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Abstract—The performance of HDFS is critical to big data
software stacks and has been at the forefront of recent efforts
from the industry and the open source community. A key problem
is the lack of flexibility in how data replication is performed.
To address this problem, this paper presents Pfimbi, the first
alternative to HDFS that supports both synchronous and flow-
controlled asynchronous data replication. Pfimbi has numerous
benefits: It accelerates jobs, exploits under-utilized storage I/O
bandwidth, and supports hierarchical storage I/O bandwidth
allocation policies.

We demonstrate that for a job trace derived from a Facebook
workload, Pfimbi improves the average job runtime by 18% and
by up to 46% in the best case. We also demonstrate that flow
control is crucial to fully exploiting the benefits of asynchronous
replication; removing Pfimbi’s flow control mechanisms resulted
in a 2.7x increase in job runtime.

I. INTRODUCTION

For years, developers have been constantly introducing new
big data processing tools (e.g., Pig, Mahout, Hive, SparkR,
GraphX, SparkSQL) into big data stacks such as Hadoop [1]
and Spark [2] to address an increasing number of use cases.
Figure 1 illustrates the Hadoop and the Spark ecosystems to-
day. On this fast-changing landscape, the open-source Hadoop
Distributed File System (HDFS) [3], which is modeled after
the Google File System [4], has remained the preeminent
distributed storage solution. Given the ubiquity of HDFS, a
significant improvement to HDFS will have a sizable real-
world impact.

However, we observe that several recent efforts at improving
HDFS are revealing an emerging need to handle data replica-
tion in HDFS more flexibly. As a first example, HDFS devel-
opers have recently added heterogeneous storage support [5]
in HDFS. This addition allows HDFS to explicitly place one
or more data copies on faster media (RAM Disk or SSD) for
faster future data reads, but still leveraging slower and cheaper
media (HDD) for maintaining backup copies. However, this
feature offers no substantial performance improvement for
data writes. The fundamental reason is that whenever data
replication is enabled, HDFS writes synchronously through
a pipeline of DataNodes to create copies at those DataNodes.
Consequently, the performance of such writes is dictated by the
slowest portion of the pipeline, usually an HDD. As a second
example, HDFS developers have also added a feature to allow
a DataNode to initially write data in a small RAM Disk [6]
and then lazily persist the data to the underlying non-volatile
storage. While this feature improves the performance of jobs
that write a small amount of data, it offers no substantial
performance improvement for jobs that write a large amount

of data for which improvements are arguably most needed.
The fundamental reason is the same as above. When the data
size is larger than a DataNode’s RAM Disk, data writes slow
to the speed of that of the underlying non-volatile storage, and
the overall write performance is again dictated by the slowest
DataNode in the pipeline.

An additional flexibility to allow a mix of synchronous
and asynchronous data replication can go a long way to
addressing these write performance problems. For instance,
a job can choose to perform the primary data copy’s writes
synchronously, and the replicas’ writes asynchronously. Such
a job completes quickly as soon as the primary copy has been
written, and the job’s lifespan is not explicitly tied to the
speed of replication at potentially slow DataNodes. However,
realizing such improvements will require additional I/O flow
control mechanisms. Without such mechanisms, asynchronous
replication writes may contend arbitrarily with primary writes
of executing jobs and among themselves, harming storage I/O
efficiency and negating the benefit of asynchronous replication.

This paper presents Pfimbi, a replacement for HDFS that
effectively supports both synchronous and flow-controlled
asynchronous data replications.

Pfimbi can isolate primary writes from the interference
caused by asynchronous replication writes and leverage stor-
age I/O under-utilization to effectively speed up jobs. To
achieve this, Pfimbi has to overcome a challenge, namely
that in real workloads storage I/O under-utilization is plentiful
but individual intervals of under-utilization are often brief
and interleaved with periods of peak utilization. Moreover,
these periods are not necessarily correlated between differ-
ent DataNodes. Therefore, to ensure good performance, data
blocks must be delivered to a DataNode in a timely manner
for the DataNode to take advantage of moments of storage
I/O inactivity. However, these transmissions cannot be overly
aggressive or they might overwhelm the DataNode and take
away its ability to fully control usage of storage I/O bandwidth.
These requirements imply that DataNodes must coordinate
their actions. To provide this coordination, Pfimbi employs a
protocol that is distributed and scalable, yet can achieve very
high I/O utilization while avoiding interference.

Pfimbi supports hierarchical flow control which enables
highly flexible resource management policies. Asynchronous
replication fundamentally changes how flexibly data blocks
can be handled. While in synchronous replication every data
block is a part of a rigid and continuous data stream, in
asynchronous replication, each data block is discrete and
stands alone. Therefore, a flow control mechanism can freely



Fig. 1: HDFS is the foundation for large big-data-analytics efforts. Left: The Hadoop ecosystem. Right: The Spark ecosystem.
Image sources: http://www.mssqltips.com/tipimages2/3260 Apache Hadoop Ecosystem.JPG and https://amplab.cs.berkeley.edu/software/

consider various attributes of a data block (e.g., job ID, task
ID, replica number, block size, source DataNode ID, etc.) in
making resource allocation decisions. However, the challenge
lies in being able to flexibly express and enforce policies that
involve multiple attributes. Pfimbi addresses this challenge
by supporting a hierarchical model for flow control, where
different attributes are used at different levels in the hierarchy
to control resource allocation. Many natural policies can be
expressed in this hierarchical manner.

Pfimbi cleanly separates mechanisms and policies. The
length of the synchronous portion of a pipeline can be set
by users on a job by job basis. Therefore, users can choose
whether replication is fully asynchronous, synchronous like it
is in HDFS, or a hybrid of the two. The weights assigned to
different replication flows can also be set individually, allowing
users to dictate how jobs share the available bandwidth. This
separation of mechanisms and policies makes Pfimbi flexible
and extensible.

