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Abstract—Cloud storage has gained increasing popularity in storage cluster, which may consist of thousands of magsivel
the past few years. In cloud storage, data is stored in the parallelized machines; the “I/O bus” is the worldwide |mtet;
service provider's data centers, and users access data viae which allows connecting two geographically distant ents; t

network. For such a new storage model, our prior wisdom . . .
about conventional storage may not remain valid nor applicale strictly defined “I/O protocol” is replaced by an HTTP-based

to the emerging cloud storage. In this paper, we present a Protocol; the *host” is not a single computing entity any mor
comprehensive study and attempt to gain insight into the urque  but could be any kind of computing devices (e.g., PCs or
characteristics of cloud storage, primarily from the cliet's Smartphones). All these properties, together, form a rathe
perspective. Through extensive experiments and quantitate loosely coupled system, which is fundamentally differeat
analysis, we have acquired several interesting, and in some. . ’ . .

cases unexpected, findings. (1) Parallelizing 1/0s and ineasing !ts conventional Countgrpart. A direct impact of such Ch’,‘“‘ng
request sizes are keys to improving the performance, but ophal IS that much of our prior wisdom about storage, the basis for
bandwidth may only be achieved with a proper combination of our system optimizations, may not continue to be applicable
parallelism and request size. (2) Client capabilities, ineding  to the emerging cloud-based storage.

CPU, memory, and storage, play an unexpectedly important rte This is because of several reasons. First, the massively

in determining the achievable performance. (3) A geograplzally . . .
long distance affects client-perceived performance but des not parallelized storage cluster, where data is stored, patynt

always result in lower bandwidth and longer latency. Based allows a large amount of independent parallel 1/Os to be
on our experimental studies, we further present a case study processed quickly and efficiently. In contrast, our conienatl

on appropriate chunking and parallelization in a cloud storage storage emphasizes how to organize sequential /O patterns
client. Our studies show that specific attention should be fd to to address the limitation of rotating mediums [25], [39].

Ll:tlIé/lsa(glg;g?ggzhiecsgncaebslil|t|es of clients and the great ptential Second, compared to the stable and speedy 1/O bus, such

Index Terms—Cloud Storage; Storage Systems; Performance as the Small Computer System Interface (SCSI), the lengthy
Analysis; Measurement. Internet connection between the client and the cloud is,slow

unstable, and sometimes unreliable. A cloud 1/O could trave
l. INTRODUCTION an excessively long distance (e.g., thousands of miles from
Cloud storage is a quickly growing market. According t@oast to coast) to the service provider's data center, which
a report from Information Handling Services (IHS), perdonanay involve dozens of network components and finally result
cloud storage subscriptions increased to 500 million in201n an 1/O latency of hundreds of milliseconds or even more.
and will reach 1.3 billion by 2017 [37]. The global markeFinally, the clients, which consume the data and drive the 1/
is expected to grow from $18.87 billion in 2015 to $65.44Activities, are highly diverse in all aspects, from CPU, rgm
billion by 2020 [5]. To date, cloud storage is not only usedtorage, to communication. Certain specifications (e.BUXC
for archiving personal data, but also plays an indispesalalre directly related to the capability of a client for handli
role in various core commercial services, from serving sgle parallel network 1/Os.
on demand to storing unstructured scientific data. Unfortunately, our current understanding on storage behav
To end users, cloud storage is particularly interesting biers, are mostly confined in the conventional storage, which
cause it provides a compelling new storage model. In this well-defined and heavily tuned to scale in a limited scope,
model, data is stored in the service provider’s data centessich as direct attached storage or local Storage Area Networ
and users access data through an HTTP-based REST pré8AN). Without a thorough and detailed study, it is difficult
col via the Internet. By physically and logically separgtinto obtain key insights on the unique 1/O behaviors of cloud
data storage from data consumers, this architecture enalsimrage, a storage solution for cloud stacks, especiadisn fr
enormous flexibility and elasticity, as well as the highlyhe perspective of data consumers. In this paper, we attempt
desirable cross-platform capability. On the other handhsu to answer a set of important questions listed as follows.
model is drastically distinct from conventional directamhed Successfully answering these questions cannot only help us
storage — the “storage medium” is replaced by a large-scalederstand the effect of several conventional key fac®ig. (



parallelism and request sizes) on cloud I/O behaviors, but [I. BACKGROUND
also several new issues (e.g., client capabilities, gstaices), A. Cloud Storage Model

which are unique to the cloud-based storage model. ) . o
In cloud storage, the basic entity of user data isoaject

o . An object is conceptually similar to a file in file systems.
« Parallelization and request size are two key factors affegly gpject is associated with certain metadata in the form

ing the performance of storage. V;/hat are their effects o wey/value pairs. Typically, an object can be specified by a
the performance of cloud storage? Can we make a Propgk| ‘consisting of a service address, bucket, and object name
tradeoff between parallelism degree and request size? (o o https://1.1.1.1:3080/v1/AUTkestc1/fo0). The maxi-

« CPU, memory, and storage are three major componefism opject size is typically 5GB, which is the limit of the
defining the.cap_ablllty of a che_n}. In the scenario of cIougﬂTP protocol [15]. Objects are further organized into twgi
storage, which is the most critical one affecting the peg, s, calleducketsor containersA bucket/container is akin
formance of cloud storage? What are their effects on the o directory in a file system but cannot be nested.
performance under different workloads? Almost all cloud storage service providers offer an HTTP-

« The geographical distance between the client and the cloyikey Representational State Transfer (REST) interface to
determines the Round Trip Time (RTT), which is assum&eke s for accessing cloud storage objects. Some also provid
to be a critical factor affecting the c_:Ioud.storage Spee%nguage-specific APIs for programming. Two typical oper-
What is th_e effect of such geographical distance to clouffions arePUT (uploading) andGET (downloading), which
/G bandwidths and latencies? Should we always attemptig, ayin towr i t e andr ead in conventional storage. Other
find a nearby data center of a cloud storage provider? . -vons such a8ELETE. HEAD. and POST. are provided

« Based on our experimental studies on the performancegf ey ove objects, retrieve and change metadata. For each
cloud storage, what are the associated system 'mpl'ca’t'o%eration, a URL specifies the target object in the cloud

HO_W_ can we use them to optimize client applications tQtorage. Additional HTTP headers may be attached as well.
efficiently exploit the advantages of cloud storage?

