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Abstract—We introduce manylogs, a simple and novel
concept of logging that deploys many scattered logs on disk
such that small random writes can be appended into any
log near the current disk head position (e.g., the location
of last large I/O). The benefit is two-fold: the small writes
attain fast durability while the large I/Os still sustain large
bandwidth.

Manylogs also inspire a new principle: decoupling of
durability and location constraints. For example, we can put
journal blocks in any scattered log as they only need dura-
bility but not location constraints (i.e., eventually journal
blocks will be freed). We can also allow applications to
specify which files that require only durability but not
location constraints (e.g., application commit-log files).

We show the power of manylogs for Conventional-
Magnetic Recording file system (MLFS) and block-level
(MLB) layers and also Shingled-Magnetic Recording
(MLSMR) layer. With micro- and macro-benchmarks,
compared to Linux ext3, MLFS provides up to 15x (3.7x
on average) bandwidth improvement and up to 22x (5.7x)
faster sync latency. With real-world traces, MLB and
MLSMR deliver 1.9x and 1.3x I/O latency speed-up on
average respectively.

I. INTRODUCTION

Drive technologies, storage usage and application I/O

behaviors have evolved rapidly in the last decade. Disk

capacity and bandwidth continue to increase, at a faster

rate than seek improvement. Capacity and bandwidth

are arguably the two main benefits that users expect to

gain from disk drives; users who prioritize IOPS will

seek SSD solution. Disks deployment has also evolved;

it has almost entirely shifted from personal computers

to datacenter servers, wherein disks are consolidated to

serve multiple tenants, which is economically beneficial

but introduce I/O contention.

It is a common knowledge that I/O contention dis-

rupts disk optimal performance. A tenant with random

small I/Os will significantly disrupt sequential I/Os of

other tenants [18], [47], [65]. In a simple experiment

we ran, 24 and 56 random 4KB IOPS can degrade

disk optimal bandwidth by 25% and 53% respectively.

Unfortunately, applications’ behaviors in multi-tenant

servers are hard to predict. A prime example comes

from compute servers in public clouds. The I/O traffic

to local disks directly attached to the compute servers

(e.g., ephemeral disks in Amazon EC2 instances) is

typically free of charge, however, customers are warned

of unpredictable performance due to fluctuating I/Os

from other tenants. Using remote managed storage

(e.g., Amazon EBS) is an alternative, but the aggregate

throughput of local disks is much higher. In short, local

disks are abundant in public clouds but multi-tenancy

deters users from using local disks.

To address this, we ask how local (OS-level) storage

stack should evolve. Our ultimate goal is to extract the

maximum disk bandwidth in the face of random I/Os.

In achieving this goal, we argue that random small

writes are the major “enemy” of multi-tenant disks.

Large I/Os are the ideal workload as different tenants

get a fair share of the disk bandwidth [47]. Random

reads are problematic, but with large server caches, they

can reside in memory longer (§II). On the other hand,

random small writes are hard to be deprioritized in favor

of large I/Os because they can originate from critical

applications that require fast durability.

Modern applications unfortunately still generate ran-

dom small writes. For example, tens to hundreds of

fsync calls can be made for simple tasks [32]. An-

other example is NoSQL systems [62] wherein all data

updates are sent to application-level commit-log files.

Since these small writes do not mix well with read

I/Os (introduce seeks between the commit-log and on-

disk table areas), NoSQL systems tend to sacrifice fast

durability. That is, either incoming writes are batched

and users’ (durable) write requests are blocked momen-

tarily (e.g., 33 ms in MongoDB) or they are buffered in

OS cache and users’ requests are acknowledged before

the data is synced to disk (e.g., 10 second sync period

in Cassandra), which implies that a whole datacenter

outage will lead to data loss [2], [8] (§IV-D). Sacrificing

fast durability of small writes in favor of serving other

I/Os might not be an ideal solution.

Another popular solution to handle small writes is

the use of flash as a write cache, which however has

some drawbacks. First, deploying an SSD in every

compute server is expensive; in EC2, SSD-based hosts

costs much more than disk-based hosts for the same
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capacity. Second, SSD wears out quickly when used as

a cache [37], [43], [56]. To tame this, one industry stan-

dard caches only repeated updates to recently written

block numbers [4]. Here, non-overwrites will skip the

flash cache and cause disk contention. From real-world

traces, we observe that overwrites only range from 2-

86% of all writes. NoSQL systems that always roll new

commit-log files will also exhibit non-overwrites.

I-A. Manylogs

To summarize, random reads can be addressed by

better caching strategies [40]. Random small writes are

hard to address as they need fast durability but will hurt

sequential I/O throughput. To address random writes,

proposed solutions are mostly based on log-structured

approach (e.g., LFS [60], Gecko [65], ext3/4 data jour-

naling) where all writes are sequentially appended to

a single log. However, such an approach has its own

historical limitations such as read-write contention and

garbage collection/log cleaning overhead. To escape

from expensive log cleaning, Linux by default uses “or-

dered journaling”, a variant of log-structured approach

that only logs metadata blocks, however, the non-logged

data blocks will induce random writes.

In this work, we introduce manylogs, a simple and

novel concept of logging that deploys many scattered

logs on disk such that small random writes can be

appended into any log near the current disk head

position (e.g., the location of last large I/O) such that

the disk head does not seek too far or too frequent. The

benefit is two-fold: the small writes attain fast durability

while the large I/Os sustain large bandwidth.

Figure 1 contrasts the default Linux ext3/4 ordered

journaling and manylogs. In Figure 1a, large I/Os (bold

arrows) are interrupted by small random writes (trian-

gles and circles) causing far and many disk seeks. In

Figure 1b, our approach reserves many logs (boxes)

scattered throughout the disk. In practice, there are

tens of thousands of logs, ideally one log in every

disk cylinder. In the presence of concurrent large I/Os,

Figure 1b shows that random writes are made durable in

the logs nearest the large I/Os (i.e., “near-head logs”),

hence achieving fast durability. At the same time, the

disk head can continue serving the large I/Os without

seek overhead, hence achieving high bandwidth utiliza-

tion. Distinct to traditional logging approaches where

all writes are logged, we only log small random writes,

while big writes will be sent to their actual locations.

Typically, during idle periods or periodically (e.g., ev-

ery 5 seconds), logged writes are checkpointed to their

final consistent locations (the triangles in Figure 1b). In

this work, we advocate off-hours checkpointing, that is

checkpoint can be done “very” lazily such as in off-

hours (the dashed box in Figure 1b) for the benefits

of foreground performance, especially in busy servers.

The only drawback is that checkpoint time will be

prolonged, thus reducing server availability, which can

be compensated by other live replicas (§II). Checkpoint

however cannot be delayed when a log is full. Thus, we

introduce log swapping where content of a full log is

moved to a cold relatively-empty log and vice versa.

Manylogs also inspires a new principle: decoupling

of durability and location constraints. One major pitfall

of storage semantic is that file system blocks have

location constraints. For example, journal blocks must

be written to a fixed-location log and file placement

is also constrained by some heuristics (e.g., related files

should be nearby each other). Manylogs break this rigid

rule. For example, we can put journal blocks in any scat-

tered log as they only need durability but not location

constraints (i.e., eventually journal blocks will be freed).

We can also allow applications to specify which files

that require only durability, but not location constraints.