Our experimental evaluation in Section VI shows that for a
job trace derived from a Facebook workload, Pfimbi improves
the job runtime by 18% on average, up to 46% for small
jobs (writing under 1GB), and up to 28% for the large jobs
(writing 80GB). Pfimbi improves the runtime of DFSIO, a
Hadoop micro-benchmark, by 52% as compared to HDFS on
a cluster with all HDDs, and finishes all replication work
in a time similar to HDFS. When the first position of the
replication pipelines is switched to SSD, the runtime improve-
ment goes up to 73%. Finally, for a job running alongside
the asynchronous replication of an earlier job, we observe a
2.7x increase in job duration if flow control is turned off,
highlighting the importance and effectiveness of Pfimbi’s flow
control mechanisms.

The rest of this paper is organized as follows. In Section II,
we review basic concepts in HDFS. In Section III, we motivate
the feasibility and potential benefits of asynchronous replica-
tion. The details of Pfimbi’s design are presented in Section IV
and we discuss key properties of Pfimbi in Section V. Perfor-
mance of Pfimbi is evaluated in Section VI. Finally, we discuss
related work in Section VII and conclude this paper.

II. BACKGROUND

A. Terminology
For a job to complete, its output needs to be written once.

We call this the primary copy (primary write). Data replication
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Fig. 2: The anatomy of a synchronous pipelined write in HDFS

creates additional replicas. A client is application code that
reads and writes to the file system. By synchronous replication
we mean replication is on the critical path of client writes. The
client write will not complete until replication is done. We use
the term asynchronous replication to refer to data replication
that is decoupled from client writes. We use the term “normal
traffic” to refer to all reads and writes excluding asynchronous
replication.

B. HDFS architecture

HDFS is used to distribute data over a cluster composed
of commodity computer nodes. It uses a master-slave ar-
chitecture. The master (called NameNode) handles metadata,
answers client queries regarding data locations and directs
clients to write data to suitable locations. The slave nodes
(called DataNodes) handle the actual client read and write
requests. Data is read and written at the granularity of blocks
which are typically tens to hundreds of MB in size (64MB,
256MB are popular). Clusters often co-locate storage with
computation such that the same set of nodes that run compute
tasks also run HDFS.

C. Synchronous pipelined writes in HDFS

Block writes are performed in a synchronous pipelined
fashion. Figure 2 presents in more detail the anatomy of a
synchronous pipelined block write. This process is repeated
for every new block. For every block write, the client contacts
the master 1© and receives a list of nodes 2© that will host the
block copies. The size of the list depends on the replication
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factor of the file (i.e., number of copies). Commonly, the first
node in the list is the same node that executes the task writing
the data. The client then organizes the provided nodes into a
pipeline, ordering them to minimize the total network distance
from the client to the last node in the pipeline [4].

Once the pipeline is setup up, the block’s data is sent over
the pipeline at the granularity of application-level packets
3©. When a node receives a packet from upstream, it for-

wards the packet downstream and writes the data locally. The
last node in the pipeline, once it has successfully received
the packet, generates an acknowledgment 4© which is then
propagated through the pipeline, upstream, all the way to the
client. A window-based scheme is used to limit the maximum
number of un-acknowledged packets. A packet is considered
successfully written after the client receives the corresponding
acknowledgment. A block is considered successfully written
after all its packets have been acknowledged.

III. MOTIVATION

This section motivates the feasibility and potential benefits
of asynchronous replication. First, we discuss the drawbacks of
synchronous replication. Next, we discuss why asynchronous
replication may still provide sufficient data locality for many
jobs. Then, we highlight the fact that consistency can also be
guaranteed by asynchronous replication. Finally, we show that
disk I/O under-utilization can be frequently encountered which
can be exploited to perform asynchronous replication.

A. Drawbacks of synchronous replication
Synchronous replication couples replication with primary

writes, thus putting replication on the critical path of the
writes. This design has important negative implications for
both performance and resource efficiency.

Synchronous replication causes contention between primary
writes and replica writes even within a single job. This con-
tention leads to a disproportional increase in job completion
times. Take sorting 1TB of data on 30 nodes in Hadoop for
example. We find that adding 1 replica causes a slowdown
of 23%, and disproportionally, adding 2 replicas causes a
slowdown of 65%.

Synchronous replication can also lead to inefficient cluster-
wide resource usage. Since replication prolongs task execution
times, the more replicas are being created, the longer tasks
hold on to their allocated CPU and memory resources. Overall
cluster-wide job throughput can be increased if these resources
are released promptly and allocated to other jobs sooner.

Slow DataNodes (e.g., caused by a temporary overload)
greatly compound the problems described. Since one node can
serve multiple replication pipelines simultaneously, one single
slow node can delay several tasks at the same time. Finally,
synchronous replication increases a task’s exposure to network
congestion. Any slow network transfer can also slow down the
task.

B. Many jobs can have good data locality without syn-
chronous replication

A task is said to have data locality if it executes on the
same node from which it reads its input data. Data locality

may improve a task’s runtime when reading input data locally
is faster than reading it remotely. Synchronous replication can
help improve data locality of a subsequent job by ensuring
many replicas of such job’s input data are available when the
job starts. This increases the probability that a node that is
selected to run a task of the job also hosts an input block of
that job.

Data locality can also be obtained in the absence of syn-
chronous replication. Many jobs that process large quantities
of data naturally have their input blocks spread over a large
portion of a cluster so their tasks will be data-local with
high probability even without any replication. For these jobs,
with respect to data locality, whether the input was replicated
synchronously or asynchronously is unimportant.

C. Consistency guarantees can be obtained with asynchronous
replication

A distributed file system requires that replicas of the same
block are consistent with each other. HDFS allows a restricted
set of operations on files – (1) only a single application can
modify a file at any given time; (2) written data is immutable
and new data can only be added at the end of a file. This
restricted set of operations is powerful enough to satisfy the
needs of the targeted jobs. Section V-A describes how consis-
tency is guaranteed under both synchronous and asynchronous
replication. For the two ways in which a file can be modified,
write and append, we show that consistency is maintained for
both reads following writes and writes following writes.

