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Abstract—During data deduplication, on-disk fingerprint
lookups lead to high disk traffic, resulting in a bottleneck. In
this paper, we propose a “lazy” data deduplication method which
buffers incoming fingerprints and performs on-disk lookups in
batches, aiming to reduce the disk bottleneck. In deduplication
in general, prefetching is used to improve the cache hit rate
by exploiting locality within the incoming fingerprint stream.
For lazy deduplication, we design a buffering strategy that
preserves locality in order to similarly facilitate prefetching.
Experimental results indicate that the lazy method improves
fingerprint identification performance by over 50% compared
with an “eager” method with the same data layout

I. INTRODUCTION

Data deduplication is a key technology in data backup. By
eliminating redundant data blocks and replacing them with
references to the corresponding unique ones, we can reduce
storage requirements. Many companies have backup systems
utilizing deduplication [1]–[5]. In a typical deduplication
procedure, a data stream is segmented into chunks and a
cryptographic hash (e.g. MD5, SHA1, SHA256) is calculated
as the fingerprint of each chunk. The system determines
whether a data chunk is redundant by comparing fingerprints
instead of whole chunks.

In a usual exact deduplication implementation, when en-
countering an uncached fingerprint, the system immediately
reads the disk to search for the fingerprint. Each on-disk
lookup searches for only a single fingerprint, and if discovered,
prefectching is triggered. We will refer to this method as the
eager method.

In this paper, we propose a lazy deduplication method,
which buffers fingerprints in memory organized into hash
buckets. When the number of fingerprints in a hash bucket
reaches a user-defined threshold T , the system reads the disk
and searches for those fingerprints together. Importantly, the
lazy method performs a single on-disk lookup for T finger-
prints. This reduces the disk access time for on-disk fingerprint
lookups. Though the cache lookup strategy proposed in this
paper works better in terms of backup flow, the lazy method
is suitable for both primary workloads and backup workloads.

II. BACKGROUND AND RELATED WORK

Data deduplication is used to reduce both storage require-
ments and network transfers and is both computationally and
I/O intensive. It is computationally intensive due to chunking,
fingerprint calculation, compression, and so on.

For large-scale deduplication systems, as the main memory
is not large enough to hold all the fingerprints, most finger-
prints are stored on disk. Consequently, data deduplication is

also disk I/O intensive, resulting in a disk bottleneck, which
can significantly affect throughput. The disk bottleneck has
an increasing effect as the data size (and hence the number of
fingerprints) grows, whereas calculation time usually remains
stable. As a result, most previous work focused on eliminating
the disk bottleneck in deduplication. While the disk bottleneck
can be reduced by 99% in some exact deduplication systems
[4], it remains a bottleneck. Our goal is to further reduce this
component by combining several fingerprint lookups into a
single disk access.

Deduplication systems take advantage of locality properties
in data streams to reduce disk accesses by using an in-
memory cache [4], [6]–[11]. When a fingerprint is found on
disk, prefetching is invoked, whereby adjacent fingerprints
stored on disk are transferred to the cache. As fingerprints
frequently arrive in the same order as they arrived previously
(and therefore the same order as they are stored on the disk),
this prefetching strategy leads to a high cache hit rate which
significantly reduces disk access time.

There are many other optimized techniques used in dedu-
plication systems, such as delta compression [12], optimized
read [13], [14], data mining [15], separating metadata from
data [16], reducing data placement de-linearization [17], and
exploiting similarity and locality of data streams [18].

A Bloom filter [19], [20] is a data structure which can be
used to quickly probabilistically determine set membership;
false positives are possible but not false negatives. They are
widely used in deduplication systems to quickly filter out
unique fingerprints, and we incorporate a Bloom filter into
the lazy method.