A prime example is application-level commit-log files

in NoSQL systems. Such files only need fast durability,

but the content is never read except upon reboots; in

normal cases, the data is flushed from in-memory tables

to on-disk table files. If these application-level commit-

log files are deleted or truncated, we do not need to

checkpoint the blocks, as illustrated by the two circles

that are not checkpointed in Figure 1b.

We show the power of manylogs at the file system

(MLFS) and block-level (MLB) layers of Conventional-

Magnetic Recording (CMR) drives. We also show

that manylogs can be integrated to Shingled-Magnetic

Recording (MLSMR) drives. With micro- and macro-

benchmarks, compared to Linux ext3, MLFS provides

up to 15x (3.7x on average) bandwidth improvement

and up to 22x (5.7x) faster sync latency. With real-

world traces, MLB and MLSMR deliver 1.9x and 1.3x

I/O latency speed-up on average respectively (§V-D).

The following sections describe trends that support

manylogs (§II), design and implementation of manylogs

(§III) and MLFS (§IV), evaluation (§V), discussion

(§VI), related work (§VII) and conclusion (§VIII).
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II. SUPPORTING TRENDS

We view manylogs as a simple and novel design

whose time has come. In the past, manylogs would have

been controversial for several reasons.

First, as many writes are redirected to logs, some

mapping table is required to be maintained in a durable

fashion. This is a common issue in log-structured file

systems as table updates generate additional random

writes [60]. Today, cheap capacitor-backed RAM (or

“cap-backed RAM” in short) is popular [10], [35] and

can be used to store mapping table safely. Upon a crash,

the mapping table is small enough to be flushed to

disk before the capacitor is fully discharged (§III-E).

Some recent work also simplifies the problem of durable

mapping table with cap-backed RAM [57], [65].

Second, manylogs seem to impose long reboot time

after a crash; a full scan of all the active logs could be

required to checkpoint the logged data. Such a full scan

and checkpoint to empty the log is common in existing

journaling file systems because log size tends to be

small (e.g., 128 MB). Today, with extreme disk capacity

(TBs), a small fraction of disk space (e.g., 5-10%) can

absorb many small writes and favor lazy cleaning. Full

log recovery upon reboot was also necessary when disks

were a dominant storage in personal computers which

typically do not employ cap-backed RAM. In contrast,

with durable mapping table possible in server settings,

upon reboot, we can simply read the table into memory

to retrieve the redirection mapping and delay the full

log recovery process.

Third, with lazy off-hour cleaning, checkpoint time is

prolonged, which can reduce the disk’s availability (as

it is extremely busy checkpointing). However, today’s

Internet services are geographically distributed where

each datacenter typically serves regional users, hence

the strong likelihood of idle period in off-hours. In

addition, as data replication is a gold standard today,

server downtime can be compensated with replicas

in other servers. Later we show that 1-hour delayed

checkpoint only takes 1 to 117 seconds (§VI).

Finally, manylogs only address random writes but

not random reads. As mentioned before, random reads

can be addressed via better cache management. As an

example, DULO takes into account spatial locality in

addition to temporal locality (e.g., LRU) [40] (e.g.,

evicting 50 sequential blocks is more preferred than 3

random blocks). This way, repeated random reads can

be served from cache. In addition, server-side memory

is abundant today, with up to 1 TB of DRAM being

common today [3]. We believe there is enough space for

prioritizing repeated small reads. Even a 4 GB cache can

hold 1 million 4-KB small reads. Therefore, we believe

random writes is the major problem to solve.

III. MANYLOGS DESIGN

III-A. Goals

Our goal is twofold: achieve high disk bandwidth

utilization and fast durability. On one hand, large I/Os

should not be interfered with seeks from small writes.

On the other hand, small writes that require fast dura-

bility should not be delayed.

III-B. Scattered Manylogs

To achieve the aforementioned goals, we reserve scat-

tered space on disk for manylogs, as already illustrated

in Figure 1b. Specifically, we reserve LogSize of log

space in every GroupSize of disk space (e.g., 10 MB in

every 100 MB). Ideally, a log space is reserved in every

disk cylinder such that the disk head does not need to

seek to provide durability for small writes. This design

is unique compared to single-log approaches.

Manylogs can be managed at the device level (e.g.,

disk firmware) or host level (in OS). If drive-managed,

per-cylinder layout placement is possible as disk ven-

dors know the disk internal topology. If host-managed,

our implementation approximates cylinder size similar

to ext3/4 group size calculation. In modern drives, small

inaccuracy in predicting cylinder size (e.g., a log in

every 2-3 cylinders) is tolerable because modern drives

can “retire multiple I/Os, spread across dozens of tracks,

in a single revolution” (without seek delays) [63].

Unlike existing journaling practice, we also advocate

large LogSize. In ext3/4 for example, the default log

size is only 128 MB (only 0.01% of a 1-TB disk),

which causes frequent log cleaning. Studies of disk

space show that disks tend to be half full [12], [25].

Thus, it is reasonable to have a large log size. In our

implementation, LogSize and GroupSize are 10 MB

and 100 MB respectively (10% of disk space). Detailed

justification is in Section VI.

III-C. Logged Write Size

Manylogs represent temporary durable logs for write

operations whose data will be checkpointed later. For

conventional (non-SMR) disks, only “small” writes, not

all writes, are redirected to manylogs. For example,

every write of ≤ 256 KB will be logged. In our

evaluation, we will explore LoggedWriteSize threshold

of 32 and 256 KB (§V-B). We also consider manylogs

adoption in SMR drives (§III-I). Since SMR drives

do not allow overwrites, all incoming writes will be

redirected to manylogs.

III-D. Destination Log: Near-Head Log

To decide to which log, writes should be redirected

to (i.e., the destination log), we keep track the location
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of the last non-logged I/O. In other words, this location

indicates which track/cylinder the disk head is currently

positioned. We call the destination log as near-head log.

For example, in Figure 1b, the first two small writes are

redirected to the near-head log (the first two boxes), near

the last large I/O (the leftmost bold arrow).

III-E. Manylogs Mapping Table (MTL Table)

and Capacitor-Backed RAM

All log-structured systems must maintain, for each

logged block, the mapping of the log location and its

final destination (e.g., 100→5000 implies block #5000

is currently logged at block #100). For ease of reference,

we name our mapping table “Manylogs Translation

Layer” table (MTL table), akin to flash/SMR transla-

tion layer (FTL/STL) tables. MTL records block-level

mapping (not extent-level) because there could be some

overlapped blocks across write operations.

Decades ago, such mapping table must be stored

on disk, inevitably causing performance side-effects

[60]. However, we can store MTL table in cap-backed

RAM (§II). Our study shows that logging ≤256-KB

writes over an hour only generate 2 KB to 11 MB

of MTL table across different traces (§VI), which only

occupies a small portion of memory and upon a crash

can be flushed to a reserved on-disk location within

the range of capacitor lifetime (e.g., 100-400 ms [35],

[55]). The MTL Table can be flushed periodically every

hour to reduce the number of dirty entries (akin to

demand-based FTL page-mapping table [30]). For SMR

disks, although all writes are logged, the MTL table

size is interestingly not much larger than the one for

conventional disks (§VI).

We do not use cap-backed RAM to buffer block

writes due to the following constraint. Upon power

failure, the RAM content must be completely flushed

to disk before the capacitor discharges completely. As-

suming a 100 MB/s disk and 200 ms discharge time,

cap-backed RAM can safely hold only 20 MB of data

(hence, we prioritize the space for the MTL table).

III-F. Lazy Checkpointing (Log Cleaning)

Eventually logged data should be checkpointed to

their final locations and have their corresponding entries

removed from the MTL table. To clean a log, we only

checkpoint valid blocks as recorded in the MTL table.