D. Exploitable storage I/O under-utilization

We now argue that disk I/O under-utilization can be fre-
quently encountered. This presents an opportunity for per-
forming efficient and timely asynchronous replication. We also
analyze the pattern of disk I/O under-utilization as this directly
impacts Pfimbi’s design.

Disk I/O under-utilization is plentiful but irregular. This
stems from fundamental job properties. Different jobs have
different dominant resources and put different pressure on
the storage subsystem. Some jobs are storage I/O bound
(e.g., Terasort [7], NutchIndexing [8] and Bayesian Clas-
sification [9]) while others are CPU bound (e.g., Kmeans
Clustering [10]). Even a single task may use the storage
subsystem differently throughout its lifetime. For example, a
Hadoop reducer is more storage I/O bound during the write
phase compared with the shuffle phase if the reducer has been
configured with enough memory.

To illustrate the pattern of disk I/O under-utilization, we run
the SWIM workload injector [11] with the first 100 jobs of
a 2009 Facebook trace provided with SWIM on a 30-node
cluster. We compute the average disk throughput (reads +
writes) by reading OS disk activity counters every 100ms.
Every one second we log a computed sample. Each node
has one 2TB HDD used solely by the workload. Figure 3a
shows a cluster-wide (all 30 nodes) view of the pattern of
disk I/O utilization for a representative time window. Figure 3b
illustrates the same pattern at the level of a single node.
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Fig. 3: Disk I/O (write throughput + read throughput) for the SWIM workload on a 30-node cluster, over a 10 minute period.
IO measurements in 10 second intervals are binned together. (a) Distribution of IO samples for all 30 nodes. (b) Distribution
of IO samples for a single node.

Figure 3a suggests that a significant part of the disk band-
width is not utilized. Even when compute slots are actively
being used, the disk can be idle. Such under-utilization can
be exploited to opportunistically and asynchronously replicate
data. Figure 3b shows the irregular pattern of disk activity
for a single node. Periods of idleness or reduced activity
are frequently interleaved with periods of peak activity. This
observation suggests the need for a solution that quickly reacts
to periods of under-utilization.

IV. PFIMBI

In this section, we describe the design and implementation
of Pfimbi. To implement Pfimbi we augmented the HDFS
DataNode with a module called the Replication Manager
(RM). We use RM to refer to this per-node component
implementing the Pfimbi design.

A. Pfimbi design overview

Two basic decisions have guided our design of Pfimbi. First,
we must recognize the diverse needs of different jobs and
allow jobs to choose flexibly between synchronous replication,
asynchronous replication or a hybrid of the two. Second, we
must design for scalability, and as such DataNodes should
locally make all decisions related to flow control (e.g. deciding
when to write data and which data to write). We do not allow
centralized collection of statistics nor centralized flow control
decision making due to scalability concerns.

Figure 4 presents a logical view of the Replication Man-
ager (RM) which is the component that implements Pfimbi’s
new functionality. Arriving data is first de-multiplexed. The
RM writes synchronous data to the file system immediately,
but asynchronously received replication data is buffered in
memory, in the buffer pictured in Figure 4. The Flow Reg-
ulator decides when to write the buffered data to disk, based
on activity information reported by the Activity Monitor.
The Communication Manager exchanges messages with other
nodes. It receives block notifications and forwards them to
the scheduler. When the Communication Manager detects free
space in the local buffer, it invokes the scheduler to select
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Fig. 4: Components of the Replication Manager in a Pfimbi
node.

one of the pending blocks and requests the upstream node to
transfer it. The policy enforced by the scheduler dictates which
block the DataNode requests.

The main components of Pfimbi’s design can be separated
into two groups, the ones that enable inter-node flow control
vs. those for intra-node flow control. The intra-node flow
control components deal with writing asynchronous replication
data locally. The inter-node flow control components deal
with inter-node communication and facilitate the forwarding
of replication data between nodes. Section IV-B explains in
detail how intra-node flow control works while Figure 5 and
Section IV-C explain inter-node flow control.
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B. Intra-node flow control

This section describes how Pfimbi decides when to write
buffered replication blocks to stable storage. The challenge
is to monitor local IO in a way that permits the rapid and
efficient use of disk under-utilization periods while minimizing
the interference that replication causes to normal traffic. We
start by discussing a number of intuitive approaches that we
had to dismiss after thorough analysis and experimentation.
Finally, we present the approach taken in Pfimbi.

1) Monitoring local IO - discarded alternatives: Our first
alternative was to measure IO activity at the DFS level. The
advantage is that a DataNode can differentiate synchronous
writes from asynchronous writes based on the position of
blocks in their pipelines. Unfortunately, this solution is obliv-
ious to non-DFS writes and can lead to replication writes
interfering with reducer and mapper spills, as well as mapper
output writes. In Pfimbi, we want to avoid such interference.

As a second alternative, we considered two disk-level met-
rics: aggregate disk throughput (reads + writes) and IO request
latency. Replication writes are allowed to proceed whenever
the current metric measurements drop below a predefined
threshold. These two metrics are accurate and timely. However,
they have weaknesses when used for flow control. First,
disk-level metrics cannot differentiate between normal and
asynchronous writes. When only asynchronous writes are in
the system, they would still be throttled whenever activity
is above the predefined threshold, leading to inefficient disk
utilization. Second, picking a suitable threshold is difficult.
Setting too high a threshold results in interference with normal
data while a low threshold leads to decreased utilization.
Lastly, when using disk throughput or IO latency, Pfimbi can
only detect and react to idleness after it has occurred. The
system repeatedly cycles between detecting idleness, writing
more asynchronous data, pausing when activity is above the
threshold, then detecting idleness again. Small delays between
these steps add up, resulting in lower disk utilization.