B. Cloud Storage Services

In this paper, we present a comprehensive experimentatCloud storage is designed to offer convenient storage ser-
study on cloud storage and strive to answer these criticites with high elasticity, reliability, availability, ahsecurity
questions. Unlike some prior studies that primarily focus oguarantees. Amazon S3 [3] is one of the most typical and
the cloud storage providers (e.g., [27], [28], [29]), we js@®- popular cloud storage services. Other cloud storage svic
cific attention to the client side. In essence, our studyndgasuch as OpenStack Swift [10], share a similar structure.
cloud storage as a type of storage service rather than rletwdypically, the cloud storage service is running on a large-
service. As such, we are more interested in characterinieg scale storage cluster consisting of many servers for eiffer
end-to-end performance perceived by the client, rathertii@a purposes, from handling HTTP requests, accounting, stgrag
intermediate communications. We believe this approach al® bucket listings, etc. These servers could be further log-
echoes the demand for thoroughly understanding cloudggoracally organized intopartitions or zonesbased on physical
for a full-system integration as a storage solution [22]. locations, machines/cabinets, network connectivity andrs

. For reliability, the zones/partitions are isolated witlcleather,
For our experiments, we develop and run a homemade tgﬁ{j

tool over Amazon Simple Storage Services (S3). By usi data replicas ShOU|.d reside sepgrately. In sh_ort, thalcl
. . ) C 9 rage services are built on a massively parallelizedstre

latencies and bandwidths, which are the two key metrics useg . .

. ) . . and are highly optimized for throughput.

in storage studies, we perform a series of experiments wit

five different client settings to study the effect of cliéntsc  cloud Storage Applications

capabilities and locations. Based on our experimentaiesud

we further study several optimization issues on the client

side, such as identifying a proper chunk size for caching al

parallelization for prefetching. We hope this work can pdev

a complete picture of cloud storage and inspire the resea

community, especially cloud storage system and applicati

designers, to further leverage the unique characteristfcs

cloud storage for effective optimizations.

Applications can access cloud storage in different ways.
me applications use the vendor-provided APIs to directly
program data accesses to the cloud in their software. Such
?ﬁls are provided by the service provider and are usually
nguage specific (e.g., Java or Python). Since a cloudgsora

object can be located via a specified URL, users can also
manually generate HTTP requests by using tools tke |

to access the link.

The rest of the paper is organized as follows. Section Il A more popular category of cloud storage applications is
introduces background. Section Il describes the method&r personal file sharing and backup (e.g., Dropbox). Such
ogy for our experimental studies. Section IV and V preseapplications often provide a filesystem-like interface Hova
the results and case study. Section VI discusses the systmmd users to access cloud storage. From the perspective of
implications of our findings. Related work is presented idata exchange, these clients often use syncing or caching to
Section VII and the last section concludes this paper. enhance user experience. With the syncing approach, v cli



Client Instance | Location Zone vCPU | Memory Storage Network oS
Baseline ml.large | Oregon us-west-2a 2 7.5GB Magnetic(410GB)| Moderate | Ubuntu 14.04 (PV)
CPU-plus c3.xlarge | Oregon us-west-2a 4 7.5GB Magnetic(410GB)| Moderate | Ubuntu 14.04 (PV)

MEM-minus ml.large | Oregon us-west-2a 2 3.5GB Magnetic(410GB)| Moderate | Ubuntu 14.04 (PV)

STOR-ssd ml.large | Oregon us-west-2a 2 7.5GB SSD(410GB) Moderate | Ubuntu 14.04 (PV)

GEO-Sydney|| ml.large | Sydney | ap-southeast-24 2 7.5GB Magnetic(410GB)| Moderate | Ubuntu 14.04 (PV)
TABLE |

CONFIGURATIONS OFAMAZON EC2-BASED CLIENTS. THE SSDIS THE PROVISIONEDSSDwWITH 3,000 IOPS.

Speed Magnetic SSD
Size Read Write Read Write Object Size || Object Number | Workload Size
1KB 2.13 MB/s 0.77 MB/s 2.7 MB/s 1.24 MB/s 1KB 81920 80MB
4KB 6.70 MB/s 3.13 MB/s 10.57 MB/s | 5.67 MB/s 4KB 40960 160MB
16KB 6.80 MB/s 4.60 MB/s 34.87 MB/s | 10.65 MB/s 16KB 40960 640MB
64KB 7.36 MB/s | 10.67 MB/s || 62.00 MB/s | 28.48 MB/s 64KB 40960 2560MB
256KB 17.36 MB/s | 17.46 MB/s || 58.24 MB/s | 86.63 MB/s 256KB 40960 10240MB
1MB 38.33 MB/s | 22.38 MB/s || 58.24 MB/s | 82.71 MB/s 1MB 16384 16384MB
4MB 61.59 MB/s | 23.20 MB/s || 58.06 MB/s | 82.72 MB/s 4MB 4096 16384MB
16MB 58.12 MB/s | 22.66 MB/s || 58.12 MB/s | 82.92 MB/s 16MB 2048 32768MB
TABLE Il TABLE Il
MAGNETIC VS. SSD OBJECTBASED WORKLOADS

maintains a complete copy of the data stored on the cloud-Cloud storage clients In order to run the experiments
side repository. A syncer daemon monitors the changes anda stable and well-contained system, we choose Amazon
periodically synchronizes the data between the client &ed tEC2 as our client platform from which the cloud storage
cloud. With the caching approach, the client only maintaiifO traffic is generated to exercise the target S3 repository
the most frequently used data in local, and any cache miss important reason of choosing Amazon EC2 rather than
leads to on-demand data fetching from the cloud. In practicur own machines is to have a quantitatively standardized
the syncing mode is adopted by almost all personal clogtient that provides a publicly available baseline for r&pble
storage applications, such as Dropbox [6], Google Drive [8nd meaningful measurement. For analyzing the impact of
OneDrive [9], etc. The caching mode is adopted by the apptlient variance, we customized five configurations of Amazon
cations and storage systems that make use of the cloud as alg@2 instances which feature different capabilities in t&rm
of the 1/0 stack, such as RFS [26], S3FS [13], S3backer [12}; CPU, memory, storage, and geographical location. Table |
BlueSky [45], SCFS [18], etc. In general, all the aboveshows these configurations. TBaselineclient is located in
mentioned applications essentially convert the POSIX¥-file Oregon and equipped with 2 processors, 7.5 GB memory, and
operations into an HTTP-based protocol to communicate wii10 GB disk storage (denoted as Magnetic). The speeds of the
the cloud. For the sake of generality, our study carefulids Magnetic and the SSD are tested and shown in Table Il. The
using any specific application techniques but uses the rather four configurations vary in different aspects, speaiffy

HTTP requests. CPU, memory, storage, and geographical location (in Sydney
These instances can properly satisfy our needs of observing
I1l. M EASUREMENTMETHODOLOGY cloud storage performance with differing clients.