In log-based systems, checkpoint typically happens pe-

riodically (e.g., every 5 minutes) or when the single-

log becomes full, but this can interfere with foreground

workload. Another opportunity for checkpointing is

during “idle periods” [15], [50], [51], [52]. One caveat is

that once the background I/Os are submitted to the disk,

and suddenly foreground I/Os arrive, the OS cannot

revoke the checkpoint. Thus, idle-period checkpointing

can only be done gradually.

Since idle-period checkpointing has been explored

extensively in literature, in this work, we explore a

new idea of off-hour checkpointing (e.g., postpone log

cleaning for 8 busy hours). The intuition is that logs

are rarely full when we only redirect small writes (in

conventional disks); manylogs can absorb small updates

over multiple busy hours without checkpointing. Off-

hour cleaning can perform the entire checkpoint in a

bulk. During this long checkpoint, data access can be

compensated by other replicas as discussed earlier (§II).

Lazy cleaning brings two consequences. First, when

a log is full, the cleaning will create a large burst of

checkpoint writes. Fortunately, we can postpone the

cleaning of a log with “log swapping”, described in the

next section. When all logs are full, massive checkpoint

operations must be done, which is acceptable during

off-hours (we evaluate off-hour checkpointing later in

Section VI). Second, for blocks that will soon be read

again after they are evicted from the cache, the latency

can suffer. However, we believe such read-after-evicted-

write blocks are rare with large caches.

In Linux ext3/4 file systems, blocks that are journaled

but not yet checkpointed are pinned in memory. If the

blocks can be evicted from memory, the file systems

must ensure that future reads to the blocks are rerouted

to the journal locations, not the actual ones (to read

the latest version). However, these file systems do not

employ a mapping table that record such information.

Pinning logged, uncheckpointed blocks is a simple

solution that obviates the need for a mapping table. In

our case, since we already adopt a cap-backed MTL

table, we can safely evict logged blocks under memory

pressure. Thus, lazy checkpointing does not necessarily

consume memory.

III-G. Log Swapping

To postpone cleaning of a full log, we exploit the

notion of hot/cold spots. That is, there are some areas on

disk where the corresponding logs are relatively empty

as no I/Os are recently present in the areas (e.g., inner

tracks). This common condition promotes hot/cold log

swapping. That is, the content of a full log is moved to a

relatively-empty cold log and vice versa. The MTL table

is also updated appropriately. The goal here is to make

sure foreground performance does not fluctuate due to

background random writes induced by log cleaning. Log

swapping on the other hand can be done rapidly in the

background as it only introduces two sets of sequential

reads and writes. Moving (read+write) a 10 MB full

log can be done in around 80 ms. Whenever possible,

log swapping is done during idle periods when a log

occupancy is above 80%.
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III-H. Crash Recovery

In typical single-log journaling file systems, upon a

crash, a complete checkpoint must be done for two

reasons. First, the default log size tends to be small (e.g.,

128 MB). Thus, complete log cleaning is necessary to

make room for future writes. Second, many standard

Linux file systems do not employ a mapping table of

journaled blocks. Thus, upon reboot, a full journal scan

must be done wherein valid blocks have to be read

from disk to the memory and checkpointed as well. In

contrast, since we employ a durable MTL table (§III-E)

and advocate lazy cleaning, we can simply read the

MTL table from the disk in a fast sequential fashion

and skip checkpoint upon reboot.

III-I. Integration

The concept of manylogs can be integrated and

beneficial to different layers of storage systems: block

level (of conventional disks), file systems, SMR drives,

and RAID.

III-I.1 Block Level (MLB)

The most straightforward integration is to implement

all of the design strategies above at the block level (for

conventional disks), which we name MLB for ease of

reference. This universal integration does not require

changes at the file system layer. Later, we will evaluate

this integration with block-level replay of real-world

traces (§V-B).

III-I.2 File System (MLFS)

When manylogs are integrated at the file system layer,

we can achieve more powerful capabilities such as the

decoupling of durability and location constraints for

journal blocks and application commit-log files, which

we will elaborate more in the next section (§IV).

III-I.3 SMR Disks (MLSMR)

In commodity SMR drives, one industry standard is to

use a single log to absorb random writes (e.g., a Seagate

model has a 20-25 GB persistent disk cache at the

outer track [11]). To adopt manylogs to SMR drives, the

proposed host-managed layout in Section III-B (e.g., 10

MB log in every 100 MB) does not work because SMR

drives do not allow random overwrites without rewriting

the bands (e.g., 15-40 MB/band [11]). However, we

believe manylogs can be integrated to drive-managed

SMR disks in the following novel way.

Modern disks typically have 4-6 platters, each with

two active surfaces. We propose that one surface is

manufactured as a non-shingled platter surface to be

used for manylogs (which makes a space overhead of

1/8 to 1/12). This way, we can log random writes to

any logs on the non-shingled surface where each log is

essentially a circular buffer. The non-shingled surface is

also required to support log swapping (without rewriting

the bands). In this setup, the non-logged I/Os (§III-D)

will be the read operations. Thus, the disk heads will

always hover around the read areas as incoming writes

can be made durable to the track on the non-shingled

surface where the heads are currently aligned at.

Since the track alignments of non-shingled and shin-

gled surfaces are different (shingled surfaces are more

dense), the head on the non-shingled surface might

require a small delay to find the right track (e.g., in tens

to hundreds of micro-seconds). Note that however this

does not imply a seek, which can take milli-seconds.

Overall, we believe that our manylogs-SMR integration

(MLSMR) is possible and unique compared to single-

log SMR drives (“SLSMR”) [11]. Furthermore, our

proposal of non-shingled surface is also different than

non-shingled regions [13], [53].

III-I.4 RAID

Deploying manylogs in every drive of a RAID group

will improve the aggregate RAID throughput. In our

recent work [31], we show that a slow drive can degrade

the performance of the entire RAID (i.e., the latency

of a full-stripe I/O follows the latency of the slowest

drive). Such an imbalanced performance is possible

in RAID where random writes affect different subsets

of the drives at different times. Hence, a subpart of

large full-stripe I/Os will be “the tail”. Manylogs ensure

that random writes to a subset of the drives do not

significantly degrade the throughput of full-stripe large

I/Os. In other words, manylogs attempt to make all

RAID disks deliver similar throughput.

Integration to the RAID layer does not require

changes to the RAID controller/software. This is

achieved by deploying manylogs at the aggregate parti-

tion. For example, if we deploy 10-MB log in every

100 MB of space on top of 4-disk RAID-0, then

on every disk in the RAID, there is 2.5-MB log in

every 25 MB of space. We will show later that our

RAID integration provides further significant speed-ups

compared to single-disk manylogs integration (§V-A2).

IV. MANYLOGS FILE SYSTEM (MLFS)

We now present Manylogs File System (MLFS), the

integration of manylogs to the file system layer. With

MLFS, we achieve two new capabilities not feasible in

block-level integration. First, journal transactions can

spread across scattered logs. Second, applications can

specify which files require durability but not location

constraints. Below, we begin with a brief overview of

existing journaling modes and their tradeoffs.
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IV-A. Journaling Primer

In Linux ext3/4, the two popular journaling modes

are ordered and data journaling. Using similar symbols

as in [22], ordered journaling can be represented with:

D→ JM→ M. Here, data blocks (D) are first written to

their final locations, then journal transactions containing

metadata blocks (JM ) must be committed to a fixed

single-log location (e.g., the beginning/middle of a

disk), and later in the background the metadata blocks

(M) are checkpointed. Data journaling can be repre-

sented with: JDM→ DM. Data and metadata blocks

forming a transaction (JDM ) are logged into the journal

and later checkpointed to their final locations (DM).

