Understanding Storage 1/0 Behaviors of Mobile Applications

Jace Courville
Louisiana State University
jecourv@csc.lsu.edu

Abstract—In the past few years, mobile devices quickly gained
high popularity in our daily life. Designed for ultra-mobil ity,
these small yet powerful devices are fundamentally distirtcfrom
traditional computer systems (e.g., PCs and servers) — frorthe
internal hardware architecture and software stack, to applcation
behaviors. Storage, the slowest component in the I/O stacklays
an important role in mobile systems and can greatly affect usr

Feng Chen
Louisiana State University
fchen@csc.lsu.edu

precisely:latencies A high I/O latency may render the device
unresponsive. Even worse, such slight slowness may bey easil
noticed by users and negatively affect user experienceonn c
trast, throughput another performance metric widely used in
traditional storage benchmarking, is not as important ifieo
systems. (3Mobile devices have both a distinct software stack

experience. In this paper, we present a set of comprehensiveand distinct application behaviors/obile device applications

experimental studies on mobile storage and attempt to gain
insight on the unique behaviors of mobile applications and
characterize the performance properties of underlying molie
storage. In our experiments, we carefully selected 13 repsen-
tative mobile workloads from 5 different categories. Our studies
reveal several unexpected observations on mobile storagBased
on these findings, we further discuss the associated implitans to
mobile systems and application designers. We hope this woitan
inspire system architects, application designers, and piitioners
to pay specific attention to the high-latency 1/O operationsrather
than completely relying on the default APIs. We also suggest
a further look to new opportunities, such as adopting a faste
medium in the mobile system architecture, for future reseach.

Index Terms—Mobile systems; Storage performance; Flash
memory; Measurement.

I. INTRODUCTION

(i.e., mobile apps) typically run in a protected environmen
or sandbox. For example, Android apps normally run in a
Java virtual machine. Privileged operations are encafeslila
in a small set of strictly defined API interfaces. As a result,
popular APIs such as the SQLite library are heavily used in
nearly all mobile apps. Such a development practice results
in certain patterns which can be commonly found across
various mobile apps. On conventional PC and server systems,
this is unlikely to happen. In short, because of its unique
physical nature, optimization goal, and software stackhiteo
storage, compared to traditional computer systems, ismlalyit
exhibits radically different properties. A more important-
plication to us is that our prior wisdom about storage and the
understanding about its influence to system and application
performance may not continue to be applicable to mobile

Within the last decade, we have experienced the rise advices. Therefore, a demand of a detailed and thorougly stud
modern mobile devices. Apple recently sold its 500 millfontto properly understand the critical issues of mobile sterag
iPhone [2], and sales of Android devices exceeded one tilliaffecting user experience is necessary. In particular, egirel
units in 2014 [3]. While mobile devices provide high levelso answer the following important questions:

of convenience and enable ubiquitous computing to typical
users, these small devices, compared to their traditiom@al-c
puter system counterparts (e.g., PCs and servers), caey a s
of fundamentally distinct characteristics, from the haadsv
architecture and software system stack, to applicatiormbeh
iors. These distinctions demand a careful reconsideraifon
optimizations for system and application design in various e
aspects.

Storage, the slowest component in the 1/O stack, plays a
critical role in overall system performance. Interestingtor-
age in mobile devices differentiates itself from convemdlo
platforms in several unique properties. {lpbile devices use
a flash-based storage mediutdnlike PC or server systems,
which often adopt large-capacity magnetic disks as storages
mobile devices are almost all reliant on NAND flash memaory.
As a type of semiconductor device, NAND flash memory
delivers high-speed read accesses but is highly sensitiamnt
dom writes and may suffer from low performance when such
writes are encountered [5]. (R)Jobile devices require latency-
oriented optimizationFor mobile devices, it is of high priority
to ensure an optimal user experience. This user experience
may be severely impacted by storage performance, or more

Do there exist any consistent trends in application perfor-
mance and behaviors over several different categories of
applications?The presence of those trends may suggest
that such behavior is not application specific and may
exist across an even more broad spectrum of applications.
How much of an impact, if any, do storage 1/Os con-
tribute to application performance@iven the diversity

of mobile apps, not all applications may be affected by
storage 1/Os in the same way. It is necessary to understand
how much latency applications experience as a result of
these 1/Os to ensure that each application can perform as
efficiently as possible.

