
Reducing Write Amplification of Flash Storage
through Cooperative Data Management with NVM

Eunji Lee Julie Kim Hyokyung Bahn* Sam H. Noh

Chungbuk Nat’l University
Cheongju, Korea
eunji@cbnu.ac.kr

Ewha University
Seoul, Korea

julie.kim@linecorp.com

Ewha University
Seoul, Korea

bahn@ewha.ac.kr

UNIST
Ulsan, Korea

samhnoh@gmail.com

Abstract—Write amplification is a critical factor that limits
the stable performance of flash-based storage systems. To reduce
write amplification, this paper presents a new technique that
cooperatively manages data in flash storage and nonvolatile
memory (NVM). Our scheme basically considers NVM as the
cache of flash storage, but allows the original data in flash
storage to be invalidated if there is a cached copy in NVM, which
can temporarily serve as the original data. This scheme
eliminates the copy-out operation for a substantial number of
cached data, thereby enhancing garbage collection efficiency.
Experimental results show that the proposed scheme reduces the
copy-out overhead of garbage collection by 51.4% and decreases
the standard deviation of response time by 35.4% on average.

Keywords-Flash Memory; Write Amplification; Non-volatile
Memory

I. INTRODUCTION

Developments in nonvolatile memory (NVM) technologies
such as PCM (phase-change memory), STT-MRAM (spin
torque transfer magnetic RAM) and 3D XPoint are advancing
rapidly [1-5]. While deploying emerging nonvolatile
memories requires making changes in the storage management
mechanisms devised for conventional volatile memory based
architectures [6], it also opens opportunities to improve on
limitations that also exist. In this paper, we consider the use of
NVM as a cache for flash based storage devices and propose
the Cooperative Data Management (CDM) scheme that
cooperatively manages data in flash and the NVM cache in
order to reduce the write amplification of flash memory.

Flash memory is widely used as storage in high-end
systems as well as small embedded devices. Flash memory is
an erase-before-write medium and the erasure unit (called
block) is much larger than the write unit (called page) [7].
Thus, an entire block needs to be erased even if a small
portion of the block is updated. To alleviate this inefficiency,
writes in flash memory are performed out-of-place, and space
containing obsolete data is periodically recycled. This
procedure, which is called garbage collection, selects blocks to
be recycled, copies out valid pages in the blocks, if any, and
then erases the blocks. Garbage collection incurs additional
writes to flash, that is, writes are amplified. This write
amplification is a critical factor that limits the stable
performance of flash storage [8-15].

The key idea of the CDM scheme comes from the
observation that we can recycle victim blocks in flash without
copying out their valid data if the data resides in nonvolatile
cache, which provides durability, instead of flash storage. This
scheme exploits the non-volatility of scalable cache to relieve

the wear-out of flash storage. This is an important contribution
when one considers the fact that NVM density, cost, and
performance is constantly improving, while the endurance of
flash keeps deteriorating [16-19].

The basic workings of our scheme can be summarized in
the following two situations. First, when cached data becomes
dirty, our scheme immediately notifies this state change to the
storage, allowing early invalidation of storage data. Second,
when garbage collection is activated, our scheme erases victim
blocks without copying out their valid data if the data,
possibly being clean, resides in NVM. To support this
mechanism, we define a new flash page state that we call
“removable” and discuss how this state can be utilized when
managing data in flash storage and the NVM cache.

The proposed scheme is implemented on SSDsim, which is
an extended version of DiskSim for SSDs [20]. Experimental
results with various storage workloads show that the proposed
scheme reduces the copy-out overhead of garbage collection
by 51.4% on average. This also leads to an average of 15%
reduction in response time. Such reduction in write
amplification also results in a 35.4 % reduction in standard
deviation of the response time.

