshot and discard any changes
in this version. After the snapshot becomes valid in step 4,
the file system updates SIT according to the SIT journal
on NVM. If a system crash happens during or after step 5,
we redo Checkpoint from this step. The SIT journal is
useless after snapshot creation, but since it is never recorded
on BIT or SIT, the file system will overwrite them as regular
blocks. This ensures consistency in SIT and in the meantime,
avoid frequent updates to NVM.

When a checkpoint block is added to the super block list,
the snapshot becomes valid. Also, HMVFS will always start
from the last completed snapshot after a crash or reboot.

4.1.2. Snapshot Deletion.

On snapshot deletion, a recursive count decrement is
issued to the target version. The address of checkpoint block
of this version (the root of this branch of SFST) is found
on the red-black tree on CIT in DRAM. The basic idea of
snapshot deletion is illustrated in Figure 1(c). We start the
decrement of count from the checkpoint block through
the whole branch of SFST recursively. To recover from a
sudden crash during snapshot deletion, we keep a record of
the snapshot version number and the progress of deletion.
Since we follow a strict DFS procedure, only the information
of currently being deleted block is needed to show where the
deletion stops. If the file system is remounted from a crash
occurred during snapshot deletion, it will redo the deletion
before available to users. Algorithm 1 describes the snapshot
deletion operation in pseudocode.

Algorithm 1 Delete snapshot
1: function SNAPSHOTDELETION(CheckpointBlock)
2: Record CheckpointBlock in superblock;
3: BlockDeletion(CheckpointBlock);
4: Remove CheckpointBlock from CIT;
5: Call GarbageCollection;
6: end function
7: function BLOCKDELETION(block)
8: Record block in superblock;
9: count[block]−−;

10: if count[block] > 0 or type[block] = data then
11: return
12: end if
13: for each ptr to child node of block do
14: BlockDeletion(ptr);
15: end for
16: end function

When decrement is done, we remove the checkpoint
block from the doubly linked list in NVM and the red-
black tree in DRAM. After that, all the blocks of this
version are deleted and the occupied space will be freed

during garbage collection. Since snapshot deletion produces
considerable free blocks, we call garbage collection function
right after it. For the blocks which are referred in other
valid versions, their reference counts are still greater than
zero, and HMVFS considers these blocks as valid ones.
The massive reads and deletions to reference counts are the
bottleneck of snapshot deletion, but since NVM provides
variable updates at the granularity of byte, the overhead of
snapshot deletion is small and acceptable.

4.2. Metadata Operations

In log-structured file systems (LFS), all kinds of random
modifications to file and data are written in new blocks
instead of directly modifying the original ones. In our im-
plementation, the routines of file operations remain almost
the same as that of a typical LFS. Only a small amount
of additional reference data is written to block information
table (BIT) on each block write. A BIT entry contains six
attributes, and is 16 bytes in total, which is negligible in
block operations where the block size is 4096 bytes.

BIT entries are used to solve block sharing problem
incurred by multi-version data sharing that is caused by
garbage collection and crash recovery. As Figure 4 shows,
there are nodes in SFST that have multiple parent nodes.
When a NAT / node / data block is moved, we have to alert
all its NAT parent blocks / NAT entries / parent node blocks
to update the corresponding pointers or NAT entries to the
new address in order to preserve consistency. We store the
parent node information of all the blocks in BIT, and utilize
the byte-addressability of NVM to update the information
at the granularity of byte.

To ensure the consistency of the whole file system, we
expect NVM to be attached to memory bus rather than PCI
bus, also NVM should support at least 8 bytes atomic write.
Then we can access data in NVM directly via LOAD/S-
TORE instructions of CPU(x86 64). Like other in-memory
storage systems, SFST uses CPU primitives mfence and
clflush to guarantee the durability of metadata.

struct hmvfs_bit_entry {
__le32 start_version;
__le32 end_version;
__le32 node_id;
__le16 offset_and_type;
__le16 count;

}

For any block in SFST, BIT entries are updated along
with the block operations without journaling. Meanwhile,
the atomicity and consistency guarantees are still provided.
• start_version and end_version are the first
and last versions in which the block is valid, i.e.
the block is a valid node on each branch of SFST
from start_version to end_version. write and
delete operations to the block set these two variables into
the current version number. Since SFST follows strict log-
structured writes, these two variables are unchangeable.