Which type of storage 1/0Os contribute most to latency,
and what is the root cause behind such impa€ifily

by identifying the critical storage I/Os which affect the
performance the most, can we effectively identify the
most appropriate solutions to address these issues.
Does there exist any room for a system level solution to
resolve storage 1/O latencyBy answering these funda-
mental questions, we can identify a potential room for
optimization of overall mobile app performance through

minimizing the total amount of latency contributed by Application Layer
Storage |/OS I‘AnglyBlrds:] _Camera | [‘DropBoxJ [Mail ‘ |
In this paper, we present a comprehensive experimental

study to explore several important aspects of mobile storag
We carefully select a set of 13 representative mobile waitkéo
from 5 different categories: ranging from games, multinagdi
productivity, network, and device utilities. We run theserk
loads on a Google Nexus 5 mobile phone with a recompiled

Application Framework Layer

(iscnr. | oo | [moorsnan]

Libraries / Runtime

[squite [opencL | [paivikvm] [

Linux kernel. By usingol kt r ace andbl kpar se tools, we Kernel

trace the storage 1/O activities for each application antbpe L exa [cFQ | [Audo | |

an offline analysis on the collected experimental data. It is

worth noting that our main purpose is not to benchmark these 4 Block Device

mobile apps or the device itself. Instead, we attempt torvkse ‘ eMMC J

the 1/O activities from the perspective of the lowest sterag
layer, characterize and understand the storage 1/0 bakasfio
typical mobile apps, and identify the critical issues of @b
storage with a goal of finding the key aspects for potential

optimizations in the future. Based on these observatiows arlllersstent in the form of key/value pairs. Another key compo

analysis, we further discuss important implications to iteob _nent is the Android runtime. Since Android apps are written

o : - . Java, the virtual machine runtime, Dalvik (OS versions 4.
system and application designs. We hope this work can @spi - . oo SR .
y ppicat '9 pe this W P nd earlier) or ART, is responsible for application isalati

the research community, especially mobile OS architects af q t The bott I i the Li
mobile app designers, to carefully consider the use of ma g memory management. the botlom fayer is the Linux-

storage 1/O related operations and enhance user experie QEdOS kernel T_he Android OS kerne_l Is a variation of
the open-source Linux kernel and contains a set of low-level

successfully.) A trol hard devi h as the eMMC devi
This paper is organized as follows. Section Il introduces tﬁjnvers 0 Contro| hardware gevices, SUch as tne e evice

: d display. The primary file system in Android is the Ext4
background about mobile systems and the storage 1/O st e .
Section Il gives the experimental methodology. Section | € system, which replaced the older YAFFS2 [1]. The CFQ

and V discuss the experimental results and their syst /ncl)thSChe?u'?r ||\s}”\r/|e§p}<|)nsr:btl)(le fc:(réjlspatck:ng tr?ehI/O retfutes
implications. Related work is presented in Section VI, an € aclual ash block device [4], which completes

the last section concludes this paper. the whole /O path.

Fig. 1. The Android Architecture

II. BACKGROUND IIl. EXPERIMENTAL METHODOLOGY

Android is a mobile OS developed by Google for mobile Our experiments were conducted on a Google Nexus 5
devices. Initially released in 2008, Android currently po&a device — an Android-powered smartphone. This device is
majority of the mobile devices on the market. Our experimenequipped with 32GB of internal eMMC NAND flash based
were performed with the stable Android version 5, “Lollijop storage and runs an Android Open Source Project (AOSP)
In this section, we give a brief overview of the Androidversion of Android 5. We recompiled the Linux kernel 3.4.0
architecture, especially the 1/O stack. Figure 1 illugsathe and ported it to the device to support the capability of block
basic architecture of Android OS. level I/O tracing. We usél kt r ace in Linux to collect the