II. ANALYZING WRITE AMPLIFICATION FACTOR

The write amplification factor is defined as the amount of
data actually written to flash storage over the amount of data
writes that was requested. We investigate the write
amplification factor of SSD by making use of SSDsim, which
is a high-fidelity event-driven SSD simulator, as commercial
SSD devices do not provide internal information to the end
users. (Detailed configurations of the experiment will be
described later in Section 4.) We observe the write
amplification factor with respect to the workload
characteristics by using two synthetic workloads (Random and
Sequential) and two real workloads (JEDEC and OLTP). For
the synthetic workloads, we generate 5 million write
operations in random and sequential patterns, respectively, by
making use of the internal workload generator in SSDsim [20].
Each operation is in 8 sector (4KB) units and the total
footprint is 20GB. Table 1 summarizes the characteristics of
the real workloads used in our experiments. JEDEC (JEDEC
219A) is a workload that is used for SSD endurance
verification [21]. OLTP trace that is attained at financial
institutions generates I/O accesses for financial transactions
[22].

Before measurements begin we warm up the simulator by
writing data sequentially until the number of free blocks
reduces to less than 5% of the total flash blocks. The results
reported are those of repeatedly running the workload 10 times
for each workload. As shown in Figure 1, the average write
amplification factors of random and sequential are 2.84 and
1.00, respectively. In random workloads, as flash pages are
updated at random, the victim block selected during garbage
collection is likely to have many valid pages. This leads to
increased write amplification. In contrast, as pages within a
block are invalidated together in sequential workloads, there is
no write amplification.

However, most workloads in real systems are a certain
mixture of sequential and random workloads. To mimic such
real situations, we generate mixed workloads and investigate
the write amplification factor as the ratio of sequential and
random accesses is varied. All other configurations other than
the ratio of random to sequential requests are the same as that
of Figure 1. Figure 2 shows the write amplification factor of a
32GB SSD as the ratio of sequential and random accesses is
varied. As shown in the figure, the write amplification factor
of mixed workloads is almost identical to that of a pure
random workload and does not decrease even when most
accesses are sequential. That is, only a small fraction of
random accesses is necessary to intensify the write
amplification factor, which implies that the write amplification
of real workloads would be similar to that of random accesses.

This is also consistent with the write amplification factor
measured from real I/O workloads as shown in Figures 1(c)
and 1(d), which are very similar to that of Random in Figure
1(a). When storage capacity is small compared to the data to
be stored, the write amplification factor becomes very high,
going up to as much as 6.0 in our experiments. Such write
amplification degrades the performance of flash storage and
also reduces the lifetime of flash storage.

To solve this problem, we propose a new data management
scheme that enables flash memory to minimize valid page
copy-out by making use of nonvolatile cache. The next section
describes the design and implementation details of the
Cooperative Data Management (CDM) scheme that we
propose.

III. COOPERATIVE DATA MANAGEMENT WITH FLASH

MEMORY AND NVM

A. Cooperative Data Management

Traditional caching systems employ volatile media such as
DRAM and thus, the original data in storage must be

preserved even though there is another copy in the cache.
However, when the cache becomes nonvolatile and data is
cached, we now have two persistent copies in the system; one
in flash, which we refer to as the storage (or flash) copy and
the other in NVM cache, which we refer to as the cached copy.
One of these copies can (and should) be eliminated as keeping
both is redundant and thus, may be costly. Whether to discard
the cache or the flash copy will depend on which benefits the
system more. For example, if the storage copy is a candidate
to be moved due to garbage collection, it might be better to
simply discard it instead as a valid, nonvolatile cached copy
exists. In this manner, the Cooperative Data Management
(CDM) scheme that we propose recycles victim blocks
without copying out their valid data if the data resides in the
cache.

Note that the storage copy could be invalidated as soon as it
is uploaded in cache. However, this will increase writes to
flash as, in this case, the cached copy must be written back to
flash when evicted from cache as the storage copy is now

Table 1: Summary of workload characteristics.