To avoid low utilization, we considered a third alternative:
the sum between disk write throughput and the rate of change
of the dirty data in the buffer cache. Using this aggregate
metric, we can detect when the cache is being flushed without
being replenished (i.e. the sum is zero). This case is important
because it means the buffer cache is draining and the disk
will become idle. We can, therefore, write asynchronous data
before idleness occurs. However, when experimenting with
this aggregate metric, we discovered that a lot of asynchronous
data would build up in memory. The build up of asynchronous
data in the buffer cache reduces the amount of free space for
future normal writes to burst into, without blocking due to a
full buffer cache. Furthermore, the cache churn rate fluctuates
faster, and over a greater range than disk throughput thus
making setting a threshold for the aggregate difficult.

2) Monitoring local IO - Pfimbi’s approach: Pfimbi’s ap-
proach is cache-centric. The idea is to allow the least amount
of asynchronous replication data to be written to the cache
that is necessary to ensure the disk is kept fully utilized. As
a result, the impact of this least amount of asynchronous data
in the cache on any normal writes is limited.

Pfimbi tracks the amount of dirty data in the buffer
cache using standard OS mechanisms and tries to main-
tain the level of dirty-data above the threshold T at
which the OS continuously flushes dirty data to disk (e.g.,
/proc/sys/vm/dirty background bytes in Linux). To make sure
that the amount of dirty data never falls below T , Pfimbi
aims to keep T + δ dirty bytes in memory. δ is set to
be at least the maximum disk throughput multiplied by the
monitoring interval. This guarantees that in-between Pfimbi’s
measurements, even if the buffer cache is drained at the
maximum disk throughput, the amount of data will not fall
below T before Pfimbi can write more data.

C. Inter-node flow control

Section III-D showed that periods of disk under-utilization
are often interleaved with periods of peak utilization. When
disk under-utilization is detected, a node has to write asyn-
chronous data with little delay. Triggering a remote network
read after detecting disk under-utilization incurs much too high
a latency to be viable. Instead, Pfimbi achieves fast reaction by
having a number of asynchronous blocks buffered and ready
in memory.

The RM controls the flow of asynchronous replication
blocks to ensure that receiver side buffers, as shown in
Figure 4, are always replenished. Pfimbi uses a credit-based
flow control scheme. The receiver notifies the sender when
there is space in the buffer to receive a block. Only when
such a notification is received will a sender start a block
transfer. However, a receiver does not initially know which
blocks are destined for it. The Communication Manager in
Figure 4 uses Remote Procedure Calls (RPCs) to let senders
notify downstream nodes of blocks destined for them.

Figure 5 demonstrates the use of flow control for replication
in Pfimbi. This example assumes that two replicas (A and
B) are written synchronously and two asynchronously (C and
D). The client sends the data to node A which forwards it
synchronously to node B 1©. Node B is the last node in
the synchronous pipeline so it sends acknowledgments which
are propagated upstream to the client 2©. The client’s write
operation completes when all the data it sent is acknowledged
by nodes A and B. As they receive data, nodes A and B write
the data locally. This data is initially absorbed by the local
OS buffer cache and finally ends up in stable storage. After
receiving a data block and writing it locally, node B notifies
node C that it has a block available for it 3©. Node C has
plenty of room in its buffer so it immediately requests the
block 4© and then begins receiving it 5©. Since node C is on
the asynchronous part of the pipeline it will treat the incoming
block as an asynchronous block 6©. After receiving the block
and writing it locally 7© it notifies node D that it has a block
available for it 8©. Unfortunately, node D has no room in its
buffer at this point 9©. It will first have to write some of the
buffered blocks locally to disk to make room for other blocks.
Only then will it request the block from node C.

1) Hierarchical flow control: A node is typically part of
multiple pipelines at the same time. These pipelines can be
from different clients of the same job (e.g., different reducer
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Fig. 5: Inter-node flow control in Pfimbi. Two replicas are written synchronously (A, B) and two asynchronously (C, D).

tasks) or clients from multiple jobs. Moreover, for any of
these pipelines, the node can be in different positions (such
as first, second and third). In general, each data block to be
replicated is associated with multiple attributes such as job
ID, task ID, replica number, block size, source DataNode ID,
etc. Pfimbi employs Hierarchical Weighted Fair Queueing [12]
for block scheduling to provide a highly flexible mechanism
for expressing and enforcing flow control policies that involve
multiple attributes.

To explain how the hierarchical model works, we give an
example using a two level hierarchy. The idea generalizes
to any number of levels in the hierarchy. In our example,
we define a root class to which all blocks belong. Then in
the first level of the hierarchy, we define a class for each
replica position and maintain a virtual queue for each replica
position class (e.g., Pos.1 and Pos.2 in Figure 4), and each
virtual queue is associated with a different weight to express
an allocation proportion (e.g., an earlier replica gets a larger
weight). In the second level, under each replica position class,
there is a physical queue for each job (e.g., Job 1 and Job 2 in
Figure 4), and each queue is also associated with a different
weight to expressed an allocation proportion. When a block
notification is received from an upstream node, the RM creates
a reference to that block, classifies that block first by replica
position, then by job ID, and inserts this reference into the
corresponding queue. For instance, in Figure 4, each block
reference is annotated by “jobID.sequenceNumber”. Block 1.3
means the third block from job 1. Because block 1.3’s pipeline
happens to use this DataNode in position 1 in the pipeline, it
is queued under the Pos.1 Job 1 queue. Similarly, block 1.1’s
pipeline uses this node in position 2, its reference is queued
under the Pos.2 Job 1 queue.