The tradeoffs are the following. For small random

writes, data journaling delivers fast sync latency as the

writes are grouped into a sequential journal transaction

(JDM ). For big writes however, the journal can be

quickly full causing frequent double writes; data blocks

are flushed twice, one to the journal and one to their

final locations (JDM + DM). On the other hand, ordered

journaling is efficient for big writes (no double writes)

but can suffer from long latency induced by small

random writes direct to their final locations (D).

IV-B. Adaptive Journaling

To circumvent the dilemma above, adaptive jour-

naling was proposed as a middle ground between the

two journaling modes [58]. It works similar to ordered

journaling, but for every random write in D, it is

appended to the current journal transaction (akin to

data journaling); a sequential write in D however is not

redirected. Thus, all small random writes in D become

sequential in the journal. However, they still focus on

single-log journaling. In our work, we enhance single-

log adaptive journaling to work on manylogs which we

describe next.

IV-C. Manylogs Journaling

Adaptive journaling still suffers from the single-log

problem which is tolerable for single-tenant file systems.

In a multi-tenant server-side file system, disk head seeks

back and forth between non-logged I/O areas and the

single-log area. A traditional view suggests that journal

transactions should be put in one circular log for the

purpose of fast crash recovery; upon reboot, a sequential

log scan suffices. However, journal recovery can be

delayed with other alternatives (e.g., read of durable

MTL table suffices; §III-H) . This implies that journal

blocks do not have to be constrained to a fixed single-

log location; journal transactions can scatter across

manylogs.

To support this, MLFS extends single-log adaptive

journaling to manylogs journaling wherein every jour-

nal transaction can be written to any near-head log

(§III-D). MLFS manages manylogs directly; in our

MLFS-version of ext3, a log space is reserved at the

end of every cylinder/block group. The log location of

each transaction is stored in a capacitor-backed RAM,

similar to MTL table management (§III-E).

To illustrate manylogs journaling, let’s imagine a

scenario where a large write L and a collection of small

writes D are to be sync-ed. In MLFS, L is first flushed

to its final location (as L > LoggedWriteSize). Next,

each small write in D (≤ LoggedWriteSize) and other

metadata blocks M form a transaction (JDM ) that will

be put in a near-L log. In this case, the entire sync

latency only incurs one seek (to L) and an additional

rotational delay (to near-L log). In single-log adaptive

journaling, the same workload will incur multiple seeks.

Moreover, compared to block-level integration only

(§III-I1), manylogs journaling is more superior because

the small writes in D are merged in one sequential I/O

in JDM without a synchronization barrier; in block-

level manylogs with ordered journaling on top, there

is a synchronization barrier between D and JM .

IV-D. O_DUR: Application Durability-Only Files

One of the core ideas of manylogs is to provide

fast durability for data that does not require location

constraints (e.g., journal blocks as an example). How-

ever, because the OS layer does not know the semantic

of application files, manylogs journaling still operates

based on the LoggedWriteSize threshold (§III-C) for

deciding which writes should be merged into a near-

head log. We found an opportunity to extend this prin-

ciple to the application level by allowing applications

to explicitly specify which files need fast durability but

not necessarily location constraints.

One prime example is application commit-log files.

The last decade has seen the rise of application-level

storage systems such as NoSQL key-value stores (e.g.,

Cassandra, MongoDB, Redis). We find that all of them

maintain commit-log files; all key-value updates are

first appended to a commit-log file, thus preventing

random writes. Note that from the perspective of the OS,

commit-log files are simply regular files. Later on, the

key-value updates are flushed to new table files directly

from the application’s in-memory tables, not from the

commit-log files. For example, in Cassandra, key-value

updates are reflected in “memtable” and flushed to a

commit-log file, and later on the updates are copied

from the memtable to new “sstable” files. This implies

that commit-log files are never read unless there is a

power failure (which triggers commit-log recovery).

This leads to our conclusion: writes to application-

level commit-log files only require durability but not

location constraints. Their content can be literally stored

anywhere on disk. Only upon reboot will the content

6



be read; fortunately, crashes are rare [27], [61]. Fur-

thermore, after the memtable is flushed to on-disk table

files (periodically or when the table occupancy exceeds

certain threshold), the current commit-log file is no

longer needed (e.g., deleted or truncated). In this case,

it is unnecessary for MLFS to checkpoint deleted or

truncated files.

More importantly, manylogs enable fast durability for

these applications such that they do not have to lessen

sync intensities. The problem MLFS solves pertains to

the fact that by default commit-log file is not flushed

to persistent storage on every write; updates are only

reflected to the OS buffer cache when they return to

users. By default updates are only flushed periodically.

For example, MongoDB flushes every 100 ms [6],

[7], Cassandra every 10 seconds [1], and Redis every

1 second [8]. In fact, some key-value stores initially

did not provide flush interface to users (e.g., HBase

hsync vs. hflush [5]), because if one user decides

to flush on every update, other tenants could suffer.

Less-frequent flushes is suggested in practice because

frequent log flushes cause many seeks that can hurt

reads to the data files (range scan, query read, etc.). In

other words, in current NoSQL practice, performance

is improved by sacrificing durability. This is dangerous

and undesirable; a whole data-center power outage leads

to data loss (which happens in reality [2]).

In MLFS, our solution is to allow applications spec-

ify which files require fast durability but not location

constraints. Specifically, we extend the open() system

call with a new mode, O_DUR. Content of files opened

in this mode will be put in manylogs regardless of the

write size (i.e., LoggedWriteSize threshold is no longer

needed for O_DUR files). Their content is also never

checkpointed (unless all logs are full). When O_DUR files

are deleted or truncated, MLFS nullifies the correspond-

ing entries in the MTL table to skip checkpointing of

the blocks. With O_DUR mode in MLFS, we can maintain

good performance without sacrificing durability. Later

we show that we can intensify flush period to 1 ms

without significantly affecting big jobs (§V-A4).

IV-E. Implementation

We implemented MLFS in 1100 LOC in Linux

3.4.77. MLFS is built on top of ext3. MLFS is ap-

propriate to be used as a multi-tenant file system.

One limitation of our current implementation is that

we cannot handle multi-tenancy across multiple file

systems (e.g., ext3, XFS, and btrfs users on the same

machine). To do so, manylogs must be implemented at

the universal block layer (not only in the file system

layer) and each MLFS-extended file system or guest

OS should pass O_DUR-related information to the host’s

block layer. We believe these extensions are doable

given the current implementation of MLFS. We leave

this for future work.

V. PERFORMANCE EVALUATION

This section focuses on the performance evaluation of

MLFS (§V-A), MLB (§V-B) and MLSMR (§V-C). We

justify in detail the manylogs parameter values we use

here in a subsequent section (§VI).

V-A. MLFS Evaluation

Metrics: Our two primary metrics in evaluating

MLFS are (1) sustained disk bandwidth (percentage

of the maximum disk bandwidth that large I/Os can

sustain) and (2) the sync latency for small durable

writes that are concurrently running with the large I/Os.

We compare the performance of MLFS against three

other journaling modes: Linux ext3 ordered and data

journaling and adaptive journaling (§IV-B).

