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Abstract

The requirements of deduplication systems have changed
in the last years. Early deduplication systems had to process
dozens to hundreds of backup streams at the same time while
today they are able to process hundreds to thousands of
them. Traditional approaches rely on stream-locality, which
supports parallelism, but which easily leads to many non-
contiguous disk accesses, as each stream competes with all
other streams for the available resources.

This paper presents a new exact deduplication approach
designed for processing thousands of backup streams at the
same time on the same fingerprint index. The underlying
approach destroys the traditionally exploited temporal chunk
locality and creates a new one by sorting fingerprints. The
sorting leads to perfectly sequential disk access patterns
on the backup servers, while only slightly increasing the
load on the clients. In our experiments, the new approach
generates up to 113 times less I/Os than the exact Data
Domain deduplication file system and up to 12 times less
I/Os than the approximate Sparse Indexing, while consuming
less memory at the same time.

I. INTRODUCTION

The huge increase in data generating and processing value
chains in industry and academia has dramatically increased
the pressure on backup environments. Data has become a
valuable asset itself and it is therefore important to protect it
using highly reliable backup systems. Most backup systems
have been based on tape environments until the late 2000s
and tape is still one of the most cost-effective ways to
store data. Disk-based backup environments profit from
deduplication techniques which often significantly reduce
the amount of data stored. These techniques makes disk an
economically applicable backup technology.

Most deduplication systems split the backup data set into
small chunks and identify redundancies within the data by
comparing the chunks’ fingerprints [1]–[5]. A new chunk of
data is only stored if its fingerprint is not already contained
in the so-called chunk index. For a later data restore, the
systems create recipes which contain all information that is
necessary to rebuild the stored data.

Look-ups in the chunk index have been the main perfor-
mance bottleneck in deduplication systems as the complete
index is typically too large to be held in main memory

and index accesses generate random I/O. Therefore, dedu-
plication system designers typically use at least one of the
following techniques:

• They reduce the index size so that it fits in main
memory and trade this for a reduced duplicate detection
rate.

• They exploit chunk locality, i.e. the tendency for chunks
in backup data streams to reoccur together [2] and
prefetch chunk fingerprints block-wise from an internal
data structure that catches this locality. For a sin-
gle backup stream, prefetching can generate a near-
sequential disk access [6].

Yet, even if every backup stream has this locality prop-
erty, the disk-friendly access scheme would degrade to a
random one when more backups are processed in parallel.
In addition, the streams compete for the available memory
space, as each additional stream reduces the stream-local
cache sizes so that the number of I/O accesses increases. As
a result the write performance decreases, especially when
the system load is high. High system loads occur naturally
in companies as users prefer default scheduling windows
during weekdays, resulting in nightly bursts of activity [7].
Deduplication systems for online backups face the same
challenges. Here, users might backup their data more or less
evenly throughout the day, but the number of users can easily
reach 10-100K and result in 1-10K streams at peak times.
Hence, there is a need for systems that efficiently process
thousands of streams without heavy hardware requirements.

In this work, we present a deduplication approach which
is tailored to handle many streams and to avoid the memory
problem. It achieves this goal by processing all streams in
sorted order so that all streams access the same index region
at the same time. This creates and exploits a high index
locality. The number of I/Os of this approach only depends
on the volume of the globally unique data, but is nearly
independent from the number of concurrent data streams.

We compare the resulting system with the well-established
approaches of Zhu et al. [1] and Lillibridge et al. [2]. In
experiments, our system generates up to 113 times less I/Os
than the one of Zhu et al. and up to 12 times less than the
one of Lillibridge et al. At the same time, it still performs
exact deduplication and consumes less main memory than
the other systems.



II. SORTED CHUNK INDEXING

All deduplication systems try to avoid the chunk-lookup
disk bottleneck. The main approach to this varies among
the systems, but most systems try to exploit the chunk
locality. This locality is used to prefetch and cache chunk
identification information to save I/O operations.

However, this locality is stream-local and a system that
processes thousands of streams should exploit a global
locality. We create this by maintaining a sorted chunk index
and process each stream coordinated in sorted order. This
creates a perfect chunk index locality, reduces overall disk
I/Os, and creates a sequential disk access pattern.

In the following, we describe this sorted deduplication
and a sample system, Sorted Chunk Indexing (SCI) in detail.

A. Sorted Deduplication

Traditional deduplication systems can generate a non-
sequential disk access pattern during prefetching for one of
the following three reasons:

• Chunk Sharing: Some chunks appear multiple times
across the same backup stream [6]. This causes repeti-
tive prefetches of the fingerprints of the chunk and its
neighbors. In addition, chunk sharing also can occur
among different streams.

• Independence: Even if the chunk sharing among
streams is low, the system generates random I/O since
all streams are processed in parallel and all stream-local
prefetches generate a global random access.

• Aging: Backups change over time. For some systems,
this reduces the locality of internal data structures and
can increases the number of prefetches.

A sorted deduplication can eliminate the random accesses
as follows: For each sorted stream, the system iterates over
the sorted chunk index and identifies the chunks in the
stream on the fly. This eliminates any random I/O that is
caused by stream-local chunk sharing because the sorted
order, by definition, enforces that no chunk is revisited. In
addition, there is no random I/O because of aging since
changes in the backup stream change the set of chunks but
not their order of appearance.

However, an independent processing of backup streams
does not eliminate the random I/Os that are cause by
inter-stream sharing and independence. For this, the system
additionally must enforce the same processing speed for each
stream so that each stream accesses the same chunk index
position at the same time. This guarantees that the same I/O
access can serve arbitrary many streams. The resulting I/O
pattern becomes a completely sequential run.

B. System

As a proof of concept and for testing the sorted dedupli-
cation approach, we have developed a prototype implemen-
tation called Sorted Chunk Indexing (SCI). In SCI, clients

perform the chunking and fingerprinting while the server
identifies all chunks.