TABLE 1. TYPES OF BLOCKS IN THE MAIN AREA

type of the block type of parent node_id
checkpoint N/A N/A

NAT internal NAT internal index code in NATNAT leaf
inode

NAT leaf NIDindirect
direct
data inode or direct NID of parent node

• type is the type of the block. There are seven kinds
of blocks in the main area, which is shown in Table 1. We
store the types of these blocks in their BIT entries, because
different parent nodes in SFST lead to different structures
of storing the links to the child nodes. type is set at the
same time when the block is written.
• node_id is the key to finding the parent node, it is set
once the block is written. node_id has different meanings
regarding different types, as Table 1 shows. For NAT nodes,
each node contains 512 addresses, and the tree height is 4.
We use log2 512×3 = 27 bits in node_id to keep the index
of all NAT nodes. For a node block of a file, node_id is
the exact NID that NAT stores and allocates. For a data
block of a file, node_id is the NID of its parent node.
Given the above relation, the parent node of any block in
SFST can be easily found.
• offset is the offset of the corresponding pointer to
the block in its parent node. Combined with node_id, we
can locate the address of the pointer to the block. With the
byte-addressability of NVM, the pointer can be accessed
with little cost. For a typical CoW update, a new parent
block is written by copying the old one and modifying the
pointer at offset to the latest address. After building all
parent nodes recursively from the bottom up, and we will
get a new version tree as the right part of Figure 4.
• count is the reference count of the block, but differs
from that of normal files, count basically records all
the references by different versions. When a new block is
allocated, its count is set to 1. If a new link is added
from a parent block to it, its count increases by 1. If
one of its parent block is no longer valid (only occur after
snapshot deletion), its count decreases by 1. Once the
count reaches zero, the block is freed and can be reused.
We implement the idea of reference counting from Rodeh
on HMVFS to maintain file system consistency [8], [14].
write and delete are not the only two operations that
modify count. Version level operations such as snapshot
creation and deletion modify it as well. The rule of updating
reference counts has been revealed in Section 2.1.

For start_version, node_id, offset and type,
they are set only once during block allocation by one thread,
the file system can undo these changes according to version
number. We can also call fsck to scan BIT and invalidate
end_version for an uncommitted version of snapshot.
For count, the only operation which will decrease count
and may cause inconsistency is snapshot deletion. We pro-
vide Algorithm 1 in Section 4.1.2 to ensure consistency.

BIT contains not only the reference counts of all the
blocks in the main area, but also the important metadata that
reveals the relation of discrete blocks in SFST. The metadata
operations above maintain the correctness of BIT and the
consistency of SFST with minor cost in I/O performance.

4.3. Garbage Collection

Garbage collection function is implemented in every
log-structured file system to reallocate unused blocks and
reclaim the storage space. The garbage collection process
leverages the byte-addressability of NVM to perform effi-
cient lookup of the most invalid block count in every SIT
entry, and uses it to select the victim segment. After that,
the garbage collection process moves all the valid blocks
of the victim segment to the current writing segment, and
sets the original segment free for further use. When the
target segment is truly freed, garbage collection thread will
perform an update to SIT journal accordingly. Since garbage
collection does not require any updates in SFST, it has
little impact on foreground operations like snapshot creation,
block I/Os, etc.