Hardware: We run MLFS on a Seagate Cheetah

15k.5 ST3146855FC 146GB 15000 RPM 16MB Cache

Fibre Channel 3.5” disk. We also run MLFS on a

RAID of four disks of the same type. The RAID is

setup using RAID-0 with 64 KB chunk size. We use

Linux 3.4.77 with the basic elevator I/O scheduling.

The machine contains AMD FX(tm)-4130 Quad-Core

Processor x86 64 2.6GHz and 8GB RAM.

Parameters: The Linux ext3 journal size is set to

5 GB (as opposed to the default 128 MB) to fairly

match with the total size of MLFS manylogs. The

MLFS parameters are: LogSize = 10 MB, GroupSize

= 100 MB, and LoggedWriteSize = 32 KB. That is,

we reserve 10 MB of log space in every 100 MB of

disk space and only redirect writes with size ≤ 32 KB.

In the RAID setup, the MLFS partition is striped across

the four disks. Therefore, on every disk in our RAID-0,

there is 2.5 MB of log in every 25 MB of space.

Benchmarks summary: We run three types of

benchmarks: a set of file system microbenchmarks

(§V-A1-V-A2) and macrobenchmarks (§V-A3) and

HDFS+MongoDB workload (§V-A4). In all the se-

tups, we run two types of processes in parallel:

a large sequential reader/writer and a random writer

process. Each of the following sections will describe

the benchmarks in detail.

V-A.1 Single-disk microbenchmarks

Workload: In our first setup, the large sequential

reader/writer performs 128-MB of reads/writes over a

span of 2 GB file. The random writer process writes a

4-KB block to each of 20 small files scattered uniformly

throughout the disk (to mimic a multi-tenant disk). After

it modifies all the 20 files, it calls sync(). For simplicity,
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Fig. 2. Microbenchmark results. We run a
large sequential read/write process (top/bottom figure) con-
currently with a random write process. The left y-axis (for
bars) shows the ratio of the maximum disk bandwidth obtained
by the sequential process. The right y-axis (for line-points)
shows the average sync latency obtained by the random write
process. The random writer generates X writes/per second as
plotted on the x-axis. For each experiment, we compare four
journaling modes: ordered (gray solid), data (red checker-
box), adaptive (blue backslash-stripe) and manylogs (green
slash-stripe bold-edged).

we count 20 IOPS per sync. The random writer calls

sync() at a specific rate, for example, 40 to 320 IOPS

(2 to 16 sync() calls per second) as shown on the x-

axis in Figure 2. We believe this is a realistic setup;

real-world traces [9], [42] show that tens to hundreds

of writes per second are common.

We emphasize one important note. To show the ben-

efit of manylogs for large I/O throughput, the random

writer’s intensity must be capped. This rate limiting

is important because as manylogs provide much faster

sync, if we don’t rate limit, random writers will flood

the disk with more writes (as they achieve significant

IOPS increase), preventing us to perform a fair compar-

ison of throughput metrics. Again, our main goal is to

retain large bandwidth for large sequential I/Os. Thus,

our evaluation show how much bandwidth we retain

given a specific maximum rate of random writers (40

to 320 IOPS in the x-axis of Figure 2).

Results: The bars in Figure 2a shows the percentage

of the maximum disk bandwidth sustained by the se-

quential reader (“big reads”) across different journaling

modes and across different rates of sync intensity. With

ordered journaling (gray/solid bars), as the random

write intensity increases from 40 to 320 IOPS, the

throughput of large reads collapses from 57% to 5% of

the maximum disk bandwidth. This is because all data

blocks are sent to their final locations, hence creating

a burst of random writes. The condition is better with

(single-log) adaptive journaling (85% to 17% sustained

bandwidth as shown by the blue/backslash-stripe bars).

Here, small random writes are merged into the journal,

however adaptive journaling still suffers from the single-

log problem (§IV-B), causing the disk head to seek

back and forth between journal and read areas. On the

other hand, manylogs journaling results in the highest

sustained bandwidth (97% to 51% sustained bandwidth

as shown by the green/bold-edged bars) simply because

synced data can be absorbed by scattered manylogs,

allowing the disk to alleviate disruptive seeks and con-

tinue serving the large I/Os quickly.

Not only manylogs journaling improves disk through-

put, it also provides faster durability, as shown by the

line-points in the foreground of Figure 2a (the unit is

on the right y-axis). For example, in ordered journaling

of 40 to 320 random-write IOPS, the sync average

latency increases from 209 to 919 ms (the dots in the

foreground of solid/gray bars). In adaptive journaling,

write latency increases from 58 to 100 ms. However,

in manylogs journaling, fast durability of small writes

can still be achieved even in the midst of large I/Os and

high write IOPS (35 to 40 ms as shown by the dots in

the foreground of the green/bold-edged bars).

Figure 2b shows a similar experiment but this time

the sequential reader is replaced with a large sequen-

tial writer. Here, MLFS is also superior to the other

journaling modes. In this experiment we also see that

data journaling performs worse than in the experiments

in Figure 2a; this is because the double large writes

problem (§IV-A).

V-A.2 Multi-disk (RAID) microbenchmarks

Figure 3 shows the same experiments we described in

the previous section (Figure 2) but now MLFS runs on

a 4-disk RAID-0. This setup will expose tail latencies

in RAID (§III-I4). That is, as large sequential I/Os are

striped across all disks, if one of the disks is slower

than the rest, then the I/O throughput will be reduced

to that of the slowest drive. Performance imbalance can

occur in the presence of random writes that only affect

different subsets of the drives at different times.

We can see this behavior by first comparing Figure

2a and Figure 3a with 40 IOPS/disk. In the single-disk
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Fig. 3. RAID microbenchmark results. The figures
represent the same experiments as described in Figure 2, but
this time the experiments run on a 4-disk RAID-0.

ordered journaling experiment (gray/solid bar in Figure

2a), the large I/O throughput collapses to 57%. But, in

the RAID experiment (with the same 40 IOPS/disk),

the throughput collapses more significantly to 30% of

the maximum RAID aggregate bandwidth (gray/solid

bar in Figure 3a). With the same setup, but now

using manylogs, MLFS throughput does not degrade

significantly (97% in single-disk and 92% in RAID

experiments as shown in Figure 2a and 3a respectively).

The same pattern can be observed in other IOPS/disk

setups and journaling modes. Overall, our MLFS-RAID

benchmarking suggests that by successfully preserving

a large disk bandwidth of the individual disks, MLFS

can deliver a larger aggregate RAID bandwidth.

V-A.3 Fileserver and Varmail macrobenchmarks

Workload: Now we turn to macrobenchmarks. We

still run the sequential reader/writer to mimic Big Data

workload. For the random writer, we use Filebench

with fileserver and varmail personalities. The fileserver

benchmark performs a sequence of creates, deletes,

appends, reads, writes and attribute operations on a

directory tree. 50 threads are used by default (similar to
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Fig. 4. Macrobenchmark results. We run a large
sequential reader concurrently with the fileserver/varmail
(top/bottom figure) macrobenchmark, which represents the
random writer process. The left and right y-axis are described
in Figure 2. The x-axis shows the multiple number of instances
of fileserver/varmail to emulate multi-tenancy.

SPECsfs). The average operation latency we report for

fileserver comes from the wrtfile, appendfile operations.