As mentioned above, the main purpose of our experimentalTest workloads For our experiments, we develop a home-
studies is to characterize the performance behaviors aidclomade tool by using the S3 API [11] to generate raw cloud 1/O
storage from the client’s perspective. In our experimewts, requests to S3. We purposely avoid using POSIX APIs (e.g.,
treat the cloud as a “blackbox” storage. In order to avoidrint S3FS) because our goal is to gain the direct view of the cloud
ference from client-side optimizations, we carefully gente storage performance from the client side. Certain teclesqu
raw cloud 1/O traffic via the HTTP-based REST protocol té¢e.g., local cache, data deduplication, data compressised
directly access the cloud storage and observe the perfaenai some client tools will prevent us from observing the cloud
on the client side. I/O behaviors completely or accurately. Our tool allows us

Cloud storage servicesOur experiments are conducted o0 create combinations of various parallelism degrees4{1-6
Amazon Simple Storage Services (S3). As a representatidgiect sizes (1KB to 16MB), and types (PUT or GET). Before
cloud storage service, Amazon S3 is widely adopted as t&ach run, we generate objects of the same size with unique
basic storage layer in consumer and commercial servicgs (ekeys/names in the client storage and upload to the cloud as
Netflix and EC2). Some third-party cloud storage servicele uploading workloads; we then download the objects to the
such as Dropbox, are directly built on S3 [7]. In our experklient. Table Il lists more details about the workloads.
ments, we use the S3 storage system hosted in Amazon’s datAccuracy: Considering the possible variance of network
center in Oregon (s3-us-west-2.amazonaws.com). services and multi-thread scheduling, we take the follgwin



measures to ensure the accuracy and repeatability of the Baseline Upload Bandwidth

experiments: (1) As stated above, we customize the instance % :?"“‘-"‘3 IR RS S, (e
of Amazon EC2 which can provide stable services as standard £ ] geKs -a-
clients rather than picking up a random machine. (2) To = i S —
avoid memory interferences across experiments, the memory g a0 ?V i LB T
is flushed before each run of the experiments. (3) We make £ 5! ,

the size of the workloads large enough (see Table Ill) so that % O °

each run of an individual experiment lasts for a sufficiently & 20% o 1

long duration (at least 60 seconds) while still being able to I

complete the experiments within a reasonable time franje. (4

i i ; ; : 21 A S ¥
Each experiment is repeate(_j for f|v_e times, _and we report the 0 T a0 0 o
average value while discarding obvious outliers. Parallelism Degree

(a) Upload Bandwidth
IV. PERFORMANCESTUDIES

Baseline Download Bandwidth

To comprehensively reveal the effects of different factors %0 J A S |- S
our measurement work is composed of two parts. We first 25 lp# 7o X x- T Y 16KB @
conduct a set of general experiments to evaluate the piepert ¥ 0 256KB -
of cloud storage, including parallelism degree and regsiest é 20‘? o 1 s
We then focus on studying the effects of client capabilites £ s+ - !
mcludmg CPU, memory, storage, and geographical location 3 5 :_:o‘
of the clients. e B et @

9 L
A. Basic Observations S )

Parallelism and request size are two critical factors that 0 *10 e
significantly affect the storage performance. Considethrgy Parallelism Degree _
parallelism potential of cloud storage, we set the paiatiel (b) Download Bandwidth
degree up to 64. With regard to request size, prior work has Fig. 1. Bandwidth on Baseline

found that most user requests are not excessively large [19']f o _
typically smaller than 10MB [29]. Also, for transfer overeth effect of parallelization is limited by one of the major cite
Internet, most cloud storage clients split large requests i fesources. _ o _
smaller ones. Wuala and Dropbox, for example, adopt 4MB ngr—parallellzatmn brings diminishing benefits a_nd even
chunks, and Google Drive uses 8MB chunks, while OneDriedative effectstor example, 16MB upload sees a slight per-
uses 4MB for upload and 1MB for download [19]. Therefordormance degradation cause_d by _over-parallellzatlons i
we set the request size up to 16MB to study the size eﬁec[_elate_d to the overhead of maintaining the thread pool_vvhent
1) The effect of parallelismin conventional disk drives, CPU is overloaded. To confirm this, we usest at in Linux
/0 parallelism has limited effect due to its mechanic naturto investigate the CPU utilization of the 16MB upload reques

For cloud storage, which stores data in a cluster of massivéith different parallelism degrees. As shown in Figure 4ewh
parallelized storage servers, 1/O parallelism has a simiti the parallelism degree is 8, the CPU utilization quicklywgso
impact to the client-perceivable performance. clpse to 1_(_)0%, |nd|cat|_ng that_ the CPU is ov.erloaded..Under
Q1: How does parallelism affect the bandwidth? this c_ondmon, further increasing th_e pgrallellsm degvak:
Generally, proper parallelization can dramatically impethe onI_y increase the overhead of maintaining the thread pool,
bandwidth, while over-parallelization may lead to bandihid which W|II_ consequgntly reduce the overall performanceaIn
degradation to certain degreeAs shown in Figure 1, for later section, we will further study the effect of CPU.
example, the bandwidth of 1KB upload requests can I6g2: How does parallelism affect the latency?