Other work proposes improving the performance of data
deduplication by accelerating some computational sub-tasks.
A graphics processing unit (GPU) is a commonly used many-
core co-processor, and researchers have used GPUs to improve
deduplication performance. Debnath et al. [21] used a GPU to
accelerate the chunking process while Li and Lilja [22] used it
to accelerate hash calculation. Ma et al. [23] used the PadLock
engine on a VIA CPU [24] to accelerate SHA1 (fingerprint)
and AES (encryption) calculation. Here, we use a GPU to
accelerate fingerprint calculation in our lazy deduplication
prototype. Incremental Modulo-K was proposed by Jaehong
et al. [25] for chunking instead of Rabin Hash [26]. Bhatotia
et al. [21] performed content-based chunking process on GPU
using CUDA [27].

Clements et al. [28] presented a decentralized deduplication
for a SAN cluster which buffers updates and applies them “out
of band” in batches. They focus on write performance rather



than the disk bottleneck, and do not include the cache lookup
problem when buffering fingerprints.

Storing fingerprints on solid-state drives SSDs (instead of
hard disk drives) can improve fingerprint lookup through-
put [29], [30]. Dedupv1 [31] was designed to take advantage
of the “sweet spots” of SSD technology (random reads and
sequential operations). ChunkStash [32] also was designed as
an SSD-based deduplication system and uses Cuckoo Hash-
ing [33] to resolve collisions. SkimpyStash [34] is a Key-Value
Store which uses the SSD to store the Key-Value pairs. We also
investigate the effect of SSDs vs. HDDs in lazy deduplication.

Approximate deduplication systems (as opposed to exact
deduplication) do not search for uncached fingerprints on
disk [7]–[9], which reduces disk I/O during deduplication but
at the expense of disk space. This family of methods includes
sparse indexing [7] and extreme binning [8] (see also SiLo
[9]). However, the lazy and eager methods perform exact
deduplication, and consequently make on-disk lookups, so they
are both slower than approximate methods. But unlike the
eager method, the lazy method merges on-disk lookups.

The Data Domain File System [4] uses a Bloom filter,
stream-informed segment layout, and a locality preserved
cache, together reducing the disk I/O for index lookup by
around 99%. The lazy method uses similar data structures but
different fingerprint identification process.

The remainder of this paper is organized as follows: Sec-
tion III describes the overall idea of the proposed lazy method
and the arising challenges. We give experimental results in
Section IV and summarize the paper and suggest future work
in Section V.

III. LAZY DEDUPLICATION

A flowchart of the overall process of lazy deduplication is
given in Figure 1.

We use a Bloom filter in the lazy method to filter out
previously unseen (unique) fingerprints for which we can
bypass caching and buffering, and immediately write to disk.
Fingerprints which pass through the Bloom filter are first
looked up in the cache, which we refer to as pre-lookup, and
fingerprints not in the cache are buffered. Finding a fingerprint
as a result of an on-disk lookup triggers prefetching, after
which some of the fingerprints in the buffer are looked up in
the cache, referred to as post-lookup.

Pre-lookup exploits repeated fingerprints occurring in close
proximity within the fingerprint stream, whereas post-lookup
exploits recurring patterns of fingerprints throughout the fin-
gerprint stream.

A. Fingerprint management

Lazy deduplication aims at decreasing disk access time
by deferring and merging on-disk fingerprint lookups. Fin-
gerprints which need to be looked up on disk are initially
stored in an in-memory hash table, the buffer. They are stored
until the number of fingerprints in a hash bucket reaches a
threshold, which we refer to as the buffer fingerprint threshold
(BFT). When the threshold is reached, all of the fingerprints
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Fig. 1: Flowchart of an individual fingerprint lookup in the
proposed lazy method. We either end at “unique”, where
we determine that the fingerprint belongs to a previously
unseen chunk, “duplicate”, where we find the matching on-
disk fingerprint, or “next fingerprint”, where we move to the
next fingerprint. Prefetching and post-lookup are triggered
when an on-disk lookup is performed, which might identify
previously buffered duplicate fingerprints.

within the hash bucket are searched for on disk. Figure 2
illustrates the underlying idea behind lazy method. The system
searches for the in-buffer bucket fingerprints among the on-
disk buckets with the same bucket ID using a fingerprint-to-
bucket function, proceeding bucket by bucket. Fingerprints not
found are unique, which are “false positives” by the Bloom
filter.