The challenge of garbage collection for SFST is that
when a block is moved, we must update the pointers
in its parent node of every version to the new address.
Otherwise, the consistency among multiple snapshots will
be broken. Since we have inserted BIT modifications into
normal file operations, we can use node_id and offset
in BIT entry of the block to pinpoint the pointers from
parent blocks to target block and modify them to the
new address. To determine the related versions, we tra-
verse from start_version to end_version of the
existence of target block. The trick to performing quick
inquiry of the parent nodes is that for each parent node,
we skip all but one of the versions in the existence of
parent node due to the fact that the parent node remains
the same and valid during its own existence. All we
have to do is find the successor parent node version by
versionsuccessor ← end_versionthis+1 and continue
until we reach end_version of the target block. The byte-
addressability and low access latency of NVM accelerates
the update process substantially.

4.4. Recovery

HMVFS provides one writable snapshot for the newest
version and a large number of read-only snapshots for old
versions. To recover from an incorrect shutdown, HMVFS
mounts the last completed snapshot. Since HMVFS keeps
all dynamic system information in checkpoint block and SIT
is not tainted (SIT is updated only during the last snapshot
creation with consistency guarantee), the blocks which are
written after the last completed snapshot are invalid and
cannot be found in any SFST. After fsck cleans the invalid
BIT entries, the file system is recovered and can overwrite
the blocks from the incomplete version as regular blocks.
We discuss how to handle file system crash during snapshot
creation in Section 4.1.1.



To access the files in snapshots, HMVFS follows the
link from superblock to checkpoint block to NAT and then
to the node and data blocks of files, which introduces no
additional latency in recovery.

For mounting read-only old snapshots, we only need to
locate the checkpoint block of the snapshot in the checkpoint
list, which only introduces little extra time.

5. Evaluation

We evaluate the performance of HMVFS using vari-
ous real workloads. For each workload, we first examine
HMVFS against traditional file systems in memory, demon-
strating that HMVFS achieves versioning at an acceptable
performance cost compared with other in-memory file sys-
tems. Then, we compare the overhead of snapshot operations
of HMVFS with popular versioning file systems to show the
snapshotting efficiency of HMVFS.

5.1. Experimental Setup

We conduct our experiments on a commodity server
with 64 Intel Xeon 2GHz processors and 512GB DRAM,
running the Linux 3.11 kernel. For EXT4, BTRFS, NILFS2,
we use ramdisk carved from DRAM and configure 128GB
as ramdisk to simulate NVM. In the case of HMVFS and
PMFS, we reserve 128GB of memory using the grub option
memmap. User processes and buffer cache use the rest of
the free DRAM space. The swap daemon is switched off in
every experiment to avoid swapping off pages to disks.

It is important to note that our experiments focus on
file system performance and the overhead of snapshotting
operations, rather than evaluate different types of NVM.
Since most of the performance results are relative, the same
observations in DRAM should be valid in NVM. To compare
the efficiency of snapshot creation, since the performance
of time overhead is important and strongly related to space
consumption, we use the comparison of time overhead as an
effective and straightforward way to evaluate the efficiency
of snapshotting among versioning file systems.

We use Filebench suite [15] to emulate five common
workloads. The random-read, random-write and create-files
workloads generate basic I/O performance results of typical
file operations. The fileserver workload emulates file system
activities of an NFS server, it contains an even mixture of
metadata operations, appends, whole-file reads and writes.
The varmail workload is characterized by a read-write ratio
of 1:1, it consists of sequential reads as well as append
operations to files.

We also use postmark to emulate different biases of
read/write operations in real scenarios. Postmark [16] is a
single-threaded synthetic benchmark that simulates a com-
bined workload of email, Usenet, and web-based commerce
transactions. This benchmark creates a lot of small files and
performs read/write operations on them.

We compare HMVFS with two popular versioning file
systems, BTRFS [9] and NILFS2 [12], to show the ef-
ficiency of snapshotting operations of HMVFS. We also

compare HMVFS with two non-versioning but state-of-the-
art in-memory file systems with the best I/O performance:
PMFS [1] and EXT4 [17]. PMFS is a typical in-memory file
system and EXT4 is one of the most widely-used traditional
file system. Besides the IOPS results of every benchmark,
we also show efficiency, the reciprocal of time overhead
on creating a snapshot, to illustrate how HMVFS achieves
snapshotting with neglectable performance overhead.