improved up to 27-fold (from 0.025MB/s to 0.666MB/s), andn general, proper parallelization does not affect the tatg

the bandwidth of 1KB download requests can be improvdde., end-to-end request completion time) significantljjle

up to 21-fold (from 0.03MB/s to 0.634MB/s). There are twmver-parallelization leads to a substantial increase déltecy
reasons for this. One reason is due to the underlying TCPAB shown in Figure 2 and Figure 3, this speculation is con-
protocol for communication. With TCP/IP, the client and thérmed by the tendencies of the growing average latencies for
cloud have to send ACK messages to confirm the succdssh upload and download requests as the parallelism degree
of the transmission of data packets. With a high parallelismcreases. For example, for 4KB upload requests, when the
degree, multiple flows can continuously transmit data singarallelism degree increases from 1 to 16, the averagechaten
the time taken by each parallel request to wait for the ACKasically remains the same (about 36ms). When the pasatieli
messages overlaps. Another reason is that smaller requesigree further increases from 16 to 64, the average latency
often require fewer client resources, so the client can erippincreases by 43% (from 36.1ms to 51.5ms). For large requests
a higher parallelism degree to saturate the pipeline unél twhen the parallelism degree exceeds a threshold, the averag
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latency increases linearly. For example, for 16MB uplodthiese observations demonstrate that the benefit obtained by
requests, when the parallelism degree increases from 4 toidreasing request size is significant but is not unlimited.
(16-fold), the average latency increases from 1.1s to 18.6
(17.3-fold). This implies that for latency-sensitive apptions,
over-parallelizing large requests should be carefullyida.
2) The effect of request sizeln conventional storage,
request size is crucial to organizing large and sequeri@s |
and is important in amortizing the disk head seek overhe
A similar effect has also been observed in cloud storage.
Q1: How does request size affect the bandwidth?
As expected, increasing request size (i.e., the size of BHN)/
can significantly improve bandwidth, but the achieved ben
diminishes as request size exceeds a threshail shown
in Figure 1(a) and Figure 1(b), the peak bandwidths

2: How does request size affect the latency?

In general, both larger requests and highly parallelizedaim
requests have longer latencieBor example, as shown in
Figure 2 and Figure 3, when the parallelism degree is 1, the
gyerage latency of 4MB download requests is 192ms — 5.8
times that of 1MB download requests (33ms). However, when
taking parallelism degree into consideration, things bezo
different. For example, the average latency of 4MB download
fauests at parallelism degree 1 is 192ms, which is 13.8&time
ower than the average latency of 1MB download requests at
&arallelism degree 64 (2.9s). Therefovdgthout considering

large requests and small requests have a significant gap. @8 latency increase causeq by over paraIIellz_atlon, tos n
example, the peak bandwidth of 4MB upload requests is o$8fe o say larger requests imply longer latencies )
times that of 4KB upload requests (58.9MB/s vs. 2.5MB/s): AS éxpected, for small requests, even at the same parailelis
the peak bandwidth of 4MB download requests is 10.7 timg_@gr?e’ the latencies do not necessarily increase as theestq
that of 4KB download requests (28.9MB/s vs. 2.7MB/s). ThefiZe increasesrigure 2(a) shows that the average latencies of
are two reasons for this phenomenon. One reason is that laryféB and 4KB upload requests are nearly the same. Similarly,
I/0 requests on client storage generally have higher l/@dpe I Figure 3(a), we find that the average latencies of 1KB, 4KB,
than small ones. As shown in Table II, the 4MB read spe&fd 16KB download requests are nearly equal. The request
is 9.2 times that of 4KB (61.6MB/s vs. 6.7MB/s), while thé?‘te”CY is mainly cqmposed _Of three parts: data transnmssio
4MB write speed is 7.4 times that of 4KB (23.2MB/s ystime via network, client I/O time, an(_j o.ther.processmg time
3.1MB/s). The other reason is that larger requests haveshigh©" Small requests, the data transmission time only aceount
efficiency of data transmission via network due to the packd@r @ small portion of the overall latency, while the otheiotw
level parallelism [36]. domln_ant parts remain most!y _unchanged_, which mak(_es the
Similar to parallelization, increasing the request sizapat 'atencies of small requests similar. Also, since the maximu
bring an unlimited bandwidth increase, due to the constrai]l CP window is 64KB by default, considering the parallelism
of other factors For example, the speed of client storage i&f network [36], the transmission time of the data that are
limited. Uploaded objects need to be first read from the locginaller than 64KB is supposed to be similar.
device, and downloaded objects need to be written to thé loca3) Parallelism vs. Request sizén prior sections, we find
device. As shown in Table Il, when the request size grows froifiat either increasing the parallelism degree or increpsie
4MB to 16MB, the speed of Magnetic improves slightly, whictiequest size can effectively improve the bandwidth, buhbot
limits the I/0O speed of the client side. Also, the maximunesizof them have limitations. Here naturally comes an intengsti
of the TCP window is limited, though tunable [4], [38]. Wherfluestion: does there exist a combination of parallelisnrekeg
the request size exceeds a certain threshold, the benefijtiro and request size to achieve the optimal bandwidth?
by increasing the request size diminishes. Our obsenation Answering this question has a practical value. Consider the
have confirmed this speculation. In the scenario of a sindgldlowing case: if we have a 4MB object to upload, we can
thread, as shown in Figure 5, when the request size increasiesose to upload it by a single thread or split it into four
from 16MB to 64MB, the upload bandwidth increases onlgMB chunks and upload the them in parallel. Which is faster?
slightly (20MB/s vs. 21.9MB/s), and the download bandwidtRigure 6 shows the performance under different combination
remains the same (24.3MB/s). In addition, other factorshsuof parallelism degree and request size. Obviously, 256K6
as the link bandwidth on the route, processing speed on thes the highest bandwidth (44.2MB/s), which is about 3
cloud side, etc., can also limit the achievable bandwidth. Aimes of the lowest (14.5MB/s). This shows that a proper
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combination exists and can achieve optimal performancis. Th 1) The effect of the client CPUIn cloud storage 1/Os,

observation confirms thatppropriately combing request sizethe client CPU is responsible for both sending/receivintada

and parallelism degree can sufficiently improve the bantiwidpackets and client I/O. In this section, we try to invesigat

beyond optimizing only one dimension the effect of client CPU by comparing the performance of
We also find thatjn some cases, either increasing paralBaseline (2 CPUs) and CPU-plus (4 CPUSs).

lelism degree or increasing request size by the same faetor @Q1: What is the effect of client CPU on bandwidth?

achieve the same bandwidth improvemdrdr example, for The client CPU has a strong impact on cloud 1/0O band-
upload requests, 1KB16, 4KBx4, and 16KB<1 have similar jdth, especially for small requestgigure 7 shows the peak
bandwidth (0.4MB/s). Here comes another practical questigandwidth, which is the maximum achievable bandwidth with

if we have a set of small files (e.g. 1KB), should we adopt garallelized requests. We can see that the peak bandwidth of
high parallelism degree (e.g. 16) or bundle the small files &nall requests (smaller than 256KB) increases signifigant
achieve large request size (e.g. 16KB)? From the persgetftiv |nterestingly, as shown in Figure 7(b), the peak download
improving bandwidth, either high parallelism degree ogéar pandwidth of 1KB, 4KB and 16KB requests doubles, as the
request size is feasible. However, from the perspectivéef tcomputation capability doubles (2 CPUs vs. 4 CPUSs). This
utilization of client resources, we find that a large reqse=t  vividly demonstrates that small requests are CPU intensive
requires less CPU resources. Througtst at in Linux, we and as so, small requests receive more benefits from a better
find that the CPU utilization of the above three cases aggy.