Fingerprints are stored on disk in two ways:

• Unique fingerprints are stored in an on-disk hash table,
which is used to facilitate searching. The on-disk hash
table and the buffer use the same hash function. For the
on-disk hash table, we use separate chaining to resolve
bucket overflow.

• Both unique and duplicate fingerprints are stored in a log-
structured metadata array. They are stored in the order in



which they arrive, thereby preserving locality. A finger-
print in the on-disk hash table points to the corresponding
metadata entry, and the neighboring metadata entries are
prefetched into the cache when one fingerprint is found
in the on-disk hash table.

This method could easily be adapted for systems like
ChunkStash [32] or BloomStore [35], as they also use a hash
table to organize fingerprints. Specifically, we could similarly
perform on-disk searching in batches within search spaces
restricted by hash values.
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Fig. 2: Illustration of the lazy method. Three fingerprints are
buffered in hash bucket 1, making it full. Together, they are
searched for on disk among the fingerprints with the same
bucket ID using a fingerprint-to-bucket function. Here, we use
“fp” to denote an arbitrary fingerprint, and n to denote the
length of the hash index.

To buffer the fingerprints, the lazy method requires addi-
tional memory space, and since we cannot know a priori which
chunks are duplicates, the data chunks need to be buffered
too. Assume a hash table with n buckets is used to buffer
the fingerprints, the size of each fingerprint is Sfp, BFT is set
to T , and the average chunk size is Schk. Then the memory
required to buffer the fingerprints is Spacefp := nSfpT and
the average memory occupied by the corresponding chunks is
Spacechk := nSchkT . So the extra space required is given by

Space := Spacefp + Spacechk = (Sfp + Schk)nT.

If e.g. SHA1 is the fingerprint algorithm and we set the
average chunk size to 4KB, which are typical in deduplication

systems, the number of hash buckets n = 1024, and BFT is
set to 32, then Space ' 128MB, not a huge cost on modern
hardware.

An entry in an on-disk hash bucket will have size around
40B, comprising of the fingerprint itself, a pointer to the
corresponding metadata entry and some other information.
(The entry size will depend on the choice of cryptographic
hash function and the size of the pointers.) A 4MB hash bucket
can therefore contain around 100,000 entries, and, assuming
there’s a single 4MB hash bucket in each hash index slot, the
whole on-disk hash table can support 1024×100, 000×4KB '
400GBs of unique data. With a BFT set to 32, the buffer will
have at most 32× 1024 fingerprints in it at a given time, for
which we need to reserve at least 32×1024×4KB = 128MBs
of memory for storing the corresponding chunks. This guar-
antees the system identifies 32 fingerprints per disk I/O.

By adjusting the number of hash buckets n, the amount of
unique data supported by the on-disk hash table scales linearly
with the amount of memory we need to reserve for the buffer.
Thus, mGBs of memory allocated to the buffer is required
for a data set with ' 3000mGBs of unique data. Duplicate
fingerprints will not appear in the on-disk hash table.

Should this be a limiting factor, we can either adjust the hash
bucket size or use a chain-based on-disk hash table (illustrated
Figure 2), where each hash slot indexes multiple buckets.
However, both of these would reduce the search performance.

B. Caching Strategy

Fingerprint caching has proven to be a significant factor
in data deduplication systems. Repeated patterns in backup
data streams have been leveraged to design effective cache
strategies to minimize disk accesses [4], [6]–[9], [36].

For the eager method, Figure 3 illustrates how locality is ex-
ploited in caching. Data chunks often arrive in a similar order
to which they came previously, so when a fingerprint is found
on disk, the subsequent on-disk fingerprints are prefetched into
the cache. When subsequent incoming fingerprints arrive, they
are often found among these prefetched fingerprints, resulting
in cache hits.

In the lazy method, fingerprints will instead be buffered,
so we cannot use the same caching strategy as eager dedu-
plication. Figure 4 modifies Figure 3b showing the caching
method used in lazy deduplication. Fingerprints are buffered
when processing the data stream, and will not be looked up on
disk until their corresponding hash bucket is full. Subsequent
incoming fingerprints will arrive before prefetching occurs,
and will therefore be buffered too.