At the top level of the Android architecture is th@plica- 1/O traces of various workloads. The blktrace tool monitbies
tion layer. Unlike traditional desktop systems, an applicatiotime stamped events in the I/O path, such as a dispatch of an
in the Android OS can be considered a different “user?/O request and a completion of an I/O request. The traces are
Each mobile app is assigned a user ID and has respecfivst reserved in ramfs and later dumped to persistent storag
permissions unigue to this ID. These applications are avritt We usebl kpar se and our post-processing scripts to process
in Java and run in their own virtual machine, meaning thaheathe 1/O traces and analyze the traces offline.
application runs independently of another — a quality thaitat For our experiments, we carefully selected 10 mobile apps
seen on traditional systems [4]. Thamework layerconsists from both first party and third party sources in order to abtai
of the various managers which these applications interdht w a true representation of an environment that a typical user
For example, an application which uses location basedsesvimay have. When selecting these applications, we chose to
(e.g., Google Maps) interacts with the location managereto gprioritize a more real-world set of workloads over choosing
the geographic location of the device. workloads that would generate an unrealistically high wwdu

Thelibrary/runtime layeris responsible for interacting with of 1/0s, at the trade off of code availability in several of
the OS kernel. These libraries allow application develsger the closed-source apps. As one of our goals is to determine
quickly access core system services in a protected manmer. the true impact of storage 1/0s on users, we felt that data
example, SQLite (a journaling based light-weight datapastom these apps would better indicate this impact. Usingehe
enables application developers to keep data (e.g., usergst mobile apps, 13 different use cases from 5 categories (games

|| Workload Application Type | Read/Write Ratio Description ||

Angry Birds Game 2.03/1 Loading the Angry Birds application
App Removal Device Utilities 1.35/1 Uninstalling an application from the device
Batch Uninstall Device Utilities 1/2.79 Using ADB to uninstall several applications at once
Burst Mode Camera Multimedia 1/204.1 Uses Burst Mode Camera to take a sequence of 100 pictures wsta b
Camera Multimedia 1/9.12 Uses default camera to take three pictures in quick sequence
Contacts Productivity 1/2.07 Adding a new contact to the device
Dropbox Sync Network 1/5.63 Linking an existing Dropbox account to the device and penfag an initial sync
E-mail Sync Network 1/4.25 Linking an existing e-mail account to the device and periogran initial sync
Web Request Network 1/1.47 Loading the Facebook web site
Route Plotting Network 1/2.54 Plotting a GPS route using the Google Maps application
MP3 Streaming Network 1/41.8 Streaming 15 seconds of audio using the Spotify application
Video Playback Multimedia 1.81/1 Playing back a 5 second recorded video
Video Recording Multimedia 1/4.25 Recording a 5 second video using the default camera applicat
TABLE |

WORKLOAD DESCRIPTIONS

multimedia, productivity, network, and device functiongre A. Request Size and Latency Distribution

then designed to create workloads that would best represenﬂQequest size and latency are two key factors describing the

a situation that may generate various kinds of 1/Os. In Ordﬁb .
. atterns of a workload. The former determines how large
to remove unexpected variance, each test case was complete

by first restarting the device. Once booted, we start blktraf 2° VO request is, while the latter measures how long each

and perform the test. Upon completion, we stop blktrace af/g) request takes to the point of completion. These two tri

dump the trace into persistent storage for offline analyss. ﬂave a direct but non-linear relationship — a small requsesot

. . necessarily equal to a smaller latency, and vice versaré&igu
overhead resulting from the blktrace operation was of conce y€ed Y B

we purposefully stored the output of blktrace within a smaﬁhows the distributions of request sizes and latencieseot 3h

amount of DRAM memory to ensure that I/Os directly relate\éyorklo.ads' In thg following, we examine the workloads based
on their categories.