In the following sections, we present our experimental
results to show how HMVFS reduces the performance over-
head imposed by snapshotting operations. Section 5.2 gives
a basic understanding on how files and directories affect
the performance of file system Section 5.3 demonstrates the
overhead of snapshot creation and deletion; Section 5.4, 5.5
and 5.6 show how different total numbers of files, directory
structures and percentages of reads of workloads affect the
I/O performance and the overhead of snapshotting in detail.

5.2. Overall Performance

Before analyzing the efficiency of snapshot operations,
we must show the file operations of HMVFS is efficient
and suitable for in-memory computing. We run a series of
benchmarks against HMVFS and evaluate its performance,
the result shows that HMVFS imposes acceptable I/O over-
head to achieve snapshotting.

To demonstrate the overall I/O performance of HMVFS,
we first run randomwrite and randomread workloads on
single file. These two workloads perform random writes and
reads on a pre-allocated file. We take average I/O results of
five runs on a 5GB file. The results in Table 2 show that on
randomwrite, EXT4 performs the best, HMVFS and PMFS
perform close to EXT4. BTRFS and NILFS2 perform 46%
and 29% the write speed of HMVFS. On randomread, all
five file systems perform close to each other. This indicates
that HMVFS has similar efficiency compared with state-
of-the-art single version in-memory file system, and has
additional advantages to traditional approaches.

TABLE 2. PERFORMANCE OF RANDOM READ AND WRITE

Random read (ops/sec) Random write (ops/sec)
HMVFS 25493 21726
BTRFS 26194 10026
NILFS2 25460 6379
EXT4 25447 22721
PMFS 25728 21628

5.3. Snapshot Creation and Deletion

Despite I/O performance, HMVFS also ensures less
snapshotting overhead compares with other approaches. For
a snapshot contains only one 1GB file, BTRFS and NILFS2
consumes 1.38 and 1.84 times the overhead of HMVFS. To
measure the benefits of directory structure on snapshots, we
take snapshots of a directory containing 1 to 64 files (1GB
each), and measure their overhead of creating snapshots. For
BTRFS, the overhead is strongly related to the number of
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Figure 5. Performance of file systems under fileserver workload

files, the structural design of BTRFS is similar to EXT4,
which is based on B-tree. Such design makes it vulnerable
when the number of files in one directory isn’t large enough
to reflect the advantage of B-tree structure. In HMVFS, the
directory is also B-tree based, but since HMVFS creates
snapshot on fsync to deal with consistency problem in-
stead of logging and performing transactions, less work is
required and the overhead of HMVFS remains low under
various number of files. NILFS2 organizes directory entries
with array, which ensures NILFS2 to receive relatively well
performance in searching and adding entries when there are
not too many files in one directory. However, when the
amount of entries grows, array based directories introduce
much more overhead than B-tree based ones.

HMVFS deletes obsolete snapshots automatically, just
as NILFS2 does. To evaluate the efficiency of snapshot
deletion, we run fileserver, webserver and webproxy work-
loads for more than 15 minutes, take snapshots every 5
minutes, and delete the second snapshot. We record the time
of creating and deleting the second snapshot on HMVFS,
BTRFS, NILFS2, and compare the average overheads under
the same workloads. We find out that although the overhead
of snapshot deletion of BTRFS and NILFS2 are several
times less than the overhead of their snapshot creation
(BTRFS:2.36; NILFS2:1.57; HMVFS:1.03), HMVFS still
achieves fastest snapshot deletion among all.

5.4. Impact of File Count

Different numbers of files in file systems lead to different
overhead of creating snapshots. We use fileserver workload
from Filebench to emulate I/O activities of a simple file
server containing different amounts of files. The file oper-
ations include creates, deletes, appends, reads, and writes.
In this experiment, we configure mean file size to 128KB,
mean append size to 8KB, directory width to 20 and run
time to 5 minutes. We run fileserver three times and report
the average readings.