This caching strategy introduces two issues: (a) we need
to decide which fingerprints should be prefetched, and (b)
we need to decide which fingerprints in the buffer should be
searched for in the cache after prefetching. These are addressed
by using “buffer cycles” and recording a “rank”.

In addition to the hash table, fingerprints that reach the
buffer are inserted into a buffer cycle, a cyclic data structure
where pointers indicate the previous and next fingerprints in
the cycle. They are also stored with a number r, which we call
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(a) The first encounter. The fingerprints are written to disk in order.
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(b) A subsequent encounter. The fingerprint fA is found on disk, and
subsequent fingerprints are prefetched.

Fig. 3: Illustrating caching in the eager method and how data
locality is exploited. The fingerprints fA, fB , fC , and fD are
processed in order, and are stored on disk in that order to
facilitate later prefetching.

the rank, which gives the order in which fingerprints arrives.
The first fingerprint in a cycle has rank 0 and the subsequent
fingerprints have rank 1, 2, . . ., including both unique and
duplicate fingerprints. This is illustrated in Figure 5.

Buffer cycles and the rank are used to facilitate bidirectional
prefetching: when a fingerprint with rank r is searched for on
disk, we prefetch a sequence of N consecutive fingerprints (we
use N = 2048), starting from the r-th preceeding fingerprint.
The fingerprints in the buffer cycle are likely to have matching,
prefetched fingerprints. So the system searches the fingerprints
in the same cycle after prefetching. Figure 6 illustrates the
roles of a buffer cycle and ranks.

When a fingerprint passes through the Bloom filter it is
usually a duplicate, and if it’s not found during pre-lookup
we insert it into the current buffer cycle. Some (necessarily
unique) fingerprints will be filtered out by the Bloom filter,
while appearing within sequences of duplicate fingerprints.
This situation often arises as the result of small modifications
to a file. Fingerprints which don’t make it to the buffer are not
added to a buffer cycle, but we keep track of their existence
using the rank.

If the number of consecutive fingerprints filtered out by the
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Fig. 4: Illustrating caching in the lazy method. The fingerprints
fA, fB , fC , and fD are buffered, and when one of the hash
buckets is full, it is looked up on disk as a batch (without
checking the cache). This triggers prefetching, after which
post-lookup is performed and, as a result, fingerprints fA and
fC are found in the cache.
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Fig. 5: An example of a buffer cycle and the fingerprint
ranks r. In this example, a new buffer cycle is created when
the fingerprint fA arrives, which begins a sequence of 26
consecutive fingerprints fA, fB , . . . , fZ , of which all except
fC (not shown) are buffered. No fingerprint in this buffer cycle
has rank 2.
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Fig. 6: Illustrating the role of a buffer cycle and the rank in prefetching. Squares represent duplicate candidates, while hexagon
and stars represent unique (and therefore distinct) fingerprints in two sequences. The incoming fingerprints drawn as squares
are those that are buffered (i.e., they pass through the Bloom filter and are not found during pre-lookup); one by one, they are
inserted into the current buffer cycle. An on-disk lookup is performed for some fingerprint, and we prefetch N surrounding
on-disk fingerprints starting from the r-th preceding fingerprint. If a similar sequence of fingerprints has occurred previously,
it will be prefetched into the cache, and the buffer cycle tells us which fingerprints to look for in the cache.

Bloom filter exceeds a threshold (we use 200), we start a
new cycle starting with the next duplicate fingerprint. When
the length of the cycle reaches the maximum allowed length
(chosen to equal the prefetching volume), we also start a new
cycle and add the incoming duplicate fingerprint to the new
cycle.

There will generally be many buffer cycles (one of which
being the “current” buffer cycle, to which fingerprints are
added), and every fingerprint in the buffer will ordinarily
belong to a unique buffer cycle. When a hash bucket becomes
full, the fingerprints in it will be searched for on the disk.
Fingerprints not found on the disk are unique and are written
to disk. Fingerprints found on the disk are duplicates, and
when found, prefetching is triggered. After prefetching, the
fingerprints in the same cycle are searched for in the cache
(i.e., post-lookup). We use the Least Recently Used (LRU)
eviction strategy to update the cache; newly added fingerprints
stay longer to facilitate the flowing pre-lookups.