1) Server: The server is responsible for identifying new
chunks in the backup streams. For simplicity, we first assume
that all streams from the clients start at the same time. Later,
we relax this and show how data streams can be handled if
they appear spontaneously.

The server receives chunk fingerprints in sorted order. It
utilizes the order by organizing the chunk index in a two-
level log-structured merge-tree (LSM tree) [8]. The LSM
tree stores the data sequentially and in sorted order in its
leaf nodes on disk.

This allows processing all streams concurrently in a single
sequential run over the tree’s leaves. For each loaded leaf,
the server processes all fingerprints that fall into the interval
covered by that leaf before it advances to the next one.
This ensures the same processing speed of all streams on
server side. Since the LSM tree only modifies leaves when
it merges the memory based first level into the second, each
leaf is read-only and can be accessed by each stream in
parallel. To further reduce the I/O accesses, the leaves are
grouped into pages of the same size. Thus, the number
of pages constitutes an upper bound for the number of
generated I/Os during a backup run. New pages are added
when the size of the memory-based first level structure of
the LSM tree reaches a predefined threshold [8]. While the
server processes a page, it prefetches the next one because
it is likely that it will be used for a sufficient volume of
backup data. Note that the probabilities of the pages to be
hit by a fingerprint are proportional to the page’s fingerprint
range and these probabilities are therefore not uniform. In
Section III-B we further investigate this probability.

Concurrent Data Streams: New clients are not forced
to wait for an index run to complete. Instead, they can exploit
that they can start transmitting their fingerprints at any point
in the sorted list and, therefore, hook in the current index
run. For this, each client first asks the server for the last
fingerprint of the page currently being handled and start the
transmission with the next bigger fingerprint. In addition, the
system allows the clients to send multiple streams starting
from different positions to overcome different clients’ pro-
cessing speeds. This introduces multiple, independent runs
over the pages as indicated in Figure 1. However, the number
of these runs must be limited as the disk access pattern
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Figure 1. Multiple concurrent runs over the sorted chunk index.



becomes random for too many runs.
2) Client: Similar to DDBoost [9], the client first per-

forms the chunking and fingerprinting of the backup data.
Each client uses the same chunking and hash function
method to enable the server to detect inter-stream redun-
dancies. Next, it sorts the fingerprints and communicates
with the server to detect the new fingerprints as shown in
Figure 2. For this, it first sends the sorted list of fingerprints.
During sending, it skips chunks that are redundant within the
same backup. These chunks are directly detectable in sorted
order because all duplicates of a fingerprint are arranged
in one block in the list. The server replies with a list
which contains the storage location (container ID) for each
received fingerprint or a nil value if the chunk is new. The
storage location is mandatory because the client is also
responsible for creating the recipe information for restoring
the backup data. The server cannot perform this task because
it has no information about the original ordering of the
chunks. Finally, the client sends the recipes and the raw data
of the new chunks to the server, which then adds the storage
location of new chunks to the recipes as it stores them. The
raw chunks are sent in original order to preserve the chunk
locality for the restore case. During restoration, the sorted
order would create a random access to the containers. Note
that the server fills containers only with chunks of the same
stream, similar to other systems [1], [2].

The overhead for the client operations is as follows: The
chunking and fingerprinting requires to read all backup
data. The sorting is a standard sort algorithm requiring
O(n log n), where n is the number of chunks in the backup
data before any deduplication. Building the messages for
the server can be done in O(n). The number of network I/O
operations depends on the number of messages the client
must send. This number in turn depends on the available
buffer space of the server per client. We assume that the
buffer can hold k ≥ 2 fingerprints and that the sever receives
one message while processing the previous one. Hence, the
client sends and receives O( 2nk ) messages. The next step is
the update of the recipe. This requires O(n) operations if the
client additionally maintains an index storing for each chunk
pointers to its occurrences in the recipes. Additionally, the

Client Server

[0x01, 0x03, 0x07, 0x08, 0x09,…]

[nil, 4, 4, nil, 27,…]
CI lookup

update
recipes recipes + raw chunk data

Figure 2. Communication steps between client and server.

client performs O(nnew) copy operations, where nnew is
the number of new chunks.

Weak clients: Since backups usually are bigger than
the available main memory, the client cannot hold all data
in memory. Several trade offs are possible: First, the client
can hold only the metadata in memory, i.e., the list of
fingerprints. This mechanism allows the client to process
the full backup in one processing round at the cost of
one additional I/O round: the backup data is read once for
the chunking and fingerprinting and additionally each new
chunk has to be read a second time.

The client can also process the backup data window-
wise such that all raw and metadata fit into memory. This
prevents a second I/O on the client side, but induces several
processing rounds on the server side. However, if many
clients write their backup at the same time, the additional
I/O costs are low because all I/Os are shared among the
clients.

Weak connections: With a sufficient reliable and fast
connection, the clients can send the data fast enough, i.e.,
all their fingerprints for the next page arrive before the server
starts processing it. However, a bad network or internet
connection may slow down single clients and, therefore,
all clients in the same run. Hence, we allow the clients to
adapt to the server’s index processing speed by skipping
fingerprints and sending them in a later round as shown
in Figure 3. Even if clients must participate in multiple
index runs, the resulting sending scheme is optimal from the
clients’ point of view because they can send the fingerprints
at their maximum speed.

We computed the minimum transmission throughput of
the clients to avoid the fingerprint skipping. This throughput
mainly depends on the clients’ backup size, the index
processing speed, and the age of the system, i.e. the vol-
ume of unique chunks stored in the deduplication system.
Figure 4 shows the minimum sending throughput of each
client. For the figure we assumed an index entry size of
28 B (20 B SHA-1 fingerprint + 4 B container ID + 4 B
reference counter) and that a client’s backup consists of
16 GB of different chunks, each with an expected size of
8 KB. The threshold is high for younger systems since the
chunk index is small and the system can perform an index
run fast. For example, the clients must send their fingerprints
with more than 8 MB/s if the system has stored 256 GB
unique data and processes the chunk index ( 256GB 28B

8KB =
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Figure 3. Sending schema of weaker clients.
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Figure 4. Minimum transmission throughput of clients.