The scheduling algorithm recursively decides from which
position class, and then from which job to initiate the next
block reception. The algorithm maintains a system virtual time
function vs(·) for each internal class in the hierarchy. When a
block reference to the k-th block of queue i at the bottom level
reaches the head of the queue, it is assigned a virtual start time
sk

i and a virtual finish time f k
i at the bottom level queue as

well as all ancestor classes’ virtual queues in the hierarchy.
The algorithm then applies the smallest start time first policy

recursively down the hierarchy to choose the block to initiate
the transfer for. The system virtual time function is given by
vs(·) = (smin + smax)/2, where smin and smax are the minimum
and maximum start times among all active head of queue
blocks under a class. This ensures that the discrepancy between
the virtual times of any two active queues is bounded [13].
Furthermore, sk

i = max(vs, f k−1
i ), and f k

i = sk
i + lk

i /wi, where
lk
i is the length of the block.

This example illustrates how Pfimbi can enforce weighted
bandwidth sharing between jobs, and also between replicas
using only local decisions. This obviates the need for heavy
centralized collection of statistics, and coordination of nodes.

2) Pfimbi can guarantee a bandwidth share for asyn-
chronous replication: For many workloads, there is enough
idleness for pending replication work to be performed. How-
ever, there may exist some I/O intensive workloads that keep
the disk busy for extended intervals. This would result in
replication being throttled indefinitely. To address this case,
Pfimbi allows a share of the bandwidth to be guaranteed for
asynchronous replication by using a weighted round robin
approach. That is, after receiving a predefined number of
synchronous blocks, Pfimbi can flush an asynchronous block
regardless of the current activity to ensure asynchronous
replication is not starved.

V. DISCUSSION

A. Consistency

In this section, we argue that Pfimbi maintains the same
consistency guarantees as HDFS.

We use the same read consistency definition as in the HDFS
append design document: a byte read at one DataNode can also
be read at the same moment in time at any other DataNode
with a replica [14]. We define write consistency as: writes
proceed in the same order at all replicas.

We separately discuss regular writes and appends. The
difference is that a regular write creates a new file while
an append adds data to an existing file. For reads, writes,
and appends, we discuss how Pfimbi maintains consistency
for both synchronous and asynchronous pipelines. The
mechanisms used to ensure consistency leverage properties of
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the write and append operations: (1) a file can only have one
client adding data to it (writing or appending); (2) written
data is immutable; (3) new content can only be added at the
end of a file which implies that only the last block in a file
can be under modification at any given time. This means for
writes and appends, we only need to focus on the last block
in a file.

Definitions: For the current block at node i, let Ri be the
number of bytes received, and Ai be the number of bytes
that have been acknowledged by downstream nodes to node
i. If no synchronous node follows node i then Ai = Ri. A
generation stamp is the version number for a block. A block
is first assigned a generation stamp when it is created, and
before a block is appended to, its generation stamp is updated.

1) Synchronous pipelines:

Read consistency after a write or an append: Data flows
down the pipeline while acknowledgements go upstream
meaning R0 ≥ R1 ≥ . . . ≥ RN-1 ≥ AN-1 ≥ . . . ≥ A1 ≥ A0. This
implies that the following condition always holds:

C1: max
∀i

(Ai)≤min
∀i

(Ri).

When a read operation starts, the reader checks how many
bytes it is allowed to read. The reader is allowed to read up
to Ai bytes, where i ∈ {0,1, . . . ,N−1}. Because of C1, all Ai

bytes will have been received at (and can be served from) all
other nodes in the pipeline. This guarantees read consistency,
in that a byte read at one DataNode can also be read at the
same moment in time at any other DataNode with a replica.
Appends are similar to writes in how bytes become visible to
readers.

Write and append consistency: HDFS only allows one
client to be writing or appending to a file at a time. This is
enforced centrally at the NameNode. Having a single writer
or appender ensures that writes from different clients are
properly ordered.

2) Asynchronous pipelines:

Though Pfimbi changes when replicas are created, the
following two principles ensure Pfimbi maintains both read
and write consistency as defined above.

P1: Pfimbi does not make incomplete asynchronously for-
warded replicas visible to clients.
P2: When an append operation overlaps with asynchronous
replication, Pfimbi aborts ongoing forwarding of replicas for
the current block being created asynchronously, and only
restarts it after the append operation is complete.

Read consistency after a write: For nodes in the asyn-
chronous portion of a pipeline Ai = Ri. When a block is in
the process of being forwarded asynchronously, the number of
bytes acknowledged, Ai, at the upstream nodes will be larger
than the bytes received, Rj, at the downstream node because
Pfimbi only asynchronously forwards a block after it has been

completed at the upstream node. This violates the condition
C1 we used above. However, we can invoke P1 to ensure that
the replicas where the condition is violated are not visible.
When a block is being forwarded, the replica being created at
the destination is in a temporary state. Such a replica is only
made visible to the NameNode when forwarding is complete.
When forwarding is complete, Rj at the downstream node
becomes equal to Ai at the upstream node. This guarantees
that all visible replicas contain at least max

∀i
(Ai) bytes so C1

holds for all visible replicas.
Read consistency after an append: When an append oper-

ation starts, data is appended synchronously to all currently
completed replicas of the block. So if a block has been
fully replicated (whether synchronously or asynchronously)
the append proceeds as it does in HDFS. If the block is
only partially replicated, we invoke P2. When a node starts
servicing an append request it aborts ongoing block forward-
ing for the block being appended to. The downstream node
will delete partially created files in the local file system.
The node servicing the append also disregards requests to
asynchronously forward the block. The append operation then
synchronously adds data to all currently completed (and thus
visible) replicas, guaranteeing that the appended data can be
read from all of them and so maintaining condition C1. After
the append finishes, a node can restart asynchronous block
forwarding. Subsequently forwarded replicas will have post-
append data and the updated generation stamp.

When the append starts after a DataNode completes for-
warding an asynchronous replica, but before that new replica
is visible at the NameNode, the new replica will not be
included in the append pipeline. If this replica becomes visible
to clients, C1 would be violated. The use of generation
stamps prevents this from happening. When the downstream
DataNode notifies the NameNode of the replica’s completion,
the NameNode will check if the generation stamp of the replica
is equal to the one the NameNode holds. In this case, it will
not be, so the pre-append replica will not be added to the
NameNode’s map, and therefore will not become visible to
clients. The NameNode also instructs the DataNode to delete
this replica.