The varmail benchmark emulates a mail server where

each email is stored in a separate file. The workload

consists of a multi-threaded set of create-append-sync,

read-append-sync, read and delete operations in a single

directory. 16 threads are used by default (similar to

multi-thread Postmark). The average operation latency

we report for varmail comes from the fsyncfile2, fsync-

file3 operations. We run 2, 4, and 8 fileserver and

varmail instances spread uniformly on the disk. The

fileserver and varmail I/Os are rate limited to 20 OPS.

Results: Figure 4a and 4b show the results for

fileserver and varmail benchmarks respectively. The

results show the same pattern we observed in previous

experiments: in ext3, more instances (representing more

tenants) lead to throughput degradation of large I/Os

and longer latency of small operations. Contrary, MLFS

provides the best outcomes. As the pattern is similar, for

brevity, we do not elaborate the results further.
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Fig. 5. HDFS+MongoDB benchmarks. We run the
HDFS TestDFSIO benchmark representing the large sequen-
tial I/O process concurrently with YCSB workload (key-value
writes) running on MongoDB representing the random small
writes. The left and right y-axis are described in Figure 2. The
x-axis shows the MongoDB flush period (33 vs. 1 ms) and the
number of MongoDB instances (1 to 4) we ran to emulate
multi-tenancy.

V-A.4 HDFS+MongoDB benchmarks

We now evaluate the benefits of the O_DUR feature (de-

coupling of durability and location constraints; §IV-D).

We picked MongoDB as a sample application and

modified MongoDB to open the commit-log file with

O_DUR mode. This way, MLFS can redirect all commit-

log writes to any near-head log. We chose MongoDB

because (1) it is written in C/C++ and can easily be

modified to leverage O_DUR by changing the open()

system call and (2) it supports “durable write” where

client requests are blocked until the data is flushed to

disk; not all NoSQL systems provide durable write API.

Workload: To represent large sequential I/Os, we run

HDFS TestDFSIO benchmark that reads a 3 GB file;

each read call is 1 MB long. For the small random

writer, we run multiple MongoDB instances (1 to 4)

spread across the disk. We run YCSB [24] with 16

threads to generate key-value writes to MongoDB where

each thread sends 1000 write requests per second. As

mentioned above, MongoDB commit-log file is opened

in O_DUR mode. In MongoDB, users cannot force direct

sync on individual key-value updates. Instead, there

is a background thread that will run periodically to

flush the updates. Until this finishes, durable-enabled

client requests will not return. This flush period is

configurable. We use two configurations: the default

value (33 ms) and a very strict value (1 ms);1 the latter

represents users who want fast durability. We use HDFS

version 2.5.1 and MongoDB version 2.6.5.

1The actual configuration values we set were actually 100 ms and
3 ms. But, when durable writes are enabled, MongoDB divides these
values by 3. We simply use 33 and 1 ms to avoid confusion.

(a) Trace name Description

T1 LM-TBE Live maps back-end server
T2 DAP-DS Caching tier for payload server
T3 DAP-PS Payload server for ad selection

T4 Exch Microsoft Exchange mail server
T5 CFS MSN metadata server
T6 BEFS MSN back-end server
T7 WBS Windows build server

T8 DTRS Development tools release server
T9 RAD-AS RADIUS authentication server
T10 RAD-BE SQL server backend

(b) Mix description

W1 1 most-write (T7), 5 most-read (T1 x5)
W2 1 most-read (T1), 4 most-read (T7, T8, T9, T10)
W3 1 most-read (T1), 4 random (T2, T3, T5, T6)
W4 1 most-write (T7), 4 most-read (T3, T4, T5, T6)
W5 1 most-read (T1), 4 random (T2, T4, T6, T8)

TABLE I
Trace descriptions. Table (a) describes the ten Microsoft
Server traces we use [9], [42]. Table (b) shows five 5-minute

workloads, each contains a mix of five traces.
“most-write/read (Tx)” implies we picked a 5-minute

window with the most intense write/read from trace Tx.
“random” implies we pick a random 5-minute window.

Results: Figure 5 shows six sets of experiments

where we vary the number of MongoDB instances (1 to

4 DBs) and the flush period (33 to 1 ms). In each set,

compared to other journaling modes, MLFS provides

the best sustained throughput for HDFS and the best

latency for user write requests. Most importantly, in

the 1-DB setup, we can see that MLFS provides a

similar throughput (89% and 90%) even when the flush

period is reduced from 33 to 1 ms. This shows that

unlike common wisdom that sacrifices fast durability for

the sake of better I/O throughput, manylogs break the

wisdom by achieving both demands.

We note that in the 4-DB case, request latency is

worse in the 1-ms than in the 33-ms setup, which

is counter-intuitive. This happens because of the too-

intense sync forced by all the 4000 requests/second

from the 4 instances. This intensity didn’t happen in our

previous microbenchmark and macrobenchmark exper-

iments. The problem lies behind the serialization of the

journaling layer (i.e., two sync calls cannot be submitted

to disk in parallel), which has been brought up and

solved by recent work [48]. If the proposed technique

is adopted, we believe MLFS can be more powerful.

However, in the kernel we use, after a certain threshold

of sync intensity, batching (e.g., the 33-ms setup) gives

a better overall latency.

If we extend NoSQL+MLFS integration by consider-

ing replication (e.g., 3 replicas), we can leverage it by

only forcing one of the replica writes with fast durability

while the rest can be reflected to the application cache

first and flushed periodically as in the default mode.
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Fig. 6. MLB and MLSMR trace driven evaluation. Figure (a) plots the CDF of I/O latency from replaying the I/Os
in workload W1 with five strategies (NoLogging, MLB-32, MLB-256, MLSMR, and SLSMR). For brevity, we do not show the
latency CDF figures for workload W2-W5. However, we summarize them in Figures (b) and (c). Figure (b) shows the speed-ups of
MLB-256 over NoLogging approach at every specific percentile. For example, the black bold line (W1) represents the horizontal
difference of the MLB-256 and NoLogging lines in Figure (a). Figure (c) plots the speed-ups of MLSMR over SLSMR at every
specific percentile with the same style as in Figure (b).

V-B. Block-Level Manylogs (MLB) Evaluation

We now evaluate MLB (block-level manylogs;

§III-I1). MLB is less superior than MLFS as it cannot

support manylogs journaling and the O_DUR feature.

When evaluating MLB, we use I/O latency speed-up

as the primary metric (since it is hard to differentiate

“large” vs. “small” I/Os in real-world traces).

Workloads: We use 10 real-world traces from Mi-

crosoft Windows Servers [9], [42] as summarized in

Table Ia. To emulate multi-tenancy (I/O behaviors from

different tenants), we mix five traces into a single

“workload”, and re-rate them appropriately to prevent

disk overload (as similarly done in other work [54]).

Table Ib summarizes the five trace mixes (workloads

W1-5) that we assembled. We make sure there is at

least one mostly-read trace in the mix; write-intensive

applications that demand high IOPS (e.g., database

transactions) should use SSD. Each workload is five

minute long and replayed on the following hardware.

Hardware: We use Seagate Constellation ES.3 1TB

7200RPM 128MB Cache SATA 6.0Gb/s 3.5” Enterprise

Internal Hard Drive. Disk write cache is disabled to

mimic storage deployment that exercises true durability.

Not disabling the cache will translate direct I/Os of the

workloads above into writeback I/Os, which is not the

focus of our work; we want to emulate contention from

applications that require durable I/Os.

Measurement method and results: As we replay

the workload, we measure the latency of every I/O.