896 MB) at the speed of a common hard disk (128 MB/s).
The threshold decreases for bigger chunk indexes. For 32 TB
of stored unique chunks, the clients must send at rate of
64 KB/s, which is small enough for most clients. Note that
the minimum throughput also decreases for smaller backups.

C. Inter-stream Redundancy

It can happen that two or more clients send the same
chunk fingerprint during the same index run. This case
requires a special handling because the system must ensure
fault tolerance, i.e. the chunk must be stored as long as
there is at least one non-crashing client. Therefore, the server
always signals each client that the chunk is new (second
message in Figure 2) if there is no entry in the chunk index.
This lets each client send the chunk and ensures that the
chunk arrives at the server as long as there is at least one
non-crashing client.

The server could simply store the respective chunks
multiple times, even if this rare event relaxes the exact
deduplication constraint. Nevertheless, exact deduplication
can be maintained if the server keeps an in-memory index to
manage in-flight chunks. When a new chunk arrives, it adds
a side index entry to lock it, stores the chunk raw data, and
updates the chunk index, side index, and the recipe with the
storage location. The server then can just discard the chunk
and update the recipe if this chunk data arrives a second
time.

Each side index entry additionally contains a counter and a
timestamp. The counter is set to the number of remaining in-
flight versions of the chunk while the timestamp represents a
timeout. In the common case, no client crashes and the server
removes the entry when receiving the last incoming chunk.
If a client crashes, the server removes the entry based on
the timestamp during a regularly cleanup of the side index.

D. Restore Speed Improvements

The SCI approach presented in this paper is compatible
with restore speed improvements introduced by previous

work [10], [11]. Most of the approaches improve restore
speed by fixing chunk fragmentation, i.e., the effect that
the caught locality of the data structures holding raw chunk
information (containers) diverges from the actual locality of
the backup streams over time. While processing a backup
stream, they allow the system to fill new containers with old
chunks that occur at the current position in the data stream.

This technique requires two properties: First, the system
must fill containers with chunks of the same backup stream.
Second, the system must know the history of the backup
stream, i.e., a list of container IDs sorted by the position of
their according chunks in their original order. Each container
ID may occur multiple times in the list as each according
chunk can occur multiple times in the stream. In our system,
the former property is guaranteed as mentioned above. The
latter is also guaranteed because the clients send the recipes
in their original order and each recipe must hold its list
of fingerprints in their original order to allow the system
to restore the described data. In addition, a recipe holds
the container ID of each fingerprint to save a chunk index
lookup in the restore case. Therefore, the server receives the
container ID history while receiving the recipes from the
clients.

E. Distributed Mode

The system is designed to handle thousands of streams
with a single server. However, a single-server setup is limited
in its scalability. To distribute the workload to multiple
servers, two approaches are possible which are depicted in
Figure 5. The first approach (Figure 5a) divides the set of
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(c) Split of a server with shared fingerprint space.

Figure 5. Different distribution modes.



clients into disjoint subsets and maintains a chunk index for
each subset on separate servers. The mapping of clients to
servers/indices is trivial and must only ensure that the same
clients are mapped to the same servers for each backup.

The disadvantage of this approach is that the system
performs approximate deduplication, i.e., it can happen that
a chunk is stored more than once. This happens when
two clients are in disjoint sets and send the same chunk
fingerprint to different servers. In this case, both indices
would declare the chunk as new because the servers work
independently of each other. The impact of approximate
deduplication depends on the data: in our test data sets, for
example, less than 1% of all chunks are shared among two
or more streams.

Another disadvantage is that a split of an overloaded
server is complex. In this case, the system splits the set
of a server’s clients into two subsets Cstay and Cmove and
moves index entries to a new server. To split the chunk
index, the system performs a full index run and checks for
each entry whether the chunk was stored by any client in
Cmove. This in turn requires a new reverse index holding
fingerprint→{clients having the chunk} mappings which
requires additional resources.

The second approach is shown in Figure 5b, where the
system divides the fingerprint space instead of dividing the
clients. Here, each server is assigned a subrange of the
[0,1) interval and only keeps chunk index entries in its
subrange. Each server performs own index runs on its own
subrange. Compared to the first approach, this system has the
advantages that it performs exact deduplication and that the
splitting of an overloaded server is simpler. If, for example,
a server splits its range [0, 0.5) into the subranges [0, 0.25)
and [0.25, 0.5), it only has to transfer the chunk index pages
that belong to the range of the new server. This is a simpler
and more straightforward method because each index page
covers its own contiguous range in the [0,1) interval (see
Figure 5c). If the system splits the old ranges at index
page boundaries, it only needs to transfer complete index
pages without splitting any existing ones. Each transferred
page can then directly be used in the new server without
modifications.

The shared space approach, however, complicates the
client handling. The system can now choose between two
options: The clients can either send their fingerprints as
before, but are stopped at each index boundary until a new
index run is started for the next range; or they sort their
fingerprints subject to the split of the servers and send them
to the subranges in parallel. Which of the options is better
depends on the interconnect between clients and servers: A
client with a slow interconnect should use the first technique,
while a client with a fast interconnect can use the second
one to utilize the parallel processing on the server side.

F. Recipes and Container IDs

SCI holds the container IDs as part of the recipes. This
saves random accesses to the chunk index during a restore, as
the recipe holds enough information to load a given chunk.
However, these savings are traded for a higher complexity:
Backups will be deleted over time and old containers start
to store less active chunks. The deduplication system should
therefore merge containers to save storage capacity.