Guaranteeing a single writer: HDFS guarantees only one
client is writing or appending to a file by issuing leases at the
NameNode. In addition to the guarantees provided by leases,
we invoke P2 to ensure that asynchronous forwarding is never
concurrent with a client’s append.

B. Failure handling

Failure handling in Pfimbi requires no new mechanisms
on top of those already used in HDFS and the big data
frameworks running on top of it. The only difference is when
these mechanisms need to be invoked.

If the node hosting the client (i.e., the task that writes) fails,
then the pipelined write stops. Tasks failures are handled by
the computation framework (Hadoop, Spark). A new copy of
the task is typically launched on another node.

If the node that fails is not at the first position in the pipeline
but it is within the synchronous segment of the pipeline, then
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the pipelined write also stops. In this case the client times out
the write and selects another pipeline to retry.

If the node that fails is within the asynchronous part of the
pipeline, then the asynchronous pipeline will be severed at that
node. All synchronous or asynchronous copies upstream of
the failed node can complete normally. The node immediately
upstream of the failed node also continues normally. If this
upstream node sends a block notification to the failed node,
then it will receive an error and stop retrying. If the block
notification went through before the failure but there is no
block request arriving from the failed node, the upstream
node is still unaffected. This is because the upstream node
does not maintain any extra state after sending the block
notification since the remaining data transfer is entirely driven
by the downstream node. However, in this failure scenario,
if no further action is taken, the data will remain under-
replicated. To get the desired number of replicas, Pfimbi falls
back to the block-loss recovery mechanisms already supported
by the master node. The master node periodically checks for
under-replicated blocks within the file system and starts their
replication in an out-of-band manner until the desired number
of replicas is reached.

Lastly, all copies of a block could be lost after the job
writing the block has finished. Recovery from such failures
entails re-starting previously finished jobs. This requires trac-
ing data lineage across jobs. Such mechanisms can be found
in Tachyon [15], Spark [16] and in RCMP [17] for Hadoop.

C. Scalability

Pfimbi is just as scalable as HDFS and can leverage all
scalability enhancements for HDFS (e.g. distributed master
nodes) because the overall file system architecture remains
the same. Importantly, the centralized master performs the
exact set and number of operations. Thus, the load on the
master remains unchanged. Pfimbi also retains the pipelined
design to replication. Pfimbi only changes the manner in which
the pipeline is managed. Finally, the coordination mechanism
introduced by Pfimbi to enable flow control is lightweight
and local to a pair of upstream-downstream nodes. Thus, the
coordination mechanisms in Pfimbi scale with the size of the
DFS.

D. Choosing between synchronous and asynchronous replica-
tion

Pfimbi leaves it to the application programmer to decide
whether to use synchronous replication, asynchronous repli-
cation or a hybrid of the two. Each job chooses whether to
use synchronous or asynchronous replication as part of its
configuration. The application programmer can include this
setting in the source code, or as a simple command line
parameter when launching the job. The number of DataNodes
in the synchronous portion of the pipeline is similarly specified
as part of the job configuration. Automating this decision is
beyond the scope of this work, and is left to future work.
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workload

VI. EVALUATION

In this section, we report experimental results to quantify
the performance of Pfimbi.

Software setup: We have implemented Pfimbi by extend-
ing Hadoop 3.0.0. We compare against default Hadoop 3.0.0.
We run Hadoop and Pfimbi on top of the YARN resource
allocator.

Hardware setup: We use 30 worker nodes and one master
node. The worker nodes host HDFS DataNodes and YARN
NodeManagers. Hence, computation is collocated with the
data storage. The master and worker nodes have the same
hardware configuration. Each node has two 8-core AMD
Opteron 6212 CPUs and a 10GbE connection. Nodes have
128GB of RAM, a 200GB SSD and a 2TB hard disk drive.
There are no other jobs running on the nodes during our
experiments.

Configurations: We represent the tested configura-
tions using the format DFS(#copies, #synchronous copies).
Pfimbi(3,1) means using Pfimbi to write 3 copies, with only 1,
the primary, being created synchronously. Two replicas are cre-
ated asynchronously. HDFS(3,3) means using HDFS to create
3 copies, all synchronously. For HDFS, the two numbers will
always be the same since HDFS uses synchronous replication.

Default Pfimbi parameters: The per-node buffer used for
storing asynchronous replication blocks can hold 16 block.
Replication flows use a flow weight of 1.0, unless otherwise
specified, and by default, we prioritize replicas that are at
earlier pipeline positions.

Metrics: We use four metrics to measure the performance
of Pfimbi:
− Job runtime: the time it takes a job from start until it

finishes all synchronous copies.
− The time between job start and the completion of all first

replicas. This gives resilience against any single node
failure.

− The time between job start and the completion of all
replication work.

− The number of block write completions each second.
Job runtime measures job performance whilst the other

metrics give information about the efficiency of the system.
A job reports completion to the user after it finishes writing
all synchronous copies. In HDFS, all copies are created syn-
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chronously, so the time to write the primary will be identical
to the time taken to write all the copies. However, when using
Pfimbi these metrics will be different. This is why we consider
them separately.

Workload: We use three workloads to test our system:
a SWIM workload derived from a Facebook trace [18], Sort
jobs and DFSIO jobs [19].

SWIM [11], [20] is a MapReduce workload generator.
Given an input trace, SWIM synthesizes a workload with
similar characteristics (input, shuffle and output data size, job
arrival pattern). The SWIM workload is derived from a 2009
Facebook trace [18] and contains the first 100 jobs generated
by SWIM. Figure 6 illustrates the distribution of job input and
output sizes in this workload. Most jobs are small and read and
write little data while the few large jobs write most of the data.
Such a heterogeneous workload is popular across multiple
data center operators [21], [22]. Including replication, roughly
900GB of data is written into the DFS. In our experiments we
gradually scale up the workload by up to 8× (i.e., 7TB). This
allows us to observe the behaviour of Pfimbi under light and
heavy load conditions.