Figure 5(a) shows the results of varying the number
of files from 2k to 16k. We see that on average HMVFS
and PMFS perform the best amongst all file systems, while
NILFS2 performs the worst. Although HMVFS has to keep
records of reference count updates in DRAM and rebuild the
file system tree on every fsync to ensure consistency, such
overhead causes HMVFS drops the performance by only
8% compared with PMFS. Since fileserver mainly focuses
on random writes on large files and updates on metadata,
PMFS utilizes the simple block allocation and deallocation
policies, while HMVFS takes the advantage of NAT and
performs quick block allocation.

The directories of HMVFS are also log-structured like
normal files, we use hashed and multi-level index entry tree
to store and lookup the contents, the complexity of which
is O(log(#entries)). We achieve quick access from such
design when each directory contains moderate amount of
entries, but as the number of entries grows, the overhead of
entry update increases, due to the log-structure nature of all
inodes. Thus, we observe that the performance of HMVFS
slightly degrades as the number of file increases.

EXT4 and BTRFS perform 13% and 22% worse than
HMVFS. Despite the ramdisk environment, the short code
path and fast random access design of EXT4 still ensure
good I/O performance, which is also stable under different
numbers of files. More importantly, in BTRFS and EXT4,
data is organized with extents and the file system structure
is also B-tree. It fits the nature of data extent that fileserver
performs only write-whole-file and append. On file creation,
a large data extent can be built. When fileserver appends
data to existing files, BTRFS and EXT4 only need to create
a new extent and merge it with the old one. These extent-
based file systems perform well under fileserver workload.

NILFS2 performs 73% worse than HMVFS. Since
NILFS2 is a completely log-structured file system, any write
to a file or directory will lead to recursive updates to multiple
data and metadata blocks, resulting in a wandering tree
problem. This problem gets worse when NILFS2 is mounted
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Figure 6. Performance of file systems under varmail workload

in memory, lots of redundant blocks of data and metadata
are written for every append operation which takes extra
time and space.

Figure 5(b) shows the efficiency of creating snapshots
after processing the workload above. On average, the over-
head of snapshotting by BTRFS and NILFS2 is 9.7x and
6.6x worse compared with HMVFS. Without snapshotting,
fsync operation of EXT4 and PMFS is to flush data and
metadata back to storage in order to maintain consistency.
We compare our snapshotting overhead with that of fsync
operation after the same workload on these two file systems
to further show the efficiency of HMVFS. EXT4 takes
14.3x time of HMVFS does and PMFS takes only 36%.
On fsync, EXT4 has to commit all the changes as well as
to keep checksum and journal up-to-date, which leads to a
significant overhead. On the contrary, since PMFS supports
XIP, most of the data changes have already been committed
to storage, only a small part of work is left for fsync to
do except waiting for current flush to complete.

BTRFS is capable of taking snapshots of its subvolume,
based on the idea of CoW friendly B-tree. However, the
structure of B-tree is applied to the file system directory
layout. In order to take a snapshot that records a single
change of data, BTRFS must rebuild all the directories along
the path from the inode to the root, which introduces a
significant overhead for snapshotting. As a result, BTRFS
performs the worst when there is negligible change in data.

NILFS2 keeps all valid versions of files, it uses B-tree
for scalable block mapping between the file offset and the
virtual sector address. It also translates the virtual sector
address to the physical sector address by using the data
address translation (DAT) metadata file, and appends the
changes on every snapshot [18]. However, this metadata file
is array-based, and NILFS2 suffers from inner wandering
tree problem with its inode design.

To conclude, HMVFS and PMFS perform well under
fileserver workload, meanwhile BTRFS and EXT4 exploit
the advantage of extent-based file systems and achieve good

performance. As for snapshotting efficiency, HMVFS out-
performs BTRFS and NILFS2 by a large scale.