to running blktrace would not pollute the collected tracaclk
Angry Birds: As a typical mobile game, the Angry Birds

test was run 5 times to ensure that the data was consistent.

i - 0,
All workloads were carefully selected to capture the antic\lNorkload sees mostly smaller request sizes - 67.8% of all

pated largest number of I/Os in critical parts of run timeslt requests are less than 64 KB. Comparaiively, however, these

worth noting that our main purpose is to study the impact 8¥“Itf S|ze33are more vanabltta than tthe (ljtger(;est?. thrnnettath
storage to user-perceivable performance in practice. Aw/so In Figure 3(a), we can see two vertical bands of writes at the

avoid using artificial benchmarks to generate extremely hig%6 KB and 88 KB ranges. Write latency for Angry Birds is

i 0,
I/O traffic, which exercises the storage but does not refle ?ltlceamy Ioln%e7r than rﬁladf[' tali 80% ?f ;eggs ar$ c%rgglet?d
the real-world usage patterns. Also, in our experiments, jf 'ess than L.o7/ms, While It takes up to 7.oU Ms for 00

workloads were designed to show cases which both invol ¢ total number. of Writes_ to be completed. Of thesg writes,
storage 1/Os and practically affect user experience in &ayp synchro.nous writes contr!bute most to the latency m_curred
real-life environment. For example, we were more intetkste write I/Os. We also find that reads are more predictable
in the process of loading Angry Birds, as the user will be idl an wntels. n F|gured3, weseea nearly I|nﬁar pattzrn alsea I
waiting for their game to start, over a workload including th t:;gesﬁgrt::et?rgisa?o cgergulzstg ?/\I/eri’\le_lasrm:r ?éa:jesataskgifri y
user playing Angry Birds, as they will no longer be idling1 P 9 9

due to storage 1/Os. In order to minimize the possibility of! contrast, writes show a much larger variance. There exist

latency caused by human interaction, all workloads start %FtLr]e(;[t ?sgéerrl]:f)rogxzn\:w:le I;atggi Offorla;e?gyugosrt 2izsé,\m(])l1l‘ag8
the moment human interaction ends. In all workloads, defalif " ' pie, Y q

configurations were used to get representative resultde Tab h_Bhranges f_rc:lm 7'10.(;n5.‘ Sut;:]h er\;& (I;a\tﬁncg Ids s_urpnhsmgly
details the type and description of each selected workload. 'gh, especially considering the € ash device has no

mechanical components. This is mostly because writes ih flas
memory may trigger some high-overhead internal operations
such as block cleaning, which make the 1/O latencies more
This section presents our experimental results. We firgtystuvariant [S]. Also, large reads tend to have a relatively kigh
the two key factors that describe the basic /O patterns wiriance in latencies than small ones, as a large read would
a workload, namelyrequest sizesand latencies Then, we take longer to complete and is more likely to affected.
focus on theflush operations, which directly impact the I/O Uninstall Apps: Removing both a single application and
speed on an NAND flash based storage. Next, we consider feweral applications in a batch job often causes noticeable
data accesfocality, which has a strong implication to cachedelay. In Figure 2(c) and 2(d), we see similar patterns it bot
efficiencies. Finally, we discuss the relative influence /6 | request sizes and latencies. For request size, we find thE682
operations to the end-to-end application performance. of writes in a single application uninstall and 80.1% of it

IV. EXPERIMENTAL RESULTS

Request Size CDF

Latency CDF

Request Size CDF for Adding a Contact

Latency CDF for Adding a Contact

Percentage

Percentage

Percentage
P
3

20 AL — 1
READ -
0 ‘ ‘ WRITE -, 0 ‘ ‘ _ WRJTE L
0 100 200 300 400 500 0 50 100 150 200 250 2 3 4 6 7
Request Size (Sectors) . Latency (ms) Request Size (Sectors) Latency (ms)
(a) Angry Birds (b) Contact Add