The new container holds all old, but active chunks and
also has a new ID. Without an additional mechanism, the
merge invalidates several recipes as the container IDs of
several chunks have changed. Therefore, all affected recipes
must be found and updated, which is an expensive operation.
To mitigate this effect, SCI can maintain a layer of indirec-
tion for container IDs and maintain a container index which
maps each container ID to its position on disk. During a
merge, SCI then updates the entries of the old containers
with the position of the new one. The new index is small
enough to be held in memory as, in the simplest case, a
single entry consists of two 8 B entries. Therefore, 1 GB of
memory can hold about 268 million entries.

Alternatively, the recipes could not contain container
IDs so that the chunk index must be queried during a
restore. Note that this case has only a minor impact on the
communication pattern. The second communication step in
Figure 2 is still mandatory as it tells the clients which raw
chunk data to send in the next step. Instead of the container
IDs, the server only would send a bitmap, therefore reducing
the volume of the messages.

G. Limitations

The described system is designed to concurrently han-
dle many streams. However, it is not suitable for every
scenario because the index runs can cause a considerable
write latency. SHA1 creates a nearly uniform fingerprint
distribution, so that even small writes involving only few
chunks require lookups in pages across the whole fingerprint
range. An extreme case would, e.g., be a backup that consists
of only two chunks whose fingerprints are mapped to the first
and last index page. After the first lookup, the respective
client would not be able to directly jump to the last page
because the other clients would most likely have chunks in
between and force this client to wait.

III. EVALUATION

Our system evaluation focuses on the server side of SCI
and compares SCI with DDFS and Sparse Indexing. We will
first describe the evaluation method and the used data sets,
then we will determine a suitable page size for the LSM
tree. Afterwards, using this page size, we will investigate
how many streams can be processed in parallel and at which
backup size SCI starts to outperform DDFS and Sparse
Indexing. Finally, we will compare the I/O access patterns of



Table I
DATA SET OVERVIEW.

HPC HOME MS

#different Streams 597 140
#backup Generations 61 33
Avg. #Streams/Gen. 68 27
Avg. Chunk Size 8 KB 8 KB
Backup Volume total 8 TB 48.7 TB
Backup Volume unique 3.7 TB 7.8 TB
Avg. Backup Vol./Gen. 131 GB 1.5 TB
Avg. unique Vol./Gen. 60 GB 235 GB

the three approaches as well as their performance in relation
to the memory usage.

A. Data Sets and Methodology

We have used two data sets, HPC HOME and MS, for
the comparison with DDFS and SI: HPC HOME consists
of one full and 60 daily incremental backups of up to 260
home directories on our university’s HPC cluster. MS is a
subset of a data set collected from desktop computers at
Microsoft [12]; for this, 140 nodes were randomly selected
and their incremental backups extracted. The chunks were
generated using content-defined chunking with an expected
chunk size of 8 KB [13]. Table I summarizes the core
statistics.

We have performed the comparison based on a reimple-
mentation of Meister et al.’s simulator [14]–[16]. DDFS and
SI have been configured in a way that they use the same
amount of main memory. Based on the size of the data sets,
we have modeled a hardware setup that can store up to 16 TB
of unique chunk data and provides 8 GB of main memory
for all data structures necessary to identify incoming chunks.
8 GB has been chosen to keep a reasonable ratio between the
cache size and the backup size. Bigger memory sizes would
lead to systems, where the complete chunk index could be
kept in main memory. A full index for the HPC HOME data
set consumes, e.g., 13 GB of main memory assuming 28 B
per chunk entry. Different memory settings are discussed in
Section III-F.

The available memory has been distributed as follows:
We have configured the DDFS’s Bloom filter to lead to an

expected false positive rate of 1% with the optimal number
of hash functions. This gives a fixed memory consumption
of 2.4 GB for 8 KB chunks. The remaining memory has been
used for the container cache. We have simulated DDFS using
a container size of 4 MB with an assumed compression ratio
of 50%. Thus, each container can 1024 chunks on average.

SI identifies similarities based on segments and the sparse
index is the main data structure for identifying similar
segments. In addition, it allows SI to detect additional
already stored chunks by loading and caching the referenced
segment’s manifests. We have determine in our imple-
mentation the hook chunks stored in the sparse index by

sampling based on the k most significant bits of the chunks’
fingerprints. Therefore, we have maximized the index size
first by maximizing k. We have then filled the remaining
memory with the manifest cache. For 8 KB chunks, this
leads to a sampling based on the 4 most significant bits
and a cache capacity of 27,396 manifests. In other words,
the system only adds on average every 16th unique chunk
to the sparse index.

SCI’s simulated memory consumption is 1 GB for the first
level of the LSM tree plus the size of one page.

Our main interest is on the number of I/Os which each
approach requires to identify a given chunk as duplicate
or new. This number is still the most important influence
factor for system performance. We do not count I/Os for
writing chunk raw data to disk as a system can perform them
asynchronously. We also do not count the I/Os of the first
backup generation because we are interested in the steady
state of the approaches. For comparability between the data
sets, we show the average number of generated I/Os per 1000
chunks ( I/Os

1K chunks ) and average this value over all backup
generations.

We furthermore assume that if an approach generates less
disk accesses than another one, a concrete implementation
would also perform better, especially if a similar hardware
setup is used and the same performance tuning is possible.
However, we refrain from estimating the throughput based
on this information. Measuring the throughput is only pos-
sible in a real implementation.

B. LSM Tree Page Size

The page size of the LSM tree is an important parameter
of a sorted-streams system. On the one hand, it determines
the total number of pages, which is an upper bound for
the number of I/Os during an index run because each page
is read at most once. On the other hand, it influences the
probability of the pages to be hit by a fingerprint and loaded
by the system. For this reason, it is interesting to find out
whether small page sizes allow the system to skip pages and,
by doing so, speed up index processing.