65%, 15% and 5%, respectively. This indicates that for the | arge requests, compared to small ones, are relatively less
combinations that can achieve comparable bandwidth, aflargensitive to CPU resources, as the system bottleneck shifts
request size consumes less CPU resources. That is becausgf@ome other componentas shown in Figure 7, compared

a larger request size, fewer threads have to be maintainedii¢h Baseline, the peak upload and download bandwidth
achieve the similar bandwidth, which consequently redthoes of |arge requests (256KB to 16MB) increases only slightly.

CPU utilization. For example, the peak upload bandwidth of 4MB requests
. increases by 1.4% (59.2MB/s vs. 60MB/s), while the peak
B. Effects of Client Capabilities download bandwidth of 4MB requests is basically the same

Unlike conventional storage, cloud storage clients arg vei28-9MB/s vs. 28.8MB/s). The system bottleneck may result
diverse. In this section, we study different factors affegthe from the limitation of other factors, such as memory or gjera
client's capabilities of handling cloud storage 1/0s, ngmerather than CPU.

CPU, memory, and storage. We compare the performar@2: What is the effect of the client CPU on latency?

of three different clients, includin@PU-plus STOR-sschnd In our tests, we find thathe client CPU does not have

MEM-minus with the performance of thBaselineto reveal significant effects on average latendor small requests, the

the effects of each factor. data transmission via network dominates the overall latenc
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while for large requests, the majority of the overall lateie 24% (0.49s vs. 0.64s); when parallelism degree is 32, the
the client I/O time (the I/O waiting time may be significantatency can be reduced by 65% (7.7s vs. 21.8s).
when client storage becomes the bottleneck) and the cloud) The effect of client memoryMemory in the clients
response time, In these two cases, a more powerful CPU dbes two functions. First, memory is responsible for offgrin
not help reduce the latency. running space for parallel requests. Second, memory acts as
2) The effect of client storageClient storage plays an @ buffer for uploading and downloading. In this section, we
important role in data uploading and downloading: For ughrink the memory of Baseline to investigate the perforneanc
loading, the data is first read from the client storage; fslifferences. The only configuration difference between MEM
downl()ading' the data is written to the client storage. Tainus and Baseline is that Baseline has 7.5GB memory while
evaluate the effect of client storage, we set up a comparisdiieM-minus has only 3.5GB.

client STOR-ssd. The only difference between Baseline and 1MB 4AMB 16MB
STOR-ssd is storage (Magnetic vs. SSD). Table Il shows more Baseline || 59.2MB/s | 59.IMB/s | 58.9MB/s
details about the two client storage. MEM-minus || 58.9MB/s | 58.7MB/s | 58.7MB/s

TABLE IV

Q1: What is the effect of the client storage on bandwidth? PEAK UPLOAD BANDWIDTH (BASELINE vS. MEM-MINUS)

We find thatclient storage is a critical factor affecting the

achievable peak bandwidtiAs shown in Figure 8, on STOR-

ssd, the peak download bandwidth increases significardly. F Baselne 26}9",\/?8/5 28‘_‘3/',\/?8/5 2;%'\,\//"%/5

example, the peak download bandwidth of 4MB requests MEM-minus ™ 23.7MB/s | 23.8MB/s | 20.8MB/s

increases by 165% (76.6MB/s vs. 28.9MB/s). On the other TABLE V

hand, we a.ISO nOtice that the Upload bandW|dth increases PEAK DOWNLOAD BANDWIDTH (BASELlNEVS.MEM-MINUS)

slightly. Different from the significant improvement of dow

load bandwidth, for example, the peak upload bandwidth of gince small requests are not memory intensive, the effect
4MB requests increases only by 2% (60.3MB/s vs. 59.2MB/%)f memory is trivial. We only present the bandwidths of large
The reason why STOR-ssd improves the upload bandwiddyyests. The peak upload bandwidth is basically the same
only slightly is that the Magnetic in our experiments cafsee Table IV) while the download bandwidth dropped heavily
achieve a similar peak read speed as SSD with a suﬁicierﬁf Table V). For example, on MEM-minus, the bandwidth
large request size and parallelism degree. In contrast, 6MB download is 20.81MB/s, which is 28.0% lower than
download bandwidth is limited by the relatively slow speeghat on Baseline (28.90MBI/s). That is because the writecspee
of Magnetic on the client. We have also tested with a ramdigl the Magnetic is much lower than read speed and thus more
on Baseline. The bandwidths can be further improved but §@nsitive to the memory space. Therefore, large download
a limited extent (77.2MB/s for uploading and 80.3MB/s fofequests, especially those involving intensive writes e t
downloading). client, suffer more from limited memory.

Q2: What is the effect of the client storage on latency?
Similar to bandwidth, we did not observe significant effec
of client storage to small requests and large upload recgiest Unlike conventional storage, for cloud storage, the geo-
For small requests, client I/O is the minority of the overaljraphical distance between the client and the cloud detesni
latency. In this case, client storage is not a critical factahe Round-Trip Time (RTT), which accounts for a significant
For large upload requests, since Magnetic and SSD haaert of the observed I/O latency. The RTT between the
similar read speed, the latency is comparable; however, Baseline client and the cloud is 0.28ms, as both are in the
large download requests, STOR-ssd can substantially eedsame Oregon data center. In contrast, the RTT between the
the latency because STOR-ssd have significantly advaniageGEO-Sydney client and the cloud in Oregon is about 628
write speed. For example, as shown in Figure 9, when tlimes longer (176ms). This section discusses the effects of
parallelism degree is 1, STOR-ssd can reduce the latencydsographical distance.