Request Size CDF for Application Uninstall

Latency CDF for Application Uninstall

Request Size CDF for Batch App Uninstall

Latency CDF for Batch App Uninstall

8 8 g 8
g g g g
= € = €
8 8 8 8
o S o 3]
o Q o Q
20 1 20
ALL
READ REAAulj
0 , WRITE -y o e WRITE e
0 50 100 150 200 250 300 350 5 0 50 100 150 200 250 300 350 400
Request Size (Sectors) Latency (ms) Request Size (Sectors) i Latency (ms)
(c) App Removal (d) Batch Uninstall
Request Size CDF for Camera (Picture Taking) Latency CDF for Camera (Picture Taking) Request Size CDF for Burstmode Camera Latency CDF for Burstmode Camera
100 100 |
80 80 - q
@ @ o
g g g
2 60 2 60 1 <3
g g]
e e e
& 40 -4 1 &
20 AL — 1
READ
0 ‘ ‘ ‘ ol o wRiE
0 100 200 300 0 20 40 60 80 100 120 140 160 180

Request Size (Sectors)

Request Size CDF for Recording a Video

Latency (ms)

Camera

Latency CDF for Recording a Video

Request Size (Sectors

(f) Burst Mode Camera

Latency (ms)

Request Size CDF for Playing Back a Video

Latency CDF for Playing Back a Video

100 -
1 8ol 1
® © ® ®
g g g g
g 1 2 g g oo 1
H g H g
8 8 8 8
& S & & aof 4
20 AL ALL 205
READ READ
o)) WR[TE o)) WR[TE) 0
0 100 200 300 400 0 2 3 4 5 6 9 0 50 100 150 200 250 0o 1 2 3 4 5

Request Size (Sectors)

Request Size CDF for FaceBook Web Request

1
(9) Video Recording

Latency (ms)

Latency CDF for FaceBook Web Request

Request Size (Sectors)

(h) Video Playback

Request Size CDF for Streaming a MP3 in Spotify

Latency (ms)

Latency CDF for Streaming a MP3 in Spotify

Percentage

Percentage

Percentage

20 AL — 1
READ -
0 ‘ ‘ WRITE w e ol wiRiES
0 50 100 150 200 250 4 5 0 50 100 150 200 250 300
Request Size (Sectors) Latency (ms) Request Size (Sectors) i Latency (ms)
(i) Web Request ()) MP3 Stream
Request Size CDF for Generating a Route in Maps Latency CDF for Generating a Route in Maps Request Size CDF for Email Initial Sync Latency CDF for Email Initial Sync
100
q 80
) & & &
£ 1 £ £ 60 £
g] g]
e e e e
& 18 & 4 &
20
0 ! il P 0 . . ! . P
0 50 100 150 200 250 300 350 0 100 200 400 500
Request Size (Sectors) . Latency (ms) Request Size (Sectors) . Latency (ms)
(k) Route Plotting () E-Mail Sync

Fig. 2.

Request Size CDF for DropBox Initial Sync

Percentage

20 f

Latency CDF for DropBox Initial Sync

Percentage

100 150
Request Size (Sectors)

0 50

(m) Dropbox Sync

Latency (ms)

Request Size and Latency Data by Type for all Worldoghdl, Read, Write)

Request Size vs. Latency Request Size vs. Latency Request Size vs. Latency

=

Latency (ms)
chrNwARGO D05

Latency (ms)
Latency (ms)

X
xom X

B o X .
READ » READ » 5O Ko READ x4 oo odgEat L
. , WRITE = > L ., WRIE = - . . , WRITE = ! % . , WRITE =
0 100 200 300 400 500 600 0 50 100 150 200 250 300 350 400 450 0 100 200 300 400 500 600 0 50 100 150 200 250 300
Request Size (Sectors) Request Size (Sectors) Request Size (Sectors) Request Size (Sectors)

(a) Angry Birds (b) Batch Uninstall (c) Video Recording (d) DropBox Sync
Fig. 3. Selected Request Size vs. Latency Data