 JEDEC OLTP

of ops. 5,000,000 9,034,179

Ratio of ops. write 89%, trim 6%,
flush 5%

read 52%
write 48%

Footprint 31.2GB 30.7GB

om 9:
1

8:
2

7:
3

6:
4

5:
5

4:
6

3:
7

2:
8

1:
9 tia
lW

rit
e

am
pl

ifi
ca

tio
n

fa
ct

or 1.40

1.35

1.30

1.25

1.20

1.15

1.10

1.05

1.00
10:0 9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9 0:10

Access ratio (random:sequential)

Figure 2: Write amplification factor as access ratio is varied.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

4GB 8GB 16GB 32GB 64GB

W
rit

e
A

m
pl

ifi
ca

tio
n

F
ac

to
r

SSD Capacity

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

4GB 8GB 16GB 32GB 64GB

W
rit

e
A

m
pl

ifi
ca

tio
n

F
ac

to
r

SSD Capacity

(a) Random (b) Sequential

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

4GB 8GB 16GB 32GB 64GB

W
rit

e
 A

m
p

lif
ic

a
tio

n
 F

a
ct

o
r

SSD Capacity

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

4GB 8GB 16GB 32GB 64GB

W
rit

e
A

m
p

lif
ic

at
io

n
F

ac
to

r

SSD Capacity
(c) JEDEC (d) OLTP

Figure 1: Write amplification factor for various workloads.

invalid. Thus, instead of invalidating storage copy right after it
is cached, we change the state from “valid” to “removable”,
where “removable” is a flash page state that is defined as
being currently “valid” but may be removed (i.e., be
considered to be “invalid”) without copying it out if an erasure
occurs on the storage copy. If the cached copy is evicted
before the storage copy is recycled, the state of the storage
copy simply returns to “valid.”

On the other hand, if the cached copy is updated (i.e.,
becomes dirty), our scheme immediately invalidates the
storage copy because the cached copy must be written back to
flash anyhow. Note here that periodic flushing done in
traditional volatile caches to maintain consistency becomes
unnecessary as the cache is now nonvolatile.

Figure 3 shows the state diagram of data in flash (storage)
and cache when the NVM cache cooperates with flash. Each
circle represents the state of the storage copy and its cached
copy. For simplicity, let us assume that storage and cached
copies are managed in page units. The storage copy has three
states, “valid,” “invalid,” and “removable,” and the cached
copy has two states “clean” and “dirty.” In the figure, in state
S0 the data only exists in flash. When the storage copy is
retrieved and cached, the state changes to S1. Now, as the up-
to-date copy exists in both cache and flash, the state of the
storage copy becomes “removable.” If the cached copy is
updated or the storage copy is removed, the up-to-date data
exists only in the cache, and the storage copy becomes
“invalid” (S2). Finally, if the cached copy in the “dirty” state
is evicted, it is flushed to flash and the state returns to S0. If a
cached copy in the “clean” state (S1) is replaced, it is simply
discarded from the cache without flushing (S0).

B. Consistency Issues

Management of cached data requires a guaranteed level of
reliability. For example, modern reliable file systems perform
out-of-place updates such as journaling (e.g., Ext4 and
ReiserFS) or copy-on-write (e.g., BtrFS and ZFS) to support
recovery of file systems to the latest consistent state. A certain

level of reliability is also necessary when using our CDM
scheme. Here, we discuss the consistency mechanism for
CDM.

Recall that unlike flash memory, in-place updates are
possible with NVM but atomicity of in-place updates are
guaranteed in only relatively small sizes [23, 24]. Now
suppose that only the cached copy of a certain page remains.
In this situation, if the system crashes while updating the
cached copy, the data may become inconsistent as page
overwrite is not atomic. To overcome this problem, we
prohibit in-place updates of cached copies when it serves as
the original data.