Some fingerprints will be searched for in the cache sev-
eral times. This happens for unique fingerprints (which pass
through the Bloom filter), and for fingerprints without locality
with the fingerprints in the same buffer cycle. To alleviate this,
we limit the number of cache lookups per fingerprint in the
buffer to 10, after which the system removes the fingerprint
from its buffer cycle. For fingerprints outside of buffer cycles,
prefetching is not triggered after it is found on disk, avoiding
disk I/O for prefetching for fingerprints without locality.

C. Disk management

The three main on-disk components are: data, metadata, and
the hash table, which we describe in this section. The disk
layout for metadata and the on-disk hash table is illustrated in
Figure 7.

D. Prototype implementation

1) Data: Data are stored in a log-structured layout, divided
into data segments of fixed maximum size. Incoming chunks,
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Fig. 7: Disk layout for metadata and the on-disk hash table
in lazy deduplication. Here “fps” denotes a collection of
fingerprints. The storage of data is not shown.

if found to be unique (i.e., have not been seen previously),
are added to the “current” data segment, which when full, is
added to the disk. Data segments are chained, i.e., each data
segment has a pointer to the next data segment.

2) Metadata: Pointers (8-byte offset; 4-byte length) to the
data chunks together with the fingerprints are stored in the
metadata in a log-structured layout, divided into metadata
segments of fixed maximum size (for simplicity, we choose the
same maximum size as for data). For each incoming finger-
print, whether unique or not, an entry is stored to the location
of the corresponding chunk in the data. We use metadata to
keep track of the temporal order in which chunks arrive. The
metadata stores the information about which chunks a file
consists of; they are small and there are duplicate metadata



entries.
3) On-disk hash table: When one of the hash buckets in

the buffer is full, the fingerprints in it are looked up as a
batch on disk. The on-disk fingerprints are stored in the on-
disk hash table. Fingerprints are stored together with a pointer
to a corresponding metadata entry. On-disk hash buckets are
chained together to facilitate on-disk lookups of fingerprints.
For each unique chunk, after its metadata entry is inserted,
one hash table entry is added to the corresponding bucket.
An entry consists of the fingerprint, an 8-byte pointer to show
the metadata entry position, and a pair (8-byte offset, 4-byte
length) giving the chunk information. Entries in the bucket are
stored one by one until the bucket is full.

We implement a lazy deduplication prototype using the
CDC chunking method [37] with a 4KB target. The Rabin
Hash algorithm is used to calculate the signature in the sliding
window. We use SHA1 to calculate the fingerprints.

We use multiple CPU threads and a GPU to accelerate
chunking and fingerprinting. The system creates 16 chunking
threads, each for processing data in 64MB blocks. On finger-
print calculation, the system transfers batches of 4096 chunks
to the GPU. The GPU assigns a thread to each data chunk in
a batch to calculate its fingerprint. The system then transfers
the batch of fingerprints from the GPU to the main memory.

In our implementation, the cache is organized into a hash
table with collision lists and a LRU eviction policy. We bypass
the file system cache to avoid its impact on the experimental
results.

IV. PERFORMANCE EVALUATION

We measure deduplication time which we define as, for
a given data set, the time it takes to classify pre-computed
fingerprints as “unique” or “duplicate”.

When measuring deduplication time, the process is sim-
ulated, in that we do not include the time for chunking,
fingerprinting, and writing data chunks to disk. In this way,
we focus on fingerprint lookup performance. Reading the data
from disk and writing the unique data chunks to disk will
affect deduplication performance, but disk storage methods are
instead chosen to optimize the system’s online performance,
and go beyond the scope of this paper. We compare the
deduplication time of the lazy method to the eager method.

We also investigate deduplication throughput, where we
include chunking and fingerprint calculation time (except
for the FSLHomes data set, where we only have access to
fingerprints). Note that the GPU and CPU parallelism is used
to speed up chunking and fingerprint calculation (except for
FSLHomes).