5.5. Impact of Directory Structure

Varmail emulates a mail server, which performs a set
of create-append-sync, read-append-sync, read and delete
operations. The read-write ratio is 1:1. In this experiment,
we configure the mean file size to 16KB, the number of total
files to 100,000, mean append size to 8KB and run time to
5 minutes. We run varmail on each different structures of
directories three times and report the average readings.

Figure 6(a) shows the IOPS results of different mean-
directory-depths of varmail (depth = logwidth #files). We
see that EXT4 performs the best among all file systems,
while HMVFS and BTRFS achieves lower but also stable
throughput. This is because all these three file systems use
hashed B-tree to organize and locate directory entries [9],
[17]. However, NILFS2 and PMFS use only flat structure
to store directory entries, and their performance degrades as
the directory depth decreases.

The I/O performance of EXT4 outperforms HMVFS by
a factor of 1.21 in varmail, and that of BTRFS is close to
HMVFS. Extent based file systems perform reasonably well
on append based workloads and varmail is a typical one that
emulates new emails with appends. The difference between
BTRFS and EXT4 is caused by the write amplification
problem of appends and deletes on BTRFS write. Although
HMVFS doesn’t adopt the idea of extent, write amplification
problem is eliminated by the NAT updates in SFST.

On the other hand, the IOPS results of NILFS2 and
PMFS grow as the mean-directory-depth increases, i.e. the
number of entries in single directory decreases. These two
file systems use flat and array-based structure to organize
directory entries, and that reduces the performance when
each directory holds more than 100,000 entries. However,
if the number of directory entries is decreased to around
4000 (depth=1.4), the performance of the two file systems
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Figure 7. Performance of file systems under Postmark workload

increases sharply and nearly reaches their limits. PMFS
even performs the most operations per second when each
directory contains only 240 entries (depth=2.1).

During this experiment, we also notice that the preal-
location time of each workload is inversely proportional to
the final performance. To prove this point, we do file cre-
ations under the same workloads. Among five file creation
results for each of dir-depth, HMVFS, BTRFS, EXT4 create
files with steady overhead regardless of directory structure
(standard deviation: 1.19, 0.78, 0.76). On the other hand,
the overhead of file creation on NILFS and PMFS increases
9.8x and 16.6x when dir-depth is decreased from 2.1 to
0.7, which clearly shows that directory structure of many
workloads affects the performance and access time of array-
based directory file systems. Meanwhile, The B-tree based
directory structure of HMVFS handles massive files well
and provides stable throughput.

Figure 6(b) shows the efficiency of creating a snapshot
after processing the varmail workload above. On average,
the overhead of snapshotting by BTRFS and NILFS2 is 8.7x
and 2.5x worse compared with HMVFS. For BTRFS, taking
snapshot leads to a CoW update in B-tree, the difference
among the results of different dir-depths is that updates are
distributed and logged in different directories, which can be
improved by the concurrency of CPU.

In NILFS2, all the updates of files in snapshots are stored
in their parent directories, with new entries pointing to the
new addresses of corresponding inodes. Since the overhead
of accessing each directory can not be ignored, the cost of
snapshotting on NILFS2 is proportional to the number of
directories in this snapshot, which leads to a slight increase
in snapshotting overhead along with the growth in dir-depth.

5.6. Impact of Read vs. Write

Postmark emulates an email server that concurrently
performs read and write operations. We set the number of
postmark transactions to 200,000 and show the time taken by
running these transactions with 10,000 512KB files. Buffer-
ing is switched off all the time in case of data buffering
from DRAM. We run postmark three times on different read
bias number from 0 to 10, i.e. 0% to 100% of the total

transactions are reads and the rest of the transactions are
writes (appends), and report the average readings.

Figure 7(a) shows the results of running these transac-
tions by different file systems. We see that PMFS performs
the best among all percentages of reads while NILFS2
performs the worst. On average, HMVFS, BTRFS, NILFS2,
EXT4 take 13%, 44%, 85%, 24% more time to complete the
transactions than PMFS takes. Among these file systems,
HMVFS performs the closest to PMFS which is only 13%
worse than PMFS. The result is acceptable since HMVFS
takes multiple snapshots during performing transactions.