Figure 4 extends the states defined in Section 3.A to
guarantee consistency. We define two additional indicators
“writable/write-protected” and “up-to-date/out-of-date.” The
writable/write-protected indicator distinguishes whether the
cached copy allows in-place update or not. If a write is
requested on a write-protected copy, it is first copied and the
write is performed on that copy. The up-to-date/out-of-date
indicator distinguishes whether the cached copy is the most
recent version or not. This is necessary as multiple copies for
the same data may exist in the cache.

Let us see how our scheme works with the state changes.
Initially, data exists only in flash (S0). Upon read/write
requests, the data is cached and S0 transits to S1/S2. In S1
state, as up-to-date data exists in both cache and flash, the
storage copy becomes “removable.” In this situation, suppose
that garbage collection occurs and the storage copy needs to
be erased. Then, the cached copy becomes “write-protected”
before the storage copy becomes “invalid” (S3). This protects
the cached copy from being corrupted upon a crash. The data

cach
e allo

catio
n

fo

r w
rite

N/A

Valid

S0

State in
cache

State in
storage

S#

Clean

Removable

read
S1

read /
write

Dirty

Invalid

S2

evict

Figure 3: States of cache and storage data when the NVM cache and flash
storage cooperate.

read /
write

read

cache allocation for write

Dirty
Up-to-date
Writable

Invalid

Dirty
Up-to-date

Invalid

erase
in flash

write

Dirty
Out-of-date

Invalid

checkpoint

commit

checkpoint

N/A

Valid

S0
Dirty

Up-to-date
Writable

Valid

S2

Clean
Up-to-date
Writable

Removable

read
S1

S4S3

S5
State in
cache

State in
storage

S#
Write-protected

Write-protected

read /
write

Figure 4: States of storage data and cached copy in the consistency guaranteed
model.

in this state still services read requests, but upon a write
request, a copy-on-write occurs to protect the original data
(S5) and the update is performed on a new cache location (S4).
The out-of-date copy (S5) is maintained until its up-to-date
version (S4) is successfully committed, and then reclaimed
(S0).

Returning to state S1, if the cached copy is updated while
its original data exists in flash, the storage copy becomes out-
of-date. However, as the cached copy has not yet committed,
the storage copy is still in the “valid” state (S2). This is
different from the basic model presented in Section 3.A that
immediately changes the out-of-date data to “invalid”, but
does not guarantee consistency.

Similar to file system journaling that periodically commits
updated data to a separate storage area (e.g., every 5 seconds),
the proposed scheme can periodically perform commits by
changing the state of cached “dirty” data (S2/S4) to “write-
protected” (S3). Note that this procedure just changes the state
of the cached copy, incurring neither storage writes nor copy
operations within the cache. Once the data is committed, it
becomes the new original data and the data before the update
needs to be invalidated. This old data may exist either in flash
or in cache. If the storage copy is invalidated (S2S3),
unnecessary copy overhead during garbage collection can be
eliminated. If the cached copy is invalidated (S5S0), it is
reclaimed and becomes free. The committed up-to-date data
(S3) are finally reflected to a permanent storage location via
checkpointing. Checkpointing should be triggered when free
memory drops below low watermark. Even if the committed
data (S3) becomes out-of-date (S5) due to subsequent writes,
it (S5) is written to the storage during checkpointing as the up-
to-date copy (S4) has not yet been committed. After
checkpointing, the committed obsolete data (S5) is reclaimed
(S0) and the up-to-date copy (S4) transits its state (S2) as it
now has a backup copy in storage. The up-to-date cached copy
(S3 or S4) still serves as a cache block (S1 or S2) after
checkpointing.

C. Implementation Issues

The scheme that we propose can be deployed at two
different levels in real systems. The first is using NVM as a
host-side cache for flash based primary storage. In this case,
our scheme can be supported by the kernel through the
modification of the file system buffer cache layer. However, in
this case, current storage interfaces need to be revised. This is

because the host OS and the storage system must be able to
notify each other of state changes that occur in the cache and
storage system. One way to get around this limitation is to
extend the host interface to transfer the state information [25].
Fortunately, this is becoming a viable approach as emerging
storage interfaces like NVMe or Universal PCI Express are
flexible such that adding proprietary extensions are becoming
feasible [26].