(& Effects of Geographical Distance
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Q1: What is the effect of geo-distance to bandwidth? prefetching. In specific, we will discuss two key technigues

The effect of geographical distance to the achievable peekunkingand parallelization
bandwidth is weaker than expectells shown in Figure 10, To evaluate the effects of chunking and parallelized
the peak upload bandwidth of GEO-Sydney is close to that pfefetching for cloud-based file systems, we build an eroulat
Baseline. For example, the peak upload bandwidth of 4M# implement the basic read/write operations of a typicalid
requests of GEO-Sydney is only 10% lower than that dfased file system with the support of disk caching on thetlien
Baseline (53.3MB/s vs. 59.2MB/s) while the peak downloalb drive this experiment, we use an object-based trace by
bandwidths of 4MB download requests are basically the samenverting a segment of an NFS trace, which is a mix of email
(29.3MB/s vs. 28.9MB/s). This means that RTT is not and research workload collected at Harvard University .[30]
critical factor affecting the peak bandwidth, which is ntpst The size of the workload in our experiments is 4.8 GB, and
due to the Bandwidth-Delay Product (BDP) of the networthe average file size is 12.9 MB. For our experiments, we use
and is also consistent with the conclusion obtained by Burgdmazon S3 (in Oregon) as the cloud storage provider, and a
et al. [16] that the perceived bandwidth from the client igvorkstation on our campus (in Louisiana) as the client. The
largely determined by the client’s network capabilitiesldine client is equipped with a 2-core 1.2 GHZ CPU, 8GB memory,
network performance between the client and the cloud. a 450GB disk drive, and installed with Ubuntu 12.04.5 LTS
At the same time, it is also noticeable tithe achievable and Ext4 file system.
peak bandwidth of small requests (smaller than 1MB) is much
lower with long geo-distanceThat is because a long RTTA. Proper Chunk Size for Caching

needs a high parallelism degree to saturate the pipeline OfChunking is an important technique used in cloud storage
parallel requests. However, as analyzed in Section IV-BfL !

small requests with hiah parallelism are more CPU intensi ri S3Backer, for example, the space of the cloud-based block
qu Wi 'gh pa ! i~ INEENSVEriver is formatted with a fixed block size that can be defined
therefore, the CPU capability will be a critical bottlenetick

sufficiently saturating the pipeline by the user [12]. The choice on chunk sizes can affect caching
' performance: the smaller the chunk is, the less a cache miss

Q2: What is the effect of geo-distance to latency? cost would be, but the more cloud 1/Os could be generated.
As expected, we also find thite geo-distance would signif-  Although it is difficult to accurately determine the optimal
icantly increase the latency, and its impact to latency makehunk size, our findings about the effect of chunk size to the
the client less sensitive to the negative effects causedday o performance of cloud storage can guide us to roughly choose a
parallelization to latency As shown in Figure 11, when theproper, if not optimal, chunk size. We can identify a relaljv
parallelism degree is 1, the average latency of 16MB uplogghall chunk size for reaching an approximately maximum
requests on GEO-Sydney is 2.1s, which is about 2.6 timesgéndwidth by making a reasonable tradeoff between the cache
the counterpart on Baseline (0.8s); as the parallelismegeghit ratio and cache miss penalty. Figure 12 shows that, when
increases, the average latencies gradually get closern whige chunk size exceeds 4MB, the download bandwidth reaches
the parallelism degree reaches 16, the average laten®@esi@f peak. Based on this, we speculate that the proper chunk
comparable (4.3s vs. 4.2s). If we compare the two, GEQ@ize is possibly around 4MB. This is for two reasons. First,
Sydney shows a flatter curve than Baseline, because a Igiigher increasing the chunk size over 4MB (e.g., 8MB or
RTT needs a high parallelism degree to saturate the pipelingmB) cannot deliver a higher bandwidth. For example, on
so the negative effect of over-parallelization appeamrlat g cache miss of 8MB data, downloading one 8MB chunk
takes an almost equal amount of time as downloading two
4MB chunks, while using 8MB chunks increases the risk of

In cloud storage, client-side caching and prefetching adewnloading irrelevant data. Second, if the chosen churi si
two basic schemes for enhancing the user experience. In tisiexcessively smaller than 4MB (e.g., 64KB or 1MB), the
section, we present a case study to show that cloud storagehe may suffer from a high cache miss ratio and cause too
I/0 performance could be affected by optimizing caching andany 1/Os.

V. CASE STuDY: CACHING AND PREFETCHING
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To verify this speculation, we adopt the standard LRiktching would not be significantly affected by prefetching
algorithm with asynchronous writeback (for the purpose @b find the proper parallelism degree that will not signifitan
generality). Every 30 seconds, we flush dirty data back to tirecrease the average fetching latencies, an exhaustivehsea
cloud. The cache size is set as 200MB disk space. Besiasthe client is feasible but inefficient. Based on our finding
a 4MB chunk size, for a comparison, we choose two smaller fact, we can greatly simplify the process of identifying a
chunk sizes, 64KB and 1MB, and two larger chunk sizes, 8M@oper parallelism degree. To show how to achieve this, we
and 16MB, to study the effect of the chunk sizes. take the chunk sizes 64KB, 1MB and 4MB as examples. We

The average access latencies with different chunk sizes eray first choose a 4MB chunk with parallelism degree 1 and
shown as Figure 13. It clearly shows that the lowest averatjen gradually increase the parallelism degree step by(istep
read/write latencies are achieved at 4MB, which confirms o@r 4, 8) for testing. For smaller chunk sizes, we only need to
speculation. When the chunk size increases from 64KB test from a larger parallelism degree, since small chung&s ar
4MB, the average read latency decreases by 47.3% (fronore parallelism friendly and it is unlikely to achieve hih
95.2ms to 50.2ms), and the average write latency decreagegormance at a low parallelism degree as large chunks.
by 40.4% (from 109.9ms to 65.5ms). This benefit is due feigure 15 gives such an example: 4 parallel jobs for 4MB,
the increase of cache hit ratio: The read hit ratio increas@sparallel jobs for 1IMB, and 16 parallel jobs for 64KB are
from 77.8% to 98.4%, and the write hit ratio increases fromie best choices.