Latency (ms)
chrNwARGO D05

Time vs. Offset for Playing Back a Video Time vs Offset for Camera (Picture Taking) Time vs. Offset for Streaming a MP3 in Spotify
9 T T T T T T T T T 14 T T T T T 9 T T T R T -
P 4 . | ;
z 8r 1 @a12b XK KNk RO OR K K R KR K E b
s 7t x 18 S 7k h) .
§6» . . o | §10’ x 4 §6Fﬁh‘*1*”**x Ew = wox bacc |
y— Y X X X X X X X X X X X Y—
35'] g SVX B 1 85!&3’;&* KA MK MO OK * xxas«‘
E.l . 1 & | = ™oelommxmxxmmms | 5 T IILIIE M
= = o =
E 3t 1 £ - E 3t B
= = 4Fx % * 4 g
I I I
n 2r q (7] w 2r q
= F] :oz
Ot « READ x 4 © “f READ 1t READ
ol o 1 | WRIE - 0 L WRITE - ol . WRIE -
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 0 2 4 6 8 10 12 14 16 18
Time (seconds) Time (seconds) Time (seconds)
(a) Video Playback (b) Camera (c) MP3 Streaming

Fig. 4. Spatial Access Patterns vs. Time. Offset is in unitSectors.

in a batch application uninstall are less than 16 KB in sizéhese writes are small. Second, latency distributions m® a
This is because the two workloads involve intensive fileayst similar between the write-intensive multimedia applioas.
metadata operations, most of which are rather small (e.m,the Burst Mode Camera, Camera, and Video Recording
updating inodes). We also find that writes are slightly slowevorkloads, 80% of the 1/Os are completed in less than 2.20
than reads with 80% of 1/0Os taking under 2.39 ms for writems, 3.02 ms, and 2.21 ms respectively. Video Playback shows
and 1.77 ms for reads in a single uninstall and under 3.04 wifferent patterns - 1/Os tended to experience higher t3ten
for writes and 1.89 ms for reads in a batch uninstall. Whemith 58.2% of I/Os taking over 3 ms to complete. Third,
comparing latency and request size, we find a similar trend thie latency-vs-request-size trends in multimedia wordsoare
slow writes of very small size and reads in a linear pattesn, aimilar to other workloads — a heavily variable concentrati
seen in Figure 3(b). The only apparent difference between thf small writes with a relatively more linear pattern of read
single- and batch- uninstall workloads is the quantity efd® shown in Figure 3(c). We also find that Burst Mode Camera,
and writes being appropriately larger in scale. This inisa Camera, and Video Recording are all quite variable as there
that, for such a batch of metadata-intensive workloadsag® are a significant number of writes between 1 and 10 ms of
I/Os happen mostly in a sequence, and no buffering effect Hatency. Finally, Video Playback shows a unique patterris Th
been observed. workload has only 75 total writes, and of these writes, only 5
Contact: The Contact Addition experienced several veryere larger than 4.5 ms. Unlike other multimedia workloads,
small writes - about 73.7% of all writes were only 4 KB.Video Playback is read intensive. A large portion of this
Reads, however, were larger than writes - only 64.6% of readsrkload involves retrieving the video from storage to play
were less than 64 KB. Other data continued to follow typicél back. We see a larger number of slower reads than in other
trends — writes were slightly slower than reads. Compar&wrkloads. Also, this workload has the second fewest number
to other workloads, this workload does not have to load of 1/0Os of any other workload, as it retrieves the video from
store data of any significant size, and subsequently it does atorage in large (128 KB) chunks. Figure 4(a) illustratés th
present any surprising information. behavior. We can see a distinct band of /O reads at the
Multimedia: As shown in Figure 2(e-h), we find severasame offset for a large duration of the process of playing
key themes in the four multimedia workloads, Camera, Burack the video. Comparatively, we see the other multimedia
Mode Camera, Video Recording, and Video Playback. Firgtpplications which save data to storage (e.g., Camerangrit
writes tend to be small. Write sizes of less than 16 KBata in small chunks, as shown in Figure 4(b). This process
make up 86.9% of the Camera workload, 81.2% of the Burglso proves to be extremely costly. Our Camera workload had
Mode Camera workload, and 88.0% of the Video Recordirihe largest percentage of I/O latency than any other wodkloa
workload. This is because the three workloads involve intet nearly 70% of the run time.
sive writes, and frequent flushes create a sequence of smalNetwork Apps: The storage /O behaviors of network-
writes. Video Playback is unique. It sees a wider spectruimtensive apps follow patterns unique to this category.nefi
of write request sizes; however, we still find that most afetwork applications, shown in Figure 2(i-m), each workloa