Each experiment runs 10 times and we give the average
results. The errors encountered were consistently negligible
(typically around 0.3%) and are omitted.

A. Experimental details

To compare eager and lazy deduplication as fairly as possi-
ble, they are both assigned a fixed 1GB Bloom filter, and we
allocate them the same amount of memory (256MB in two

experiments). For eager deduplication, the memory is fully
allocated to the cache. For lazy deduplication, half of the
memory is reserved for the buffer (storing both fingerprints and
their corresponding chunks), and the remainder is allocated to
the cache. The lazy method always has BFT set to 32 except
for the test to evaluate the influence of BFT.

Table I lists the platform details. The operating system
was installed on one HDD (HDD-OS). SSD-M and HDD-M
respectively refer to the SSD and HDD used to store metadata
and the on-disk hash table. Except for the HDD vs. SSD
throughput performance test, we always perform deduplication
on the SSD.

CPU Intel(R) Core(TM) i7-3770 @3.40GHz
Memory 4× (CORSAIR) Vengeance DDR3 1600 8GB
GPU GeForce Titan (NVIDIA Corporation Device 1005 (rev. a1))
HDD-OS WDC WD20EARX-07PASB0 2TB 64MB IntelliPower
HDD-M WDC WD5000AADS-00S9B0 500GB 16MB 7200rpm
SSD-M OCZ-AGILITY3 120GB
OS CentOS release 6.3 (Final)
Kernel Linux-2.6.32-279.22.1.e16.x86 64

TABLE I: Platform details.

Table II lists the details of the three data sets we used in
our experiments:

• Vm refers to pre-made VM disk images from VMware’s
Virtual Appliance Marketplace1, which is used by Jin [38]
to explore the effectiveness of deduplication on virtual
machine disk images.

• Src refers to the software sources of ArchLinux, CentOS,
Fedora, Gentoo, Linux Mint, and Ubuntu at 5 June 2013,
collected from the Linux software source server at Nankai
University.

• FSLHomes2 is published by the File system and Storage
Lab (FSL) at Stony Brook University [39]. It contains
snapshots of students’ home directories. The files consist
of source code, binaries, office documents, and virtual
machine images. We collect the data in 7-day intervals
from the year 2014, simulating weekly backups. If the
data on one date are not available, we choose the closest
following available date. These are combined into the
FSLHomes data set.

Unlike Vm and Src, FSLHomes directly gives the finger-
prints, so chunking cannot be performed. FSLHomes has a
large amount of redundant data.

total size duplication

Vm 220.85GB 35%
Src 434.88GB 19%
FSLHomes 3.58TB 91%

TABLE II: Data sets used for the experiments along with the
proportion of duplicate data.

1http://www.thoughtpolice.co.uk/vmware/
2http://tracer.filesystems.org/traces/fslhomes/2014/



B. Deduplication time

Table III gives the deduplication times for eager and lazy
deduplication on the three data sets (Vm, Src, and FSLHomes).
With the lazy method, deduplication time is reduced by 46%,
53%, and 32% on Vm, Src, and FSLHomes, respectively. This
experiment consistently shows that lazy deduplication is faster
than eager deduplication.

Vm Src FSLHomes

eager 282 476 5824
lazy 151 226 3939

TABLE III: Deduplication time (sec.) for lazy deduplication
and eager deduplication.

C. Buffer cycle effectiveness

We test the effectiveness of the lazy fingerprint buffer
strategy (which utilizes buffer cycles and ranks) by comparing
it with a buffer-exhausting strategy, which instead compares
all the fingerprints in the buffer area with the prefetched ones
to find as many duplicate fingerprints as possible. The results
are shown in Table IV. During the test, we disable pre-lookup,
which could interfere with the strategies’ effectiveness.