88.9% to 99.4% (see Figure 14). This is mostly because usindlo illustrate the actual effect of parallelization to prtefe

a relatively large chunk size allows to pre-load the use&iad ing, we implement an adaptive prefetching algorithm in our
and consequently improves the cache hit ratio and the dvewhulator. We adopt the history-based prefetching window to
performance. However, when the chunk size exceeds a ceri@étermine the prefetching granularity, which is similarthe
threshold, further increasing chunk size may cause uratgsir file prefetching scheme used in Linux kernel. A prefetching
negative effects. Figure 14 shows that the cache hit ratiméindow is maintained to estimate the best prefetching degre
increase slightly with a large chunk size. The increasetieacThe initial window size is 0 and is enlarged based on the
miss penalty with a large chunk size is responsible for thietected sequentiality of observed accesses. Assumingkchu
slowdown. Specifically, it takes 4s to load a 4MB chunk, whila of an object is requested, if chumk i , chunkn-i +1, -- -,

it needs 14.2s for 16MB. Consequently, the average accessinkn- 1 (1<i<n) are detected to be sequentially accessed,
latencies increase. the size of the prefetching window grows 26~ '. We set the

The analysis above has shown how to determine the propesiximum prefetching window size (i.e., parallelism degoée
chunk size for a certain client. Specifically, 4MB is the peop prefetching) for all chunk sizes (i.e., 64KB, 1MB, 4MB) to 8.
chunk size on our client for the testing workload. For the The performance comparison of no-prefetching and
workloads with weak spatial locality, the proper chunk sizgrefetching are shown in Figure 16 and Figure 17. We can see
should be correspondingly smaller. In general, an excelgsivthat, with prefetching, the optimal chunk size is 1MB. Obvi-
large chunk size is not desirable, as it increases the risk qfsly, small chunk size benefits more from the prefetchisg (a

unnecessary overhead with no extra benefit. we see in the prior sections, small objects benefit more from
parallelism), and the relative benefits decrease as thekchun

B. Proper Parallelization for Prefetching size increases (see Table VI).

Prefetching is another widely used technique in cloud stor- Chunk Size T Read [al Red | Write [at Red.

age. Since objects can be downloaded (prefetched) in phrall 64KB 70.4% 31.1%

a proper parallelism degree is important to the performance 1MB 56.9% 24.6%

while over-parallelization may raise the risk of mis-pteféng 4MB 22.6% 1.2%

and also waste resources. TABLE VI

. . AVERAGE LATENCIESREDUCTION CAUSED BYPREFETCHING
In order to determine a proper parallelism degree for a

certain chunk size, it is critical to ensure that on-demand
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Surprisingly, with prefetching, the average write latencgs mobile systems, it is more favorable to create large stgue
of 4MB increases by 1.2%. This means that the prefetchvith a low parallelism degree. On the other hand, we should
ing granularity in our experiment is so aggressive that ttaso consider several related side effects of bundlingftiag
negative effects of prefetching overweight the benefitse Tlsmall requests. For instance, if part of a bundled/batched
negative effects may result from two factors. First, a lot akquest failed during the transmission, the whole requestav
unnecessary data is prefetched so that the cache efficiehaye to be re-transmitted. Also, it is difficult to pack a bainc
is reduced, leading to a lower cache hit ratio. Second, tbésmall requests to different buckets or data centers haget
competition of parallel prefetching threads may incredse tin contrast, parallelizing small requests is easier andemor
average downloading latency (i.e., the average penaltaaiie flexible. Therefore, there is no clear winner between the two
miss). Specifically for the case of the average write latesfcy possible optimization methods (i.e., creating large retgiand
4MB, the performance degradation is mainly caused by tparallelizing small requests). An optimal way may vary from
second factor since the cache hit ratio remains high (clesedient to client and from service to service, but we can still
98.7%). As a rule of thumb, we should set a small prefetchinge some general principles to guide us in making a decision.
degree for large chunk sizes (e.g., 4MB) to avoid the intensiFor example, as we find that small requests demand a high
competitions of the parallelized downloading threads. Fearallelism degree, if we know the proper parallelism degre
example, we can limit the growing speed of the prefetchiran a certain client for 1IMB is 8, and 4 for 4MB (we can obtain
window, or cap the maximum prefetching window size. Othese combinations via simple measurement or experieiice),
the contrary, the prefetching granularity of small churgesi is reasonable to infer that the proper parallelism degree fo
(e.g., 64KB) can be more aggressive. This also confirms a¥B should be between 4 and 8. To avoid the worst situation,
speculation about the proper parallelism degrees forréiffie a rule of thumb is to make a conservative choice, if uncertain
chunk sizes (i.e., 16 for 64KB chunks, 4 for 4MB chunks). The client's capability has a strong impact to the

In summary, our case studies on prefetching and cachipegrceived cloud storage 1/0 performance.CPU, memory,
further show that the real-world implementation of cliside and storage are the three most critical components detiergnin
management should carefully consider the factors that we ha client's capability. Among the three, CPU plays the most
studied in the prior sections, particularly parallelisngaee important role in parallelizing small requests, while meyno
and request size. Other issues, such as client capabditiés and storage are critical to large requests, especiallyelarg
geo-distances would also inevitably further complicate thdownload requests. A direct implication is that for optimg
design consideration. the cloud storage performance, we must also distinguish the
capabilities of clients, and one policy will not be effeetiin
all clients. Due to the cross-platform advantage, manyqgretis

With these experimental observations, we are now in coud storage applications can run on multiple platformanf
position to present several important system implicatidinss PCs to Smartphones). Such distinction among clients will
section also provides an executive summary of our answersnevitably affect our optimization policies. For exampier, a
the questions we asked earlier. mobile client with a weak CPU, we should avoid segmenting

Appropriately combining request size and parallelism objects into excessively small chunks, since it is unable to
degree can maximize the achievable performancérhis is handle a large number of parallel I/Os, although this is not a
sometimes a tradeoff between the two factors. By combiniegnstraint for a PC client. Given the diversity of cloud sty
the chunking/bundling methods with parallelizing 1/Osg thclients, we believe that a single optimization policy isikely
client can enhance bandwidth in two different ways: we cdn succeed across all clients.
increase the parallelism degree for small requests orasere Geographical distance between the client and the cloud
the request size at low parallelism degree. Both can achigdays an important role in cloud storage 1/Os. For cloud
comparable bandwidth, but interestingly, we also find thatorage, the geographical distance determines the RTT. We
compared to increasing parallelism degree, increasing fiired that a long RTT has distinct effects to bandwidth and
request size can achieve another side benefit: reduced GPUlatency. In particular, with a long RTT, we still can achieve
lization. This means that for some weak-CPU platforms, suehsimilar peak bandwidth as the case of a short RTT, but