The aim of this section is to show that, for typical system
parameters and a reasonable number of parallel streams, all
pages will be hit and skipping pages can therefore not help
to increase the performance.

We set the page size to 1 MB as this is the smallest
size which is still reasonable considering the cost of disk
seek operations. A quick evaluation on our hardware has
shown no performance difference between reading a page
and skipping the next and reading both pages for page
sizes up to 1 MB. For the total backup size, we assume
a minimum of 224 distinct chunks per backup run, which
is easily required in the presence of thousands of clients.
To make the calculations more accessible, we increase the
page entry size from 28 B to 32 B, the next power of two.
This is permissible because a larger entry size only reduces
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Figure 6. Logically small pages problem. The middle page covers a small
fraction of the [0, 1] interval and, therefore, is hit by the chunk fingerprints
with a low probability.

the pages’ probability for being hit. The number of entries
per page is 1MB

32B = 215. We assume the commonly used
average chunk size of 8 KB and a matured deduplication
system, which is filled with 16 TB of unique chunks. Hence,
the number of chunks already being stored in the system is
16TB
8KB = 231, and the number of pages is 231

215 = 216.
For the analysis, we model the problem as a balls-into-

bins game. It differs from the standard game, however,
because the probabilities of the pages (bins) to be hit by
a fingerprint (ball) are proportional to the page’s fingerprint
range and therefore not uniform1. Figure 6 shows an exam-
ple for three pages, each having a capacity of three entries.
As the middle page covers a smaller interval, it has a lower
probability to be used.

Hence, the key element of our analysis is to show in
Lemma 1 that the fingerprint ranges of all pages have a
sufficient minimal length with high probability and to show
in Lemma 2 that, in expectation, all pages will be hit.

Lemma 1. Let m, s, ` ∈ N, d, n ∈ R and S = {0, 1, 2, ..., s}
where n = s/d ≥ 4 · m ≥ 216 and n · (log(n))2 ≤ ` ≤
n · (log(n))3. Assume that ` distinct points are randomly
picked from S and that S is divided into m subintervals
b1, ..., bm such that each bi contains exactly `/m consecutive
points. Then all subintervals have length at least d with
probability at least 1− n−3.

Proof: In this lemma, m represents the number of pages
and ` the number of unique chunks out of the |S| possible
fingerprints, where each page has to store `/m fingerprints.
We are interested in the minimal range of fingerprints over
all pages, which is denoted by d and which will be checked
later.

The proof is based in a first step on the idea that the
number of fingerprints assigned to each of n helper bins

1In the worst case, a page could be filled with 1MB
32B

= 215 consecutive
hashes. The probability of a chunk hitting such a page would be as small
as 215

2160
= 1

2145
.

which are each responsible for an interval of length n = s/d
can be bounded by standard balls-into-bins theorems:

Partition the interval [0, s] into n = s/d subintervals
J1, ..., Jn of size d. Applying Theorem 1 of [17], the
maximum number of points in any such interval is upper
bounded by

`/n+ 2 ·
√
2 · log(n) · `/n

with probability at least 1− n−3.
We will now use this density for the n bins to build a

relationship between our sought interval length d and the
number of fingerprints m/` stored in each page. Therefore
consider any arbitrary interval Ix,d = [x, x+d], 0 ≤ x ≤ s−
d, and denote the number of points in this interval by r(Ix,d).
Since Ix,d intersects with at most two of the subintervals
from {J1, ..., Jn}, we obtain

r(Ix,d) ≤ 2 ·
(
`/n+

√
8 · log(n) · `/n

)
≤ 2 · (`/n+ `/n) = 4 · `/n ≤ `/m

using that ` ≥ n ·(log(n))2 > 8 ·n · log(n) with log n > 8
for n > 216. It follows that every interval bi, i ∈ 1, ...,m,
has length at least d with probability at least 1− n−3.

Lemma 2. Consider a balls-into-bins game in which the
bins bi have different probabilities pi. For some n ≥ 25, let
B = {bi | pi ≥ 1/n} be the set of all bins bi which have
a probability of at least 1/n. Let M be the number of balls
necessary to allocate at least one ball to every bi ∈ B. Then
it holds that

E[M ] ≤ n · (ln(n) + 1.6).

Proof: The result follows directly from the Coupon
Collector’s Problem (see, e.g., [18]). Assume that there are
n ≥ 25 coupons and that in every round one coupon is
randomly selected. If every coupon has the same probability
1/n to be selected, the number of rounds T necessary to
collect all coupons is known to be

E[T ] = n ·Hn ≤ n · (ln(n) + 1.6)

where Hn is the nth harmonic number [19].
This problem can be rephrased as a balls-into-bins game

with n bins where, in every round, each bin has the same
probability to receive the ball. Here, T is the number of balls
necessary until every bin has received at least one ball.

Now consider the balls-into-bins game defined in the
statement of the lemma. Since in every round the probability
for every bin bi ∈ B to receive the ball is at least 1/n, we
can bound the expected number of balls by

E[M ] ≤ E[T ] ≤ n · (ln(n) + 1.6).



In the following, we will combine the two Lemmas. First
we apply Lemma 1: S = {0, 1, ..., s − 1} is the set of all
fingerprints (s = |S| = 2160), m = 216 the number of pages,
` = 231 the number of chunks stored in the system, and we
set the minimal length of any fingerprint range to d = 2140.

It is easy to check that these values actually fulfill
the conditions, namely n = s/d ≥ 4 · m ≥ 216 and
n · (log(n))2 ≤ ` ≤ n · (log(n))3, and that the way the
interval [0, s] is divided into m subintervals (or ranges) bi
conforms to the procedure described in Section II-B1. The
result is that all subintervals bi have a length of at least
d = 2140 with probability at least 1− n−3 = 1− 2−60.