had a majority of small writes. For each network workload, | Workload Requests| Data Size| Time ||
most writes were smaller than 16 KB. For example, the MP3 A’?J”sgeagjvsal gg %%%BKKBB 8-223 sec
streaming workload had 92.6% writes smaller_ than 16 KB, Batch Uninstall 16 332 KB | 0252 sec
and the Web Request workload had 76.5% writes being less Contacts 40 240 KB | 1.41 sec
than 16 KB. Reads had some slight variation between each | BUst ('\:":r?]‘;gamera %g 5204KKBB g-éég sec
workload gnd were larger tha_m yv_rites. The MP3 Streaming Video Recording 23 204 KB | 0099 sec
workload is unique. It has significantly smaller 1/O reads, Video Playback 49 4196 KB | 3.30 sec
with 76.5% of reads being less than 16 KB, compared to Déf’nﬂt;‘i’lxsi%’gc i 116 KB | 0216 sec
the other Network workloads which, as in the Route Plotting Web Request 74 4412 KB | 3.13 sec
workload which had only 41.0% reads less than 16 KB. This MP3 Streaming 10 60 KB | 0.512 sec
is likely due to the streaming effect, where most reads can Route Plotting 10 64 KB | 0.147 sec
TABLE I

be directly satisfied in memory. In this category, we also
found that unlike other workloads, I/O request latencied ha
slower asynchronous writes than synchronous writes. This
difference can be most drastically noted in MP3 Streaming,
where asynchronous writes are greater than 4 ms in over

74.1% of requests. We continue to see patterns of small Sl&vv(\;rkloads saw as few as less than 10 requests at the 90th

writes and linear reads when comparing latency and requ g{centlle (MP3 Streaming, Route Plotting) and as many as

size. In summary, network workloads are unique in that th ?/SS than 74 requests at the 90th percentile (Web Request).

experience I/O behavior somewhat similar to other world;oa% TEe gmolunt of I(IjetI)tat of .Ilobretquests;hbetwelfln ZUC%ZSSNe
which is an unexpected finding. An example of this may éus €S 1S aiS0 small but varies between e workioads. akver

seen in the spatial write pattern of MP3 Streaming shown #orrljloa(js 283 to;al data Sizﬁls otfhless thfl‘_n 128 K?hbe;\ween
Figure 3(d) — there are constant I/O writes with very few sead l_JSd es 2'8 28 IEBO i?ges’ \|IDV| ! % Lee4(igéer28are de anbry
The reasoning for this may be due to the device having rds (). Video Playback (), an €

download and store the data from the network. eques_t (44,12 KB) workloads. . .
The time interval between successive flushes is also small.

B. Flushes We found a range of typically short intervals. In 8 of the 13
In Android systems, the SQLite library provides a ”ghtyvorkloads, these intervals were between 0.1 and 0.4 seconds