VI. SYSTEM IMPLICATIONS



the cloud I/O latency is significantly higher. The implicats In this work, we focus on the HTTP-based object storage,
are two-fold. First, to tackle the long latency issues, iiis represented by Amazon S3, and we have observed several
must-have to use effective caching and prefetching fontate interesting and unique 1/0O behaviors.

sensitive applications. Second, for the clients far froma th

cloud, we should proactively adopt large request sizes ajid h VIIl. CONCLUSIONS

parallelism degrees to fully saturate the pipeline and @kpl \\e present a comprehensive measurement and quantitative
available bandwidth as much as we can. In other words, B¥a|ysis on cloud storage to investigate the critical fiacto
sufficiently exploiting the I/O characteristics of cloudsige, ftecting the perceived performance of cloud storage from
if bandwidth is the main requirement (e.g., video streaming, cjient-side perspective. Our experiments show several im
choosing a relatively distant data center of the cloud §BI& 4rtant characteristics of cloud storage, such as bendfits o
a viable option and a high bandwidth is still achievable WltEarallelizing cloud storage 1/0s, the latency impact of reve
appropriate client-side optimizations. _ _parallelization, the effect of client's capability to aetable

In essence, cloud storage represents a drastically d'ﬁﬁé'rformance, and more. Based on these findings, we also
ent storage model for its diverse clients, network-bas€d ligresent a case study on chunking and parallelization, toe tw
connection, and massively parallelized storage struclte ey techniques used for optimizing cloud storage perforaan
observations and analysis strongly indicate that full@®ipg 4 the client. We hope our observations and the associated
the potential of cloud storage demands careful conS|dRTat|System implications can provide guidance to help practitis

of various factors. and application designers exploit various optimizatiopap

VIl. RELATED WORK tunities for cloud storage clients.

Most prior studies focus on addressing various issues of ACKNOWLEDGMENT
cloud storage, including performance, reliability, andwsiy ) ,
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of cloud storage from the client’s perspective.

Our work is related to several prior measurement works
on cloud storage. Li et al. compared the performance of four
major cloud providers: Amazon AWS, Google AppEngine[l] Amazon ebs. hitps://aws.amazon.com/ebsl.

and Rackspace CloudServers [40]. Ou et al. compared a fifld Amazon efs. htips://aws.amazon.com/efs/.
i f cloud b d loud ith Amazon s3. https://aws.amazon.com/s3/.
system client of cloud storage based on CloudFuse with tWg] amazon 53 TCP Window Scaling.

other IP-based storage, NFS and iSCSI [44]. Bermudez et http://docs.aws.amazon.com/AmazonS3/latest/dev/Ti@WScaling.html.
al. presented a characterization of Amazon’s Web Servicda Cloud Storage Market by Solutions. http://www.marketdmarkets.

IMarket-Reports/cloud-storage-market-902. html.
(AWS) [17]. Copper et al. benchmarked cloud storage systens, g‘;g“pbo";f ittpsf,’,(x;v& ggpjo‘;figﬁqf“ar ¢ "

with YCSB [23]. Meng et al. presented a benchmarking7z] Dropbox Uses Amazon S3  Services for  Storage!
work on cloud-based data management systems to evaluate https:/storageservers.wordpress.com/2013/10/25idrc uses-amazon-

. . . s3-services-for-storage/.
the effects of different implementation on cloud storag®|[4 (g Googe drive. hitps:/www.google.com/drive!.

This work treats cloud storage as a blackbox and focuses onedrive. https://onedrive.live.com/.
on characterizing its 1/0 behaviors from client’s perspect [10] Openstack swift. http://www.openstack.org/.

: :[11] S3 api reference. https://boto.readthedocs.orgfest/ref/s3.html.
Several other measurement works focus on the client appli ] Sabacker. https:/lcode.google.com/p/s3backerl.

tions (e.g., [27], [28], [29], [34], [42], [46]). Unlike oustudy, [13] s3fs. https://code.google.com/p/s3fsl.
these prior studies focus on measuring the performance[Bfl H. Abu-Libdeh, L. Princehouse, and H. WeatherspoonCBAA Case

; ; for Cloud Storage Diversity. liProceedings of the 1st ACM symposium
commercial person_al cloud storage clients, such as Drgpbox on Cloud computing (SoCC 201apdianapolis, IN, June 10-11 2010.
Wuala, Google Drive, etc. In contrast, we treat the cloygls) amazon. Amazon S3  Object Size Limit Now 5 TB.

storage as a blackbox and focus on revealing the key factors https://aws.amazon.com/blogs/aws/amazon-s3-objgetisnit/.
affecting the interactions of the client and the cloud fror#6] A- Bergen, Y. Coady, and R. McGeer. Client BandwidtheForgotten

. . . . Metric of Online Storage Providers. Rroceedings of 2011 IEEE Pacific
the perspective of the client side rather than benchmarking Rrim conference on Communications, Computers and SignaeBsing

specific cloud storage clients. In fact, we purposely avoid (PacRim 2011)Victoria, BC, Canada, August 23-26 2011.
using any specific client tools so that we can minimiz@7] . Bermudez, S. Traverso, M. Mellia, and M. Munafo. Eoqiihg

h ial i £ id b b d the Cloud from Passive Measurement: the Amazon AWS Case. In
the potential interference. Besides object-based stosagre Proceedings of The 32nd IEEE International Conference omgger

service providers also provide block- and file-level sterag  Communications (INFOCOM 2013Jurin, Italy, April 14-19 2013.
services, such as Amazon Elastic Block Store (EBS) [1] aff! Bessani, Alysson, R. Mendes, T. Oliveira, N. Neves, Moréia,
Elastic File Svstem (EFS) [2] These services are more aimil M. Pasin, , and P. Verissimo. SCFS: A Shared Cloud-backesl $iik-

astc ki e_ ysS : vi ) I tem. InProceedings of the 2014 USENIX Annual Technical Conference
to conventional IP-based storage, such as iSCSI and NFS. (ATC 2014) Philadelphia, PA, June 19-20 2014.
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