For example, the first three lines in Figure 6a show

the CDFs of I/O latency in workload W1 with (1)

NoLogging: unmodified trace; (2) MLB-32: manylogs

with LoggedWriteSize ≤ 32 KB; and (3) MLB-256:

manylogs with LoggedWriteSize ≤ 256 KB (as de-

scribed in §III-C-III-D).

Figure 6a shows that MLB-32 and MLB-256 is faster

than NoLogging. To quantify the improvement in detail,

Figure 6b shows the latency speed-up (y-axis) at every

percentile (x-axis). For example, the black bold line

(W1) in Figure 6b shows the speed-up of MLB-256

over NoLogging at every percentile in Figure 6a.

Since Figure 6a only shows the results for W1, Figure

6b shows the results for W1 and W5. Overall, MLB-

256 improves the I/O latency on average by 1.2-2.8x

across the six workloads (the average value is taken

by averaging the speed-ups at all percentiles). We will

discuss later (§V-D) why this improvement is lower than

the one in MLFS experiments.

We now discuss log swapping. Across W1 to W5,

there are 17, 16, 0, 4, and 6 log swaps occurred within

the 5 minute span respectively (with MLB-256). With

an extreme off-hour checkpointing (e.g., after 8 hours),

we can extrapolate that there will only be around 1600

log swaps, far below the 10,000 logs available in a 1

TB disk (with 100 MB group size). We will measure

off-hour checkpoint time in Section VI.

V-C. SMR Manylogs (MLSMR) Evaluation

Now we evaluate the performance improvement of

MLSMR (manylogs SMR; §III-I3) over SLSMR (single-

log SMR; e.g., a Seagate model in [11]). We use the

same methodology and five workloads as in the previous

section. The last two lines in Figure 6a show the results

of replaying the I/Os in workload W1 with MLSMR and

SLSMR policies; in SLSMR all writes are first logged to

the single log in outer tracks, and contrary in MLSMR,

writes can be logged to any near-head log.

The horizontal distance between the MLSMR and

SLSMR lines in Figure 6a show that MLSMR exhibits

faster I/O latency than SLSMR. Figure 6c shows the

speed-ups of MLSMR over SLSMR at every percentile.

We can see average I/O speed-ups between 1.2-1.3x

across the five workloads. In addition, we observe only
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vs. other mode BW Speedup Lat. Speedup

MLFS vs. ordered 1.3-15x (3.7x) 1-22x (5.7x)
MLFS vs. adaptive 1-16x (2.7x) 0.9-7.6x (2.0x)
MLB vs. NoLogging – 1.2-2.8x (1.9x)
MLSMR vs. SLSMR – 1.2-1.3x (1.3x)

TABLE II
Manylogs speed-up summary. The table summarizes
the bandwidth and latency speed-ups achieved by manylogs

compared to other approaches. The format of BW and
latency speed-up values are: Min-Max (Average). Note that
for MLB and MLSMR, the Min and Max values come from
the minimum and maximum of average I/O latencies across
the five workloads (§V-B), but at specific percentiles (e.g.,

Figure 6b), the speed-up can be high (e.g., 2-6x).

64, 24, 3, 10, and 12 log swaps occurred within the 5

minute span with MLSMR.

V-D. Summary

With more than 30 experiments, we have shown how

manylogs is superior than other journaling and single-

log SMR approaches. Table II shows the summary of the

speed-up of manylogs compared to other approaches.

Overall, on average manylogs provide 2 to 5x speed-up

in bandwidth and latency improvements. In some cases

manylogs can provide an order of magnitude speedup.

We emphasize that our MLFS results are better than

the MLB and MLSMR results, which is expected be-

cause large I/Os are very rare in the real-world traces

we use. However, if block-level traces from modern Big

Data applications are available, the benefits of MLB and

MLSMR will be more apparent.

VI. DISCUSSION OF MANYLOG PARAMETERS

As described in Section III, manylogs introduce some

parameters to consider into storage systems design:

(1) LoggedWriteSize, (2) LogSize, (3) GroupSize, (4)

checkpoint frequency and duration, and (5) memory

space for MTL table. Some of these parameters can be

configured accordingly with some workload knowledge.

Below we briefly discuss our experiences in configuring

the parameters.

• LoggedWriteSize: Ideally, we want to redirect as

many writes to manylogs provided that the logs

won’t be full during busy hours and hence can be

cleaned in off-hours. Our evaluation (§V-B) shows that

LoggedWriteSize of ≤ 256 KB is bearable. A more

adaptive way is to reduce LoggedWriteSize on the fly

when most of the logs become full before off-hours.

Other partial logging approaches use slightly lower

values (e.g., 128 KB in adaptive journaling [58], 168

KB in proximal I/O [63], and 16 KB in flash pool [4]).

• LogSize: We reserve 10 MB of log area in every 100

MB of disk space. As disk space is typically half full
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Fig. 7. Checkpoint duration and reduction. Figure (a)
shows the duration of lazy checkpoint after logging writes in 1-
hour traces. The time is broken down to two checkpoint stages:
reading the active logs (“Log reads”) and checkpointing
logged content to their actual locations (“Ckpt writes”).
Figure (b) shows the percentage of I/Os reduced (I/Os that can
be sequentially merged) and block writes reduced (blocks that
are overwritten multiple times) with 1-hour lazy checkpoint,
as also explained in the “Checkpoint” section of §VI.

[12], [25], reserving 10% of disk space for manylogs is

reasonable. SMR drives have also been reported to have

large logs (e.g., 25 GB, 3%, of a 6TB drive [11]).

• GroupSize: Ideally, a log is placed in every disk

cylinder. We tried 1 MB in every 10 MB, 10 in 100

MB, 100 MB in 1 GB, and 1 in 10 GB. We ran many

workloads and concluded that 10 MB of log space in

every 100 MB of disk space gives the best performance

given our hardware. This “approximation” is roughly

accurate with the fact that a common disk platter has

hundreds of thousands of tracks; a simple calculation

suggests that a cylinder is in tens of MB. Plus, as

modern drives can “retire multiple I/Os, spread across

dozens of tracks, in a single revolution” (without seek

delays) [63], then a log in every 100 MB is relatively an

optimum configuration. Again, this parameter depends

on the underlying disk and offline profiling is needed.

• Checkpoint frequency and duration: Many related

work suggest leveraging idle periods for background

jobs [15], [50], [51], [52]. We could use idle periods to
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checkpoint, but we consider an extreme case where idle

periods are rare such as in busy servers. In this case, rare

idle periods are better exploited for log swapping, not

checkpointing. One question that we have not answered

is: how long is the duration of off-hour checkpoint?

Figure 7a provides the answer. We first picked the

write-busiest hour from each trace, T1 to T10, and ran

MLB-256. (We do not show results for W1-5 because

their timespan is only 5-minute long). The MTL table

(§III-E) records all the block numbers that were logged

and must be checkpointed after the one hour span.

We then checkpoint all the logged blocks and time

the duration. Figure 7a shows that lazy checkpoint

duration ranges from less than 1 second to 117 seconds

for 1-hour traces. For 8-hour lazy checkpoint, we can

approximate by multiplying the results by 8x. Overall,

this result reflects that off-hour checkpointing is viable.

We believe the checkpoint durations are quite fast in

general. Figure 7b highlights the reasons. It shows two

metrics: percentages of I/Os and block writes reduced.

For the first metric, if there were two I/Os separated

in time but during checkpoint they can be sequentially

merged, then one I/O is reduced. For the second metric,

if there were overwrites to the same block that were

logged in separate places, only the latest content needs

to be checkpointed, hence one block write is reduced.