Data set Vm Src FSLHomes

Method lazy∗ exh.∗ lazy∗ exh.∗ lazy∗ exh.∗

cache lookup 11 83 9 50 279 5474
on-disk lookup 41 32 58 37 19464 18398
prefetching 74 60 82 69 1681 1882
other 74 63 106 90 2544 2720

total 199 237 255 246 23969 28474

TABLE IV: Deduplication time (sec.) for the lazy deduplica-
tion (lazy∗) and the buffer-exhausting strategy (exh.∗). ∗Pre-
lookup has been disabled.

Due to its design, the buffer-exhausting strategy has the fol-
lowing properties (compared with the lazy buffering strategy):

• It finds more fingerprints in the cache, but has a low cache
hit rate. As a result, the buffer-exhausting method saves
5% to 36% of the time spent on on-disk lookup, while
the time spent on cache lookups increases by a factor of
7 to 20.

• It prefetches less often, since prefetching is triggered after
a fingerprint is found on the disk.

Generally, the buffer cycle has a better performance than
the buffer-exhausting strategy.

D. Pre-lookup and post-lookup

We test the performance of lazy deduplication with both
pre-lookup and post-lookup vs. with post-lookup alone. The
results are shown in Table V.

Fingerprints found during pre-lookup are not searched for
on disk and so prefetching is not triggered. Thus, we observe
that the time spent on on-disk fingerprint lookup and prefetch-
ing is reduced. Using pre-lookup reduces deduplication time

Data set Vm Src FSLHomes

Method lazy lazy∗ lazy lazy∗ lazy lazy∗

on-disk lookup 20 41 45 58 1639 19464
prefetching 60 74 68 82 655 1681
pre-lookup 8 — 14 — 462 —
post-lookup 5 11 5 9 133 279
other 69 95 106 124 1049 2544

total 152 199 227 255 3939 23969

TABLE V: Deduplication time (sec.) with both pre-lookup and
post-lookup (lazy) and with pre-lookup disabled (lazy∗).

by 24% for Vm, 11% for Src, and 84% FSLHomes (where
the majority of time spent was on on-disk lookup).

Table VI lists the cache hit rates for pre-lookup and post-
lookup in lazy deduplication. (The post-lookup cache hit rate is
measured without disabling pre-lookup.) Pre-lookup is used on
the fingerprints that pass through the Bloom filter, identifying
a significant proportion of such fingerprints. We see that Vm
results in a higher pre-lookup cache hit rate and Src and
FSLHomes result in a higher post-lookup cache hit rate. For
all three data sets, both pre-lookup and post-lookup result a
significant reduction in disk accesses.

pre-lookup post-lookup

Vm 74% 26%
Src 43% 57%
FSLHomes 45% 55%

TABLE VI: Cache hit rates for pre-lookup and post-lookup in
lazy deduplication.

E. Buffer fingerprint threshold

Figure 8 plots the deduplication time of lazy deduplication
as the buffer fingerprint threshold (BFT) varies from 4 to 60.
During the test, the total memory size of the buffer and the
cache is set to 256MB, so if the buffer needs more memory
due to a larger BFT, there will be less memory for the cache.
When limiting the memory size, 64 is the largest BFT the
system can reach. Leaving a small part of memory for the
cache, we set the maximum BFT as 60 in the experiment.

Experimental results show a significant impact of BFT on
deduplication time. When BFT is small, the on-disk fingerprint
lookup time dominates the overall time. As BFT increases, the
on-disk lookup time drops quickly, and the deduplication time
decreases. However, when BFT becomes large, both the on-
disk lookup time and prefetching time begins to increase due
to the smaller cache size.

F. Disk Access Time

Here we test the on-disk fingerprint lookup time and finger-
print prefetching time, together with the deduplication time,
for eager and lazy deduplication, the results of which are
shown in Table VII.

The time consumed by on-disk lookups is reduced by
around 64% to 89%. As a result, its proportional contribution
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Fig. 8: Deduplication time for lazy deduplication as the buffer
fingerprint threshold varies.