Different snapshotting overheads in Figure 7(b) also
show that HMVFS is the right choice for in-memory ver-
sioning file systems. To get the accurate overhead of snap-
shotting, we take snapshot A after preallocation, snapshot B
after 200,000 transactions are committed, snapshot C after
cleanup of postmark. Figure 7(b) shows the efficiency of
taking snapshot B.

As is shown in the figure, HMVFS consumes the least
time for taking snapshots. On average, BTRFS and NILFS2
takes 2.67 and 2.25 times of HMVFS does. Although the
bias of reads is rising, the efficiency of taking snapshots
doesn’t grow much until the percentage reaches 100%. For
any valid file in a snapshot, a little change in data leads to
a write amplification of new blocks in the whole file, such
as new inode, new direct pointer block, new data block, etc.
Also, the metadata and directory entry of the file have to
be updated to ensure consistency. HMVFS utilizes SFST
to eliminate the write amplification problem by a limited
height, but there is no such mechanism to prevent write
amplification in BTRFS and NILFS2.

We set a balanced ratio for creation and deletion transac-
tions, therefore, the snapshot contains data updates not only
from write transactions, but also from file creation and dele-
tion transactions. HMVFS also handles these transactions
well, the directory structure and inline file data ensures the
efficiency of snapshotting, which is the reason why HMVFS
only takes approximately 40% of the snapshotting overhead
of traditional versioning file systems.



6. Related Work

Journaling and snapshotting are two main mechanisms
which ensure file system consistency from rebooting after
sudden power failure. Usually, journal is a running trans-
action log that keeps track of all modifications to the file
system since the last consistent state, and snapshots contain
consistent metadata and data backups of the file system.

Many file systems only use journaling to record all the
updates and recover with journal, which leaves the file sys-
tems in only one consistent state. Ext3 [19], LinLogFS [20],
UBIFS [21], XFS [22], NTFS [23] and many other tradi-
tional on-disk file systems use this simple implementation
to support metadata consistency.

Among log-structured file systems, single snapshot is
often an efficient way to store a consistent state of whole
file system. YAFFS2 [24], F2FS [10] and Sprite LFS [11]
store a valid snapshot back to persistent storage once in
a while. Log-structured file system also suits data salvage
and snapshots because past data is kept in the storage, some
modern implementations of LFS offer multiple versions of
file system states by taking advantage of this feature.

CORFU [25] utilizes log-structured writes to expose
a cluster of network-attached flash devices as a single,
shared log which can be accessed concurrently by multiple
clients over the network. It focuses on mapping, tail-finding
and replication protocol, and it achieves wear-leveling for
clustered flash devices. Although it shares some resemblance
to the log-structured design in HMVFS and obtains cluster-
wide consistency guarantees, it does not provide a version-
ing or snapshotting mechanism to the system which is the
main focus of this work.

To better cope with emerging non-volatile memory, new
in-memory file systems such as PMFS [1], SCMFS [2], and
BPFS [3] leverage byte-addressability and random access
features of NVM to gain maximum performance benefit [4].
But these file systems ensure only data consistency and can
not be integrated with snapshot mechanisms. Among all
these file systems, PMFS is the only open source NVM-
aware file system available, hence we only include PMFS
in our evaluation.

Consistent and Durable Data Structure (CDDS) is pro-
posed in [26] to store data efficiently. Similar to PMFS,
CDDS expects NVM to be exposed across a memory bus.
To reduce the overhead of system call, CDDS maps data into
the address space of process and use userspace libraries to
handle data access. Furthermore, all updates in CDDS are
executed in place to reduce the cost of moving data. In phys-
ical layer, CDDS uses the primitives sequence {mfence,
clflush, mfence} to provide atomicity and durability
for object store. In data structure, CDDS guarantees consis-
tency by versioning, Copy-On-Write, and B-Tree. However,
CDDS is in a single-level storage hierarchy, which ignores
the difference between NVM and DRAM, such as the speed
of writing and device’s lifetime. Frequent updates to the
same location on NVM will decrease system performance.
Moreover, objects are flushed from cache of CPU to NVM

once they have been updated, which will reduce memory
locality and pollute the CPU cache.