The other level is to use NVM as an internal write buffer in
flash storage devices such as SSDs. In this case, our scheme
can be incorporated into the design of FTL in SSD internals
without modifying host interfaces. This approach does not
require any modifications to the storage stack as the FTL is a
purely internal mechanism within the flash storage device.
Even though the scheme that we propose can be deployed at
both levels as just discussed, for our performance evaluation,
we will only focus on the latter case.

IV. PERFORMANCE EVALUATION

For our evaluation, we implement the proposed scheme into
DiskSim’s MSR SSD extension [20]. The SSD simulator
emulates SLC NAND flash memory chip operations, and the
parameters that we use are presented in Table 2. In all
configurations, there are 8 flash memory chips and the total
storage capacity is 64GB. The simulator assumes the PCI-e
interface with 8 lanes with 8b/10b encoding, providing 2.0
Gbps per lane.

In this SSD simulator, we add a nonvolatile cache and
implement the CDM scheme within the FTL. The cache is
managed in 4KB page units using the LRU replacement policy.
Specifically, we add the “removable” state to flash pages in
conjunction with the “valid/invalid” states by modifying the
page table entries in FTL. We then revise the garbage collector
to skip copy-out operations for pages with the “removable”
state. Before erasing blocks, the garbage collector determines
that the pages in removable states are to be erased and sets
their states to write-protected. Figure 5 shows the system
architecture of the proposed scheme. For all experiments, we
warm up the simulator in the same manner used for the write
amplification experiments.

We compare our scheme with NVM-basic, which uses the
same NVM cache architecture, thus providing durability
against power failures, but does not perform cooperative data
management. Figure 6 shows the number of pages copied out

Table 2: Experimental parameters.

SSD capacity 64GB
Page size 4KB
Block size 256KB (64 pages)

Page read latency 25us
Page write latency 200us
Block erase latency 1.5ms
Data transfer latency 100us (for 4KB page)

Overprovisioning ratio 15%

H
o

st
 in

te
rf

ac
e Processor

Buffer
manager

Flash
Pkg

Flash
Pkg

..
.

Flash
Pkg

Host
system

NV-cache
NVRAMNVRAMNVRAM

cache

NVRAM
controller

SSD

Figure 5: System architecture used in our experiments.

during garbage collection as a function of the cache size. As
shown in the figure, the proposed scheme significantly reduces
the copy-out overhead. Specifically, the improvement
becomes larger as the cache size increases. This is because a
large size cache allows for aggressive invalidation of copies in
flash. The average reduction of copied pages is 48.3% and
54.4% for JEDEC and OLTP, respectively, compared to the
original system. This will eventually lead to prolonging the
lifetime of flash memory.

Figure 7 shows the write amplification factor as a function
of the cache size. As shown in the figure, the proposed scheme
significantly reduces the write amplification factor,
specifically when the cache size becomes large. The reduced
write amplification factor is in the range of 2.1-17.6% and 4.3-
38.2% for the JEDEC and OLTP workloads, respectively.
Figures 8 and 9 show the average response times and their
standard deviation for CDM normalized to NVM-basic. Due
to the large reduction in garbage collection overhead, CDM
improves the average response time by 9.7% and 20.3% and
reduces the average standard deviation by 31% and 39% for
JEDEC and OLTP, respectively.