Overall, Figure 7b shows that by accumulating small

writes (≤ 256 KB) and performing checkpoint lazily,

a large number of I/Os and block writes are reduced

during checkpoint.

Figure 7b also points out that manylogs can co-

exist and help flash cache. As mentioned before (§I),

to extend flash lifetime, one industry standard only

caches overwrites, but not first writes (within some time

window) [4]. The stripe bars in Figure 7a show that

overwrites range from 2 to 86%. Since flash cache will

be skipped for first writes, manylogs can help improve

disk performance.

We now turn our attention to checkpoint duration

in SMR drives. Unlike in Figure 7a, checkpoint time

in SMR drives (as shown in Figure 8) can be an

order of magnitude longer (depending on the workload).

This suggests that off-hour checkpointing is not entirely

suitable for SMR drives. As other related work suggests,

SMR log cleaning is indeed long and can take 0.6-1.6s

per band [11].

• MTL table size: Finally, as discussed in Section III-E,

our durable MTL table can be stored in capacitor-backed

RAM. Using the same traces in Figure 7a, in one hour

run of MLB-256, the MTL table size ranges from 2 KB

to 11 MB across the ten traces, which are small enough

to be flushed over the capacitor lifetime (e.g., 100-

400 ms [35], [55]). MTL table can also be periodically
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Fig. 8. Checkpoint duration in SMR drives. The
figure shows the same plot as in Figure 7a but this time we run
MLSMR. Checkpoint writes are much longer as each modified
band must be read and re-written.

flushed as well (e.g., every hour) to reduce dirty entries

over time. We also find that with MLSMR, MTL table

size is interesting similar. Further investigation shows

that as all writes are logged in MLSMR, there are more

overwrites (hence MTL table size does not “explode”).

VII. RELATED WORK

We now compare manylogs to other related work

in the context of multi-tenant storage, log-structured

storage, journaling, write optimization, block reorgani-

zation, flash cache, and SMR drives.

Multi-tenant storage: Lin et al. systematically show

that concurrent sequential I/Os get a fair share of the

bandwidth, however random I/Os will significantly hurt

sequential I/O performance [47]. Unfortunately, existing

studies show that random I/Os are still common [32],

[46], [59]. There are many efforts to satisfy QoS in

multi-tenant storage [29], [66], [67], but they typically

only address one performance dimension (e.g., latency

or throughput). It is challenging to satisfy both random

(short latency) and sequential I/Os (high bandwidth).

Log-structured: To address random reads, better cache

management is the key (§II). To address small random

writes, decades of storage research have shown the

power of log-structured design. LFS for example treats

the whole disk as a log but suffers from expensive

disk seeks induced by garbage collection [60]. Recently,

Gecko extended the concept to a log-structured disk

array [65]. The key technique is to designate one disk in

the array as a “tail” drive. All writes are first cached in

SSD and then later appended to the tail disk. As all reads

can be served by either the non-tail drives or SSD, read-

write contention is eliminated. One major limitation of

Gecko is the SSD requirement. Without SSD, all writes

must be persisted directly to the tail drive, thus reducing
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the array write bandwidth into a single-disk bandwidth

(writes are not striped to all the disks). Contrary, our

work absorbs small writes to manylogs in every disks,

thus large writes still harness the aggregate bandwidth

of the disk array (§V-A2).

Journaling: Journaling, the heart of many modern file

systems, has received many proposed advancements.

Adaptive journaling was proposed as a middle ground

between data and ordered journaling [58] (§IV-B). Many

recent work tackle the problem of “journaling of journal

anomaly” [39], [44], [45]. For example, a custom jour-

naling mode is allowed for every file [64] (e.g., SQLite

log uses ordered journaling while rollback-recovery loge

uses data journaling). In another work, WALDIO re-

duces the excessive I/O behavior by introducing changes

to SQLite and file system interface. [45]. Okeanos, a

“wasteless” journaling, coalesces partial block updates

from multiple writes into a single block [33]. All of

these work focus on single-log journaling.

Write optimization: Besides journaling, there is an

abundance of work in write optimization (e.g., Bosc

[49], BetrFS [38]., non-blocking writes [20], AWOL

[17], no-order file systems [23]). Overall, we believe

journaling and write optimizations are orthogonal to

manylogs. That is, scattered logs can still be leveraged

to provide fast durability for optimized write and journal

operations.

Block re-organization: Manylogs can be viewed as a

block reorganization approach. The closest related work

in this space are: range writes, BORG, and WAFL.

Range writes [16] allow every write (e.g., supposedly

to block X) to provide a block range to the disk

(e.g., X-m...X+n, typically a cylinder span), allowing

the disk to decide the fastest placement (e.g., X+2)

depending on the current rotational placement of the

disk head. While range writes only reduce rotational

delays, manylogs reduce seek delays as small writes

can be redirected to any scattered log. BORG [19]

manages a small, dedicated partition on the disk as a

migration destination of files in the current working set,

thereby servicing a majority of I/O requests from the

dedicated partition. This approach becomes challenging

for Big Data applications where frequent migration can

be costly. Manylogs is a more lightweight solution

that only temporarily redirects writes without moving

large files. WAFL [36] employs a “write anywhere” file

layout. The “anywhere” placement however is a final

placement and constrained on some policies best for the

workload (e.g., temporal locality of reference). WAFL

would not work well if the “anywhere” placement is

based on the disk head position (e.g., in the presence of

concurrent random writes, final file placements would

be undesirably scattered). Manylogs however are tem-

porary durable locations and do not require changes to

file placement policies.

Flash cache: Host-side flash caches are becoming

popular, mainly to reduce latency from the host to

the back-end storage [28], [34], [43]. Flash caches

are also an alternative to address small writes. For

example, Proximal I/O aggregates random updates in

flash until they have sufficient density to be flushed to

disk in a single revolution [63]. Due to decreasing flash

lifetime, caching policies must be careful. For example,

to increase lifetime, an industry standard only caches

block overwrites (not first writes) [4]. Flash cache suits

applications that require high write IOPS (e.g., database

transactions). Manylogs suits workload with large I/Os

and occasional small writes.

SMR drives: Finally, the advent of SMR drives calls for

many changes to the file system and device layers [11],

[14], [26]. For example, some work suggest reserving

a small number of shingled regions [21] or a buffer

of unused tracks at the end of each band [13] to

persistently cache incoming writes. Some work suggest

file systems to convert a portion of shingled zones

into “non-shingled” (random-write) zones by introduc-

ing gaps between usable tracks [41], [53]. To support

manylogs, we also suggest some portion of SMR disk

to be random-writable (to support log swapping), which

could be achieved by making one disk surface non-

shingled (§III-I3).

VIII. CONCLUSION

The concept of log-structured storage has lived for

decades. In this work, we introduce manylogs, a simple

and novel advancement to singe-log approaches. We

show that manylogs can be integrated at different layers

in the storage stack and will deliver both higher disk

bandwidth utilization and faster persistent writes.

Manylogs is however not a panacea. It is not designed

for absorbing high intensive writes (e.g., database trans-

actions); in such cases, flash cache is more suitable. As

mentioned before, checkpointing manylogs can be done

in periodic, idle-based, or lazy/off-hour fashions. Our

exploration of off-hour checkpointing shows that it is

fitting for some but not all types of workload (§VI).

Overall, it should be adopted judiciously where replicas

are available and short disk unavailability is acceptable.

Otherwise, background or idle-based checkpointing are

more suitable.
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