Data set Vm Src FSLHomes

Method eager lazy eager lazy eager lazy

on-disk lookup 176 20 325 45 4598 1639
prefetching 46 60 52 68 298 655
other 59 71 99 113 928 1645

total disk access 222 80 377 113 4896 2294

total dedup. 282 151 476 226 5824 3939

TABLE VII: Disk access time (sec.) for eager and lazy
deduplication.

to the total time is also significantly reduced: in eager dedu-
plication, on-disk fingerprint lookup alone takes over 62% to
84% of the total time, which drops to 13% to 42% using the
lazy method. This is precisely what lazy deduplication was
designed to achieve.

G. Throughput

Here we compare the throughput of lazy deduplication and
eager deduplication on our HDD and SSD. For Vm and Src,
we calculate the throughput (from the start) at 20GB intervals
throughout the deduplication process. For FSLHomes, we
calculate the throughput at the end of each “round”, where
a round comprises the data from one weekly backup. Since
we only have the fingerprints for FSLHomes, we estimate the
throughput where each fingerprint represents a 4KB chunk.
Both eager and lazy deduplication utilize the GPU and CPU
parallelism in the same way, but this is only relevant for the
Vm and Src data sets. The results are given in Figure 9.

We see that lazy deduplication gives an improvement in
the final throughput over eager deduplication of 80%, 65%,
and 46% on our SSD and 150%, 119%, and 79% on our
HDD, for Vm, Src, and FSLHomes, respectively. The lazy
method achieves a greater throughput improvement vs. the
eager method on Vm than Src since Src has less duplication,
resulting in fewer on-disk lookups.

For Vm and Src, in the early stages, there are few fin-
gerprints stored on disk, so looking up fingerprints does not
require much disk I/O and throughput is limited by chunking.
As more duplicate chunks arrive, the throughput drops as the
system needs more disk I/O to find these duplicate chunks.

On FSLHomes, we see the overall throughput of the lazy
method is 52% and 76% higher than the eager method on
the SSD and HDD, respectively. In the first round, as there
are initially few duplicate chunks, the deduplication does not
make many disk accesses, resulting in higher throughput than
the other rounds.

For Vm and Src, duplicate data arise in various places in the
data stream, which results in unstable throughput. We see a
drop in throughput when there are many duplicates in the data
stream as this results in more on-disk lookups. For FSLHomes,
as the duplicate chunks distribute evenly in each round of
backup, we only see a slight change in throughput between
adjacent backup rounds.

On the HDD, throughput is initially limited by chunking and
fingerprint calculation, but as the procedure goes on, on-disk
fingerprint lookup becomes the bottleneck. For Vm and Src,
the overall throughput on the HDD is limited by disk accesses,
and we see the lazy method shows a greater advantage over
the eager method on the HDD vs. the SSD. This is due to the
HDD having a much higher latency than the SSD.

V. CONCLUDING REMARKS

In this paper, we describe a “lazy” method for data dedu-
plication. It buffers incoming fingerprints until the number of
fingerprints in a hash bucket reaches a threshold, after which
they are jointly searched for on disk within a restricted search
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Fig. 9: Deduplication throughput on an SSD (left) and a HDD (right). ∗Throughput for FSLHomes does not include chunking
and fingerprint calculation time.

space. We also design a caching strategy which reaches a
high cache hit rate and avoids unnecessary cache lookups for
fingerprints in the buffer area. Experimental results indicate
that this method can be used to significantly reduce the time
for on-disk fingerprint lookup, by up to 70% on SSDs and
over 85% on HDDs.

We propose some future research directions:

• The lazy method would improve the performance of
garbage collection in deduplication, since we can batch
check the fingerprints to determine whether or not chunks
are valid. It would be interesting to explore how much of
an effect the lazy method has on garbage collection.

• Many key-value stores and object-oriented storage sys-
tems use a “key” to track the data blocks or objects. In
this setting, we can sacrifice response time to improve
throughput, and it would be interesting to investigate this
trade-off in the context of lazy deduplication.

• It would also be worthwhile exploring the compatibility
of lazy deduplication with commonly used data storage

methods, to see when it is most effective.
Also, as the lazy method buffers both fingerprints and

chunks, there is a problem in guaranteeing persistence. Buffer-
ing the chunks and fingerprints in NVRAM would be a
possible way to solve this.
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