V. RELATED WORKS

Lu et al. observe that the layered file system and FTL
design accelerates flash memory wear-out as it prevents file
systems from exploiting the characteristics of flash storage
devices [27]. To remedy this deficiency, they propose an
object-based flash translation layer (OFTL) to which the file
system storage management component is offloaded so that
flash memory can be managed directly. Kang et al. propose a
multi-streamed I/O mechanism where the host explicitly

informs storage the lifetime of the data being transferred such
that the storage device can manage data more efficiently with
respect to garbage collection [9]. Robert proposes dynamic
overprovisioning methods for storage systems through
compression and deduplication of data for reduction of write
amplification and increased endurance and longevity [10].
Skourtis et al. propose redundant data management and
separation of reads and writes to avoid unpredictable delays
caused by garbage collection [11]. Jagmohan et al. propose a
multi-write coding mechanism that enables a NAND flash
page to be programmed more than once without block erase,
thereby relieving write amplification by garbage collection
[12]. Boboila and Desnoyers present a method using actual
chip-level measurements to reverse engineer FTL details [13].
They show that performance and endurance can be estimated
through the reverse engineering FTL. This method is used to
suggest FTL parameter setting such that performance and
endurance can be efficiently balanced. Yang et al. present
analytic modeling for evaluating write amplification in
garbage collection and reveal the relationship between
endurance and performance metric [14].

VI. CONCLUSION

This paper presented a new data management scheme for
flash storage when NVM is adopted as the cache. The
proposed scheme cooperatively manages data in flash and the
cache in order to efficiently perform garbage collection.
Specifically, we allow victim blocks to be erased without
copying out their valid data if the data are in the cache.
Experimental results show that the proposed scheme reduces
the copy-out overhead of garbage collection by 51.4% on
average. This results in reduced write amplification, which in

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

of

 p
ag

es
 m

ov
ed

Cache size (MB)

NVM-basic

CDM

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

of

 p
ag

es
 m

ov
ed

Cache size (MB)

NVM-basic

CDM

(a) JEDEC (b) OLTP

Figure 6: Number of pages copied out.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

w
rit

e
 a

m
ili

fic
at

io
n

 fa
ct

or

cache size (MB)

NVM-basic
CDM

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

w
rit

e
 a

m
ili

fic
a
tio

n
 fa

ct
o
r

cache size (MB)

NVM-basic
CDM

(a) JEDEC (b) OLTP

Figure 7: Write amplification factor.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

a
vg

.
re

sp
o

ns
e

 ti
m

e
(n

o
rm

)

Cache size (MB)

NVM-basic

CDM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

a
vg

.
re

sp
o

ns
e

 ti
m

e
(n

o
rm

)

Cache size (MB)

NVM-basic

CDM

(a) JEDEC (b) OLTP

Figure 8: Average response time.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

st
d.

 d
ev

.
of

 r
e

sp
on

se
 ti

m
e

Cache size (MB)

NVM-basic

CDM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

st
d.

 d
ev

.
of

 r
e

sp
on

se
 ti

m
e

Cache size (MB)

NVM-basic

CDM

(a) JEDEC (b) OLTP

Figure 9: Standard deviation of response time.

turn, results in reduced response time and variance of response
time.

VII. ACKNOWLEDGEMENT

This work was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT & Future
Planning (No. 2014R1A1A3053505 and No.
2015R1A2A2A05027651) and by the IT R&D program
MKE/KEIT (No. 10041608). Hyokyung Bahn is the
corresponding author of this paper.

REFERENCES

[1] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi, “Operating
system support for NVM+DRAM hybrid main memory,”
Proceedings of USENIX Workshop on Hot Topics in Operating
Systems (HotOS), 2009.

[2] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high
performance main memory system using phase-change memory
technology,” Proceedings of the 36th International Symposium
on Computer Architecture (ISCA), 2009.

[3] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase change
memory architecture and the quest for scalability,”
Communications of the ACM, 53(7), 2010.

[4] S. Lee, H. Bahn, and S. H. Noh, “CLOCK-DWF: a write-
history-aware page replacement algorithm for hybrid PCM and
DRAM memory architectures,” IEEE Transactions on
Computers, 63(9), pp. 2187-2200, 2014.