Hence, the probability of each subinterval bi to receive
a chunk hash is pi ≥ d/s = 2−20. Now let M count the
number of chunk hashes necessary to allocate at least one
hash to each subinterval. Applying Lemma 2, we get:

E[M ] ≤ s

d
·
(
ln
( s
d

)
+ 1.6

)
= 220 · (ln(220) + 1.6) < 224.

Hence, in expectation less than 224·8KB = 128GB different
chunks are required to use every page in our setting.

Besides the more theoretical analysis, we have also ex-
perimentally measured the share of used pages. For this,
the simulated system has been populated with a number of
backup generations before the subsequent generation has
been simulated with a varying page size and number of
clients. In the case of HPC HOME, the system has been
filled with 3.5 TB of unique raw chunk data from the first
37 backup generations, and the 38th generation has been
analyzed. For MS, we have populated the system with
7.1 TB from the first 22 generations, and the 23rd has been
analyzed. For both data sets, the system has used all pages
for 11 clients.

We conclude that page skipping is only possible if the
number of clients and backup sizes are small, and that
sorted-streams systems can use bigger pages. For the fol-
lowing experiments, we choose a page size of 128 MB. The
number of I/Os for other sizes can be easily computed due
to the fact that every page is used with high probability.

C. Server prototype

We have implemented a server prototype and have eval-
uated it for a varying number of clients. The clients sim-
ulate backups of equal size by randomly generating chunk
fingerprints. The server receives the fingerprints, returns the
storage locations and finally receives the recipes and the raw
data of the new chunks (cf. Section II-B2 and Figure 2);
though, due to hardware limitations, the raw data is not
stored.

The server runs on a node equipped with an Intel Xeon
CPU with 4 cores@3.3 GHz (8 hardware threads), 16 GB
RAM, a 10 GBit ethernet network, and a single HDD. For all
experiments we generate random input data while assuming
an average chunk size of 8 KB, a deduplication ratio of 90%
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Figure 7. Server performance for varying number of clients. Left: varying
backup sizes for a system prefilled with 16 TB of unique chunks. Right:
fixed backup size per client for different volumes of prefilled chunks.

per client, and a compression rate of 50% for the chunk
raw data when it is sent over the network. Each run uses
a randomly pre-generated chunk index to simulate an aged
system. We do not use our real world data sets since they
only include up to 597 clients.

Figure 7 shows different performance metrics for the
prototype. Figure 7a shows results for a varying number of
clients and different backup volumes, while the experiments
always start for a deduplication system storing 16 TB of
unique chunks. For Figure 7b, we have fixed the backup
volume per client to 16 GB, while varying the number of
clients and the initially stored volume of data. This volume
influences the size of the chunk index as the index has to
store an entry for each unique chunk. This, in turn, increases
the number of index pages the system processes during a
single run.

The first thing we are interested in is how fast SCI can
identify incoming chunk fingerprints. Thus, we consider the
first two steps of the communication (cf. Figure 2), but
ignore the transmission of recipes and raw data. The upper
figures show the server’s throughput, which is defined as the
added (logical) volume of all client backups divided by the
time necessary to identify all chunk fingerprints.

The processing time for one page consists of waiting for



the page load (Tload) and waiting for the system to process
all fingerprints for the page (Tfp). During a run, the system
can prefetch the next page in parallel to processing the
current one, therefore the processing time for a single page
is max(Tload, Tfp). Tfp depends on the CPU only and is
bigger than Tload if many fingerprints fall into the range of
a single index page. This is the case for small indices or
big backup volumes. In the experiments, the CPU has not
been the performance bottleneck, therefore the identification
throughput doubled for each doubling of the number of
clients.

After the chunk identification, the clients send their
recipes plus the chunk raw data in the last communication
step (see Figure 2). Assuming the same deduplication ratio
for each client, doubling the number of clients roughly
doubles the volume of new chunks. Based on the high iden-
tification throughput, the transmission of the raw chunk data
becomes dominant for the total runtime. This is visible in
the middle row in Figure 7, which shows the identification’s
fraction of the total runtime, i.e. all communication steps.
The last row shows the total runtime.

D. Comparison with DDFS and SI

In order to perform better than the established systems
DDFS and Sparse Indexing, SCI requires a minimum backup
size. If the backup size is small, there is still a high
probability that SCI loads most of its pages. In contrast,
DDFS and Sparse Indexing will perform only few fetch
operations provided that the incoming stream has a high
chunk locality. DDFS fetches and uses the metadata sections
of its containers for chunk identification. Containers are
the data structure holding the chunk raw data. The system
maintains one open container per stream and stores it on
disk when it reaches a certain size. Therefore, a container
stores the chunks of a stream in order of their arrival. If the
backup stream shows only little variation over consecutive
backup generations, the system can identify many chunks
with a single container fetch. However, this mechanism only
identifies old chunks, so the system additionally maintains
a Bloom Filter to avoid I/Os for most of the new chunks.

Sparse Indexing (SI) is an approximate approach proposed
by Lillibridge et al. [2]. Here, the chunks are sequentially
grouped into segments. Fingerprints of a small subset of
chunks are chosen as hooks and stored in a RAM-based
chunk index. For each new segment, the most similar
segments are determined by counting the number of shared
hooks. These segments are used to determine duplicates
in the new segment. The approach caches the segment
recipes (manifests) to save I/Os. Since the segments are
constructed in chunk arrival order, the system can identify
many consecutive chunks with a a single manifest fetch.

Both data sets show less interference among the streams.
For HPC HOME, 99% of all chunks appear only in one
stream (98% for MS). On the one hand, this increases cache
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Figure 8. Average I/Os
1K chunks for different number of streams. The right

side shows the same results as a function of the average backup volume per
generation, i.e. the backup volume of all clients before any deduplication,
averaged over all generations.

pollution because of low synergy effects. On the other hand,
this increases chunk locality since DDFS and SI fill the
containers or segments with chunk information of the same
stream.