To analyze Pfimbi’s benefits in a more controlled envi-
ronment, we use Sort jobs. In all our Sort experiments, we
sort 1TB of randomly generated data. Sort experiments are
repeated 3 times for each configuration.

Lastly, we use DFSIO [19] as a pure write intensive work-
load. DFSIO is routinely used to stress-test Hadoop clusters.
Unlike Sort, DFSIO is storage I/O bound for its entire duration,
and its only writes are to the DFS. This enables us to analyze
the behavior of DFS writes in isolation from the non-DFS
disk writes (task spills, mapper writes) encountered in other
Hadoop jobs.

A. Pfimbi improves job runtime

We start by analyzing Pfimbi’s benefits on an I/O intensive
workload by running a DFSIO job. We also analyze the
ability of HDFS and Pfimbi to leverage heterogeneous storage
by varying the location of primary writes (SSD or HDD).
The two replicas always go to HDDs. Thus, we analyze
the following pipeline configurations: SSD→HDD→HDD and
HDD→HDD→HDD. Since in the SSD case the primary writes
do not conflict with replica writes, for a fair comparison with
the HDD case. We partition the nodes into two groups. Half of
the nodes handle the replicas while the other half handle the
primary writes and the tasks. Partitioning is only necessary
for this experiment. For all our other experiments, we do not
partition our nodes.

Figure 7 illustrates the results for the two DFSIO
jobs. Pfimbi significantly lowers the completion time for
primary writes whilst maintaining high disk utilization.
Pfimbi improves job runtime by 52% and 73% for the
HDD→HDD→HDD and SSD→HDD→HDD configurations,
respectively. The time to obtain the first replica is also reduced
by 32% for both configurations. These large gains are obtained
with only a 5% penalty on the time it takes for all data to
be written to the non-volatile storage. The small bar above
the 2nd replica shows the time it takes for all dirty data to
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Fig. 8: Average SWIM job runtime for Pfimbi(3,1) normalized
to HDFS(3,3) under varying workload scaling factors. Pfimbi
outperforms HDFS by up to 18% on average under heavy
I/O load; performance gains for individual jobs can be much
higher (see Section VI-A). For light load there is very little
contention so Pfimbi and HDFS perform similarly.

be flushed to non-volatile storage after an operating system
sync call. The bar is much smaller for Pfimbi, since Pfimbi
restricts the amount of asynchronous data that can be in the
buffer cache.

In Figure 7a, HDFS(3,3) cannot benefit from moving the
first copy write to SSD because it is using synchronous
replication. The pipelines are bottlenecked by the slower
HDDs. With Pfimbi, the primary write duration improves by
44% when we move from the HDD→HDD→HDD to the
SSD→HDD→HDD configuration. Pfimbi is better able to
exploit storage heterogeneity.

We ran the SWIM workload to evaluate Pfimbi’s benefits
under different load conditions. The load on the storage
subsystem is varied by scaling up the workload data size.
Figure 8 shows the results. It plots the average job runtime
under Pfimbi(3,1) normalized to the average job runtime under
HDFS(3,3). Under a heavy workload (8x scaling) Pfimbi
shows an 18% improvement in average job runtime. The per-
job improvements (not illustrated) are up to 46% for small
jobs (writing less than 1GB), and up to 28% for the most data
intensive jobs (writing 80GB). We also ran lighter workloads
(2x and 4x scaling). Pfimbi does not show significant benefits
for these. When the workload is light there is very little
contention caused by replication so there is little room for
optimization.

Pfimbi shows improvements also when a Sort job is run in
isolation. Figure 9a shows that as we decrease the length of the
synchronous portion of the pipeline, the job runtime decreases.
The runtime of Pfimbi(3,1), which is purely asynchronous is
36% less than HDFS(3,3), which is purely synchronous. This
improvement is because Pfimbi reduces contention between
normal traffic and asynchronous traffic.

We next analyze how efficiently Pfimbi performs replica-
tion. We use the single Sort job to decouple the results from
the influence of concurrent jobs. Figure 9b is CDF showing
the proportion of replicas created with time. We measure time
from when the first block of the Sort job is written. Pfimbi
completes replication just as quickly as HDFS, all whilst
reducing the duration of the write phase of the job by almost
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Fig. 7: Completion time of different write stages for a DFSIO job. Primary writes go to either HDD or SSD. (a) HDFS(3,3)
cannot benefit from SSDs because of synchronous replication. (b) Pfimbi finishes primary writes much faster due to the
decoupled design and also benefits from switching to SSD. The small bar above the 2nd replica shows the time it takes for
all dirty data to be flushed to disk after a sync call.
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30%.
For HDFS(3,3) blocks at all stages in the pipeline are

created at the same rate since replication is synchronous. For
Pfimbi, the blocks for the primary writes proceed at a much
faster rate because they do not have to contend with replication
writes. As the number of primary block completions decreases,
Pfimbi starts creating more and more replicas.

B. Pfimbi isolates primary writes from asynchronous replica-
tion

Asynchronous replication without flow control can be
achieved using the setRep mechanism in HDFS. After a file
has been written, the setRep command is invoked to increase
the replication factor of the file’s blocks. In Figure 10, we can
see that such asynchronous replication without flow control
causes the second of two back to back DFSIO jobs to run 2.7x
slower than under Pfimbi. Flow control in Pfimbi minimizes

the interference that the asynchronous replication data for the
first job has on the runtime of the second. The duration of first
job should be the same under both Pfimbi and HDFS. The
slight difference in Figure 10 is within the expected natural
variation between multiple runs of the same job.