In ZFS [13], writeable snapshots (clones) can be created,
resulting in two independent file systems that share a set of
blocks. For any file updates to either of the cloned file sys-
tems, new data blocks are created to reflect those changes,
but the unchanged block continues to be shared. ZFS can
take single snapshot of a file or recursive snapshots of a
directory, providing a consistent moment-in-time snapshot
of the file system. However, during snapshotting, a new
inode is allocated for each inode already in the file system,
which leads to a significant overhead of creating a snapshot
of a large amount of files.

BTRFS [9] is constructed from a forest of CoW friendly
B-trees, and snapshots are taken to the subvolume with
a new tree sharing everything but the different parts. In
BTRFS, file data, metadata and snapshots are organized in
extents instead of blocks. Extent-based file systems perform
better sequential I/O than block-based ones, but in byte-
addressable storage like NVM, extent-based file structure
gains little benefit at the cost of complexity. Moreover, each
extent contains a back-reference to the tree node or the file
that contains the extent, which causes more overhead of
snapshot operations.

Gcext4 [7] is a modified version of EXT4 based on
GCTree, a novel method of space management that uses
the concept of block lineage across snapshots, as the basis
of snapshots and Copy-on-Write. GCTree inserts several
pointers to the inodes and index blocks of EXT4 to form
a list of descendants of an inode or block. GCTree also
implements a special (ifile) to add a layer of indirection
between directory entries and inodes, which shares similar
purpose to NAT in our design. However, ifile itself in Gcext4
is array-based rather than tree-based, which makes it difficult
to deal with substantial inode updates efficiently.

Ext3cow [27], which is built on the ext3 file system,
provides a time-shifting interface that permits real-time and
continuous views of data in the past. Users can keep multiple
versions of files in Ext3cow, and access them by appending
timestamps. Ext3cow implements the idea of Copy-on-Write
by maintaining an epoch number on a per-file basis, which
makes the overhead of creating a file system snapshot pro-
portional to the total number of files. Ext3cow employs a
bitmap stored in each inode and indirect block to track the
blocks for Copy-on-Write, which lacks facilities to handle
B-tree structures and therefore hard to scale.

NILFS [12] creates a number of snapshots every few
seconds or per synchronous write basis. Users can select
significant versions among continuously created snapshots,
and change them into specific snapshots which are preserved
all the time. There is no limit on the number of snapshots
and each snapshot is mountable as a read-only file system.
However, different versions of a file are stored in different
snapshots, which increases the overhead of data seeking
and segment cleaning. Also, NILFS suffers from wandering
tree problem with its file structure, which results in a large
overhead of file access.



7. Conclusion

As the need of NVM-based file system increases, snap-
shotting has become a crucial component to fault tolerance.
To utilize the byte-addressability of memory and lower the
overhead of snapshotting, we present HMVFS, a new hybrid
memory versioning file system. We use the stratified file
system tree (SFST) as the core structure of the file system
such that different versions of files can be easily updated
and snapshotted with minimal updates to metadata. HMVFS
exploits the structural benefit of CoW friendly B-tree and the
byte-addressability of NVM to automatically take frequent
snapshots with little cost in time and space. While other
studies focus on fast and reliable access to the file systems
in NVM, we develop a file system with snapshot function
and only takes little performance cost compared with other
in-memory file systems. The snapshot overhead of HMVFS
outperforms BTRFS up to 9.7x and NILFS2 up to 6.6x,
and the I/O performance of HMVFS is close to PMFS.
To the best of our knowledge, this is the first work that
solves the consistency problem for NVM-based in-memory
file systems using snapshotting, and we expect it to become
a powerful choice of in-memory versioning solutions.
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