[5] https://en.wikipedia.org/wiki/3D_XPoint

[6] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache
and journaling layers with non-volatile memory,” Proceedings
of the 11th USENIX Conference on File and Storage
Technologies (FAST), pp. 73-80, 2013.

[7] J. Kim, J.M. Kim, S.H. Noh, S.L. Min, and Y. Cho, “A space-
efficient flash translation layer for compact flash systems,”
IEEE Transactions on Consumer Electronics, 48(2), 2002.

[8] Y. Lu, J. Shu, and W. Zheng, “Extending the Lifetime of Flash-
based Storage through Reducing Write Amplification from File
Systems,” Proceedings of the 11th USENIX Conference on File
and Storage Technologies (FAST), pp. 73-80, 2013.

[9] J. Kang, J. Hyun, H. Maeng, and S. Cho, “The Multi-streamed
Solid-State Drive,” Proceedings of the 6th USENIX Workshop
on Hot Topics in Storage and File systems (HotStorage), 2014.

[10] Robert L. Horn, “Dynamic overprovisioning for data storage
systems”, Western Digital Technologies, 2015.

[11] D. Skourtis, D. Achlioptas, N. Watkins, C. Maltzahn, and S.
Brandt, “Flash on Rails: Consistent Flash Performance through
Redundancy,” Proceedings of the USENIX Annual Technical
Conference (ATC), 2014.

[12] A. Jagmohan, M. Franceschini, L. Lastras, “Write Amplification
Reduction in NAND Flash through Multi-Write Coding,”
Proceedings of the 26th IEEE Symposium on Mass Storage
Systems and Technologies (MSST), 2010.

[13] S. Boboila and P. Desnoyers, “Write Endurance in Flash Drives:
Measurements and Analysis,” Proceedings of the 8th USENIX
Conference on File and Storage Technologies (FAST), 2010

[14] Y. Yang , J. Zhu, “Algebraic modeling of write amplification in
hotness-aware SSD,” Proceedings of the 8th ACM International
Systems and Storage Conference (SYSTOR), 2015.

[15] P. Desnoyers, “Analytic modeling of SSD write performance,”
Proceedings of the 5th ACM International Systems and Storage
Conference (SYSTOR), 2012.

[16] M. Yang, Y. Chang, C. Tsao, and P. Huang, “New ERA: new
efficient reliability-aware wear leveling for endurance
enhancement of flash storage devices,” Proceedings of the 50th
Annual Design Automation Conference (DAC), 2013.

[17] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D.
Lottis, K. Moon, X. Luo, E. Chen, A. Ong, A. Driskill-Smith,
and M. Krounbi, “Spin-transfer torque magnetic random access
memory (STT-MRAM),” ACM Journal on Emerging
Technologies in Computing Systems, 9(2), 2013.

[18] O. Zilberberg, S. Weiss, and S. Toledo, “Phase-change memory:
An architectural perspective,” ACM Computing Surveys, 45(3),
2013.

[19] Y. Li and K. N. Quader, “NAND Flash memory: challenges and
opportunities,” Computer, pp. 23-29, 2013.

[20] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse,
and R. Panigrahy, “Design tradeoffs for SSD performance,”
Proc. USENIX ATC, pp. 57-70, 2008.

[21] JEDEC, Master trace for 128 GB SSD,
http://www.jedec.org/standards-documents/docs/ jesd219a_mt.

[22] UMASS trace repository, http://traces.cs.umass.edu.

[23] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger
and D. Coetzee, “Better I/O through byte-addressable, persistent
memory,” Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP), pp.133-146, 2009.

[24] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
and R. Sankaran, J. Jackson, “System software for persistent
memory,” Proceedings of the 9th European Conference on
Computer Systems (EuroSys), 2014.

[25] F. Shu, “Data set management commands proposal for ATA8-
ACS2,” T13 Technical Committee, United States: At
Attachment:e07154r1, 2007.

[26] A. Huffman, “NVM Express: Going Mainstream and What’s
Next”, Intel Developers Forum, 2014.