C. Pfimbi can divide bandwidth flexibly

Flexibly dividing disk bandwidth between jobs: We ran
three concurrent DFSIO jobs and varied their flow weights.
The third job is launched 500 seconds after the first two.
Figures 11a and 11b show the rate of block completions for
the three jobs. Time point zero second on the plot is when
the first block is written. Each job writes 600GB of data. For
this experiment, we fairly share bandwidth between replicas
at different positions in pipelines. This enables us to clearly
see the effects of dividing bandwidth between jobs.

In Figure 11a the flow weights are equal, so the three jobs’
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Fig. 11: Three DFSIO jobs are run concurrently with different replication flow weights. Each job has a replication factor of 3.
We measure time from when the jobs start writing blocks. Job 3 is started 500 seconds after the first two. When flow weights
are different (in (b)) we observe bandwidth sharing at proportions according to the ratio of the flow weights, thus Job 3 is
able to achieve failure resilience much sooner.
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replication writes share the available bandwidth equally, giving
similar block completion rates. For Figure 11b we use different
weights for the jobs in the ratio 1:4:16. From 300-500 seconds,
the ratio of Job 1 and 2’s block completions match the 1:4
ratio of the flow weights. Likewise, from 800-1000 second,
the block completions of all three jobs reflect the assigned
flow weights. By assigning Job 3 a higher replication weight,
its replication finishes much sooner in Figure 11b than in
Figure 11a. Throttling replication to avoid interfering with
normal data results in dips in the block completion rates at
the beginning of the experiment and at 600 seconds.

Prioritizing earlier pipeline positions within a job: Next,
we show how prioritizing replicas that occur at earlier posi-
tions in their pipelines can help Pfimbi progressively achieve
increasing levels of failure resilience. To better make the case

we configured one DFSIO job to write 4 copies of its output
data (3 replicas).

Figure 12 shows the number of block completions versus
time for replicas at different positions in pipelines. Similar
to Figure 11 time point zero second on the plot is when the
first block is written. In Figure 12a we do not give priority to
earlier positioned replicas, and we observe the 2nd replicas and
3rd replicas being created at the same rate as the 1st replicas.
A user may prefer all the 1st replicas to be given priority.
In Figure 12b, we set Pfimbi to give priority to replicas at
earlier positions in the pipelines when selecting the block to
be received next. We set a ratio of 100:10:1. This reduces
the overlap between the writes of blocks at different positions
in the pipeline, and replicas at earlier positions are finished
sooner.

VII. RELATED WORK

In Section I, two related works [5][6] by HDFS developers
have already been mentioned. The rest of this section will
discuss additional related work in the literature.

Sinbad [23] addresses network contention as a potential per-
formance bottleneck in DFSes. Sinbad leverages the flexibility
of big-data jobs in choosing the locations for their replicas.
Sinbad chooses replica locations to reduce the risk of network
hot-spots. Sinbad and Pfimbi are highly complementary. The
block placement strategy in Sinbad and Pfimbi’s flexibility to
perform flow-controlled asynchronous replication can poten-
tially be applied simultaneously to achieve the best of both
worlds.

TidyFS [24] is a simple distributed file system. It performs
by default lazy, asynchronous replication. To motivate TidyFS,
the authors find that in a Microsoft cluster, less than 1% of
the data is read within the first minute after creation, and not
more than 10% within the first hour after creation. These data
access patterns also provide additional motivation for Pfimbi.
TidyFS fundamentally differs from Pfimbi in that there is
no management of asynchronous replication traffic. Once an
asynchronous replication thread finds replicas to be created,
it starts creating them immediately regardless of the system
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Fig. 12: A single DFSIO job with replication factor 4 under Pfimbi. (a) The three replicas share the available bandwidth
fairly at a 1:1:1 ratio. (b) The ratio is set to 100:10:1. This results in earlier replicas finishing sooner, achieving progressively
increasing levels of failure resilience. Even if a failure were to occur at 700s, the data is still preserved.

load, similar to the setRep trick we considered in Section VI-B.
Thus, in TidyFS, local clients writes will experience contention
from asynchronous replication traffic leading to poor perfor-
mance as Section VI-B shows. In contrast, Pfimbi uses flow
control techniques to allow replication to be performed during
periods of disk under-utilization, thus minimizing interference.

Pfimbi’s flow control is distributed and its flow control
decisions are made locally at each DataNode. Intelligence is
also distributed since each DataNode runs its own hierarchical
block scheduler to implement different resource sharing poli-
cies. This design enables Pfimbi to make fine-grained flow
control decisions to exploit momentary IO under-utilization.
In contrast, Retro [25] is a centralized resource management
framework. In the case of HDFS, Retro would centrally
compute and set the data rates of different synchronous
replication pipelines to implement a resource sharing policy.
The intelligence is centralized in Retro, DataNodes simply
perform data rate control as instructed. It would be impractical
to use Retro to implement the fine-grained flow control that
is necessary to enable efficient asynchronous replication.

Parallel replication streams sharing a single source has been
proposed as an alternative to pipelined replication to reduce
write latency [26]. However, parallel replication does not
address the overhead due to contention between replication and
normal data. In reality, the overhead of I/O contention either
in the network or on the disk can have a much larger effect
on job performance than the overhead of pipeline latency.

VIII. CONCLUSION

Over the past five years, since its initial release, HDFS has
continued to gain adoption. Many new features and optimiza-
tions have since been introduced, but until recently, little has
changed about how data replication is handled. The nascent
effort on adding in-memory storage with lazy-persist to HDFS
has highlighted a need for a more flexible approach to data
replication that does not sacrifice performance. In this paper,
we have explored the idea of asynchronous replication within
a design called Pfimbi. Our key contribution is that we have
demonstrated that asynchronous replication when combined

carefully with flow control mechanisms can provide very sub-
stantial improvement in job runtime over a range of workloads
and heterogeneous storage configurations. Moreover, the flow-
control mechanisms in Pfimbi can be used to realize a rich
set of IO resource sharing policies. Finally, Pfimbi is readily
deployable in existing big data software ecosystems.
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