However, we show that SCI generates less I/O after
reaching the threshold of a certain backup size because its
number of generated I/Os only grows with the volume of
unique chunks while the I/Os of the other approaches are
also based on the following factors:

• The I/Os of the other approaches grow with the volume
of the logical backup size. With typical deduplication
ratios, this benefits SCI over DDFS and SI after a cer-
tain size of logical backup data per backup generation.

• Even if the individual backups are small, the total
volume still grows with the number of streams.

• Aging decreases the locality fetched by containers and
segments. For DDFS this leads to more I/O operations.
SCI is more robust against these effects as shown in
Section II-A.

In the following, we evaluate the number of generated
I/Os for all systems. For SCI, we count each page load as
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Figure 9. Average I/Os
1K chunks (bars) and the number of streams (lines) for

each generation.

a single I/O operation. We generate smaller data sets by
sampling the number of backup streams in HPC HOME and
MS. We have chosen the streams randomly, but ensured that
the streams in a smaller set are included in the bigger ones.
It is important to notice that not all streams participate in
every backup generation (see later explanations within this
subsection).

The left part of Figure 8 shows the average number
of I/Os

1K chunks for different numbers of streams. The right
side shows for the same experiments the average number
of I/Os

1K chunks depending on the average backup volume per
generation. This volume includes all logical backup data,
i.e. the data that a client would write to DDFS or SI. For
comparability, we ignore the client side deduplication of SCI
since we do not assume that the other approaches have the
same feature.

For HPC HOME, SCI generates 87 I/Os
1K chunks for 80

streams, where the 80 stream correspond to an average added
capacity of 12 GB per generation. This values decrease to
0.19 I/Os

1K chunks for 200 streams (32 GB/gen) and, finally, to
0.03 for 597 streams (131 GB/gen).

The reason for the high number of I/Os
1K chunks for a small

number of streams is the limited number of backup gener-
ations and the corresponding deviation of the backup sizes.

For example, there is one generation for the 80 streams
experiments which consists of only three chunks, which
cause three page load operations and therefore 1000 I/Os

1K chunks .
Such generations have a huge impact on the average, even
if the system behaves nearly optimal for them. These small
generations become less frequent as more backup streams
are added. For 597 streams, Sparse Indexing generates with
0.36 I/Os

1K chunks already 12 times more I/Os than SCI. DDFS
generates even 133 times more accesses than SCI, resulting
in 4 I/Os

1K chunks
For the MS data set, SCI generates 5.6 I/Os

1K chunks for the
smallest data set with 20 streams and an average backup
volume of 353 GB per generation. This value decreases to
0.14 for 40 streams (573 GB) and increases to 0.26 for 140
streams (1.5 TB). Similar to HPC HOME, there is a small
backup generation (219 chunks) which causes a bias of the
average I/Os

1K chunks . The median I/Os
1K chunks is 0.03 for the 20

streams data set. DDFS generates 2.5 I/Os
1K chunks on average for

the biggest data set. Sparse Indexing generates 0.6 I/Os
1K chunks .

For MS, SCI’s average number of I/Os
1K chunks increases

because of a set of small backup generations. These gener-
ations consist of computers that were traced only with few
others on the same day. This has two effects: First, it adds
further small backup generations as we increase the number
of backup streams; second, the size of these generations is
nearly constant as we increase the total number of streams.
On the other side, the number of pages in the chunk
index grows as each additional stream adds unique chunks.
Therefore, these generations generate more I/Os

1K chunks for a
bigger total number of streams because their chunks are
distributed over more pages. These outliers are visible in
Figure 9b, which shows the average I/Os

1K chunks (bars) and the
number of streams (line) for each generation. The average

I/Os
1K chunks becomes more stable if more streams participate in
a backup generation/backup run since each additional stream
generates a more uniform distribution of chunk hashes to the
LSM tree pages.

SCI generates in summary between 9.6 and 113 times
less I/Os than DDFS on average for the biggest data sets.
Compared to the approximate Sparse Indexing, it generates
between 2.3 and 12 times less I/Os while still performing
exact deduplication.

E. I/O Pattern

Another advantage of SCI over DDFS and SI is its
simple sequential access pattern. For each approach, we
have analyzed the pattern of how the system accesses the
containers (DDFS), segments (SI) or pages (SCI) in which
the chunks are stored.

In the experiment, the first 17 backup generations of
the MS data set filled the system with 6.8 TB of unique
chunks. Figure 10 shows the access pattern of the subsequent
18th generation for all three approaches, in which 126
streams wrote 4.5 TB to the system. Every dot in each of



Figure 10. Generated I/O Pattern of DDFS, SI, and SCI.

the subfigures represents an access. It marks the ID of the
operation and the ID of the container, segment or page from
which the chunk was fetched. For DDFS and SI, the plots
are restricted to 100,000 randomly sampled data points, and
in the case of DDFS, we also disregard the random accesses
to the disk-based chunk index.

DDFS and SI nevertheless generated a large number of
accesses. Every stream has frequently fetched units (i.e.,
containers or segments) of its own past generations and also
units of other streams. And although there is a range of units
that were frequently accessed, the internal caches were not
able to prevent the fetches. Sorted Chunk Indexing, on the
other hand, generated a single series of sequential accesses
to the pages.

The difference in the number of fetch operations is caused
by the big backup generation size. As mentioned in the last
section, DDFS and SI depend on the backup volume while
SCI only depends on the volume of the previously stored
unique chunks.

F. Memory Usage

In our experiments, we have set the available main mem-
ory to 8 GB to keep a reasonable cache size to backup
size ratio. However, deduplication servers would contain a
multiple of this amount, which could favor DDFS and SI.
In the following, we investigate how different memory sizes
affect the I/O generation.

For DDFS and SI, we use the available memory as
described in Section III-A. For SCI, we adjust the flushing
threshold of the memory-based first level of the LSM tree.
Figure 11 shows the average I/Os

1K chunks for the full MS data
set and different memory sizes. For the approximate Sparse
Indexing, it also shows the relative amount of undetected du-
plicates (dashed line, second y-axis) since different memory
amounts also affect the detection rate.

For DDFS, there are no values smaller than 4 GB because
the assumed Bloom filter incurs a minimum size. The
approach benefits from high main memory situations until
the cache can hold the metadata of all generated containers.
After this point, its main source of I/Os is the false positive
ratio of its Bloom filter. Each misspredicted new unique
chunk generates a lookup in the disk-based chunk index.
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Figure 11. Average I/Os
1K chunks for different memory consumption for the

MS data set.

Sparse Indexing generates between 0.36 and 0.64 I/Os
1K chunks

on average. The average relative number of undetected
duplicates decreases exponentially from 23.3% to 0.06%.
For a memory size of 64 GB, the system holds its sparse
index without sampling. However, it still generates I/Os
because it identifies duplicates based on its manifests which
must be loaded from disk. SI does not detect all duplicates
because it loads and considers only a limited number of
manifests.

SCI generates less I/Os
1K chunks than the other approaches.

Its values are almost the same because the simulation
flushes the memory part of the LSM tree after every backup
generation and there are few generations that are big enough
to trigger a flush during their run. Without the flush after
each generation, the values would be even smaller since the
disk part of the LSM tree receives pages at a later point.

IV. RELATED WORK

Fingerprint-based data deduplication has been a very
active research topic over the recent years. A major issue
has always been the chunk-lookup disk bottleneck [2], which
occurs when a system uses a central disk-based index to
identify chunks as duplicates. The approaches to overcome
this challenge can be distinguished into two main concepts:
exact (e. g. used in DDFS [1]) and approximate (e. g. Sparse
Indexing [2]). There are many systems following these



approaches. Exact means that every chunk is stored exactly
once [20], [21] while a chunk can be stored redundantly in
systems following the approximate approach [3], [5], [22],
[23]. All exact and all approximate deduplication approaches
directly exploit the given locality in the data streams. Our
system, on the other hand, replaces the given locality with
a new locality by sorting fingerprints.

Tan et al. present a backup system for clouds called CAB-
dedupe [24]. The authors use a causality-based deduplication
model to reduce the data transferred from clients to the
deduplication server. For this, the clients require information
about previous backup runs. This is not necessary in our
system. Instead we reduce the data transferred by only
sending the new data. This is achieved by sending the
fingerprints first so that the server can inform the client
which chunks are new.

Clements et al. describe a distributed deduplication system
that is embedded in a SAN cluster file system [25]. Similar
to SCI, DeDe aims for efficient chunk index accesses by
exploiting the sorted order of chunk fingerprints. However,
DeDe uses the order for efficient index updates. Updates
to the index first are accumulated in logs. Regularly, DeDe
sorts the updates by the hash value and performs a merge
operation of the updates and the index.

Beaverson et al. describe in a patent application a system
that stores fingerprints in an index structure which consists
of index structure portions [26]. Each index structure portion
is associated to a range of token values. The token values
are stored in sorted order in a B-tree. The system receives
the chunks and their corresponding values from multiple
sources. The received data is first sorted and stored in the
deduplication system. At a later point, the system checks
the data for uniqueness using the index portion structures.
The system is not intended for online-deduplication envi-
ronments and its description lacks crucial details and allows
interpretations, as it is common in patents. For example,
the authors do not provide information how clients can be
handled in parallel nor an evaluation of their system.

In cloud environments, cross-user and source-based dedu-
plication can affect the data privacy and security. Harnik et
al. [27] observe high redundancies among different backup
sources and demonstrate their potential for malicious attacks.
They argued for moving the complete deduplication process
to the servers and advise clients to avoid deduplication by
encrypting their data. In contrast, the aim of our online
backup system is not security, but efficiency, and we involve
the clients to relieve the servers.

Several systems exploit the similarity of different backup
data [3], [5], [28], [29] using Broder’s theorem [30] and
comparing the smallest fingerprints of two sets of finger-
prints. Douglis et al. [28] extend this idea; they sort both
sets and compare the n smallest fingerprints of each set. In
our system we also sort fingerprints, but for the purpose of
avoiding I/O operations on the server.

V. CONCLUSION

In this paper we have described a new high-performance
deduplication system for the parallel processing of multiple
backup streams. It sorts the chunks of all streams and
coordinates their accesses to the fingerprint index. The main
benefits of this approach are:

• It forces all concurrent fingerprint identification pro-
cesses to use the same part of the index while it resides
in memory.

• It ensures that all concurrent chunk identification pro-
cesses access the same region in the index only once.
In combination with the first property, this is especially
helpful if the number of incoming data streams is
big because it reduces the number of I/Os for each
index “region” to one, independently of the number of
streams.

• It ensures a disk-friendly access pattern by iterating
over the chunk index in the order of the sorted finger-
prints.

As a proof of concept, we have implemented a prototype
of the server. It has shown that it can identify the chunk
fingerprints at a rate of up to 222 GB/s, i.e. it identifies
the chunks of 222 GB worth of backup data as old or new
per second. In addition, we have compared Sorted Chunk
Indexing (SCI) with the Data Domain deduplication file
system of Zhu et al. and Sparse Indexing, the approximate
deduplication approach by Lillibridge et al. The experiments
revealed that SCI generates up to 113 times less I/Os than
DDFS and up to 12 times less than SI while consuming less
memory, generating a disk-friendly access pattern, and still
performing exact deduplication.

In future work, we plan to implement the client and
evaluate the system in its complete setup. Furthermore, we
plan to implement the distributed mode.
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[19] P. Erdős and A. Rényi, “On a classical problem of probability
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