weight database for mobile apps to store small pieces \yhich means 2-10 flushes happe_zn every second. Worquad
data persistently (e.g., user settings). In order to endata Categories seem to have some influence: three of the five
consistency, the dirty data in the OS page cache needs'@ggest intervals occur in the network category, while the
be synchronized to the persistent storage. As a result, i€ shortestintervals occur in the multimedia catedsince
Android operating system frequently uses a flush operatidff multimedia apps, such as Camera, involve heavy writes,
(e.g. FUA and FLUSH) to send buffered data to storage tis _suggests '_[hat the number O_f stqrage /o ertes affects
ensure the persistence. While this is a necessary functfdfphing behavior; as more data is written, flushing becomes
to preserve data, too much flushing can result in increas®gre frequent. _ _ .
latency, thus degrading application and device performanc N all, we see very aggressive flushing for the mobile
We find such a trend of excessive flushing in our analysis Bpplications. Most have very few requests of small sizes
our workloads, characterized by flushes at short interwits, &t short intervals between flushes. Application category ha
a only small number of small sized 1/O writes between eadpfluence on the flushing behavior of workloads. Write 1/0

flush operation. We will examine specific workload categoridNt€nsive categories have high frequency, low request euspb

in greater depth. Figure 5 depicts an average case of fluﬂhin@nd small request sizes between each flush operation. I&ss I/

three metrics: the number of 1/0 requests which occur batweW'ite intensive workloads show less frequent flushes withemo
flushes, the size of /O requests between each flush, and ff@guests and larger request sizes between flushes. Thesbigge

time between successive calls to flush. Table Il lists thebram €ason for variation occurring in flushing between différen
of 1/0 requests, the total /O request size, and the timevate WOrkloads is the importance of ensuring that the data géetra
between two consecutive flushes. by the respective workload is written to storage. This flaghi

We find in Figure 5 that there are very few I/O requests thafheme, however, is problematic because it contributesipea

take place between successive flushing operations. In 9094®fhe overall latency of storage I/Os.

cases, the largest number of 1/0 requests between two flushes .
is 74 in the Web Request workload, with all other workload%' Locality

having less than 49 I/O requests. Workloads such as Angryin this section, we briefly analyze spatial locality trends
Birds and Application Remove saw less than 26 requests aamtong the workloads in this study. This analysis will refer
29 requests respectively, and Dropbox Sync had fewer thexclusively to the spatial locality of storage writes, asach

14 requests in 90% of cases. We see a varying numbervadrkload, blocks being accessed from read operations were
I/O requests between workload categories as well. Netwaskcessed only one time. This is due to the memory being able

I/Os BETWEEN FLUSHES (90TH PERCENTILE OFCDF)

300

Number of Requests

Requests Between Flushes

Size Between Flushes

Time Between Flushes

300

= 100 B
]] 80 L]
(2} (2})
g g g
£ - 1 £ 6of 1
3 3 19
<4 <4 o
& 1 & 4o} 1 & 40 ,
i RERE T
WRITE] 20f WRITE] 20]
TIME ——
0 0 0 ! I
0O 20 40 60 80 100 120 140 160 18 0 5000 10000 15000 20000 0O 02 04 06 08 1 12 14 16 18
Number of Requests Between Flushes Size (Sectors) Time (seconds)
(a) Application Removal
Requests Between Flushes Size Between Flushes Time Between Flushes
T T T T T T T T T T
100 [— TSR - 100 fo-eev PSR 100 | 1
— —
sl | R 80| | R 80 R
[} | [} | 9]
g g | g
£ 60} 1 £ e0f! 1 £ 60 1
@ @] Q
© © | °
& a0} 1 & 40f! 1 & 4o} 1
READ T : READ T
207 WRITE 1 20| WRITE 1 20 1
/) TIME —
0 ol 0 4 I
0 20 40 60 80 100 0 500 1000 1500 2000 0 05 1 15 2 25 3 35 4 45 5
Number of Requests Between Flushes Size (Sectors) Time (seconds)
(b) Burst Mode Camera
Requests Between Flushes Size Between Flushes Time Between Flushes
T T T T T T T T T T T T T T
100 [e 1
80 [- 4 |
[} [} 9]
g g g
£ 60 7 < <] 7
@ @ Q
= = o
[I [
o 7 o o 7
' READ T
20r WRITE]]
N A b b . TME—
0O 10 20 30 40 50 60 70 8 90 0 2000 4000 6000 8000 10000 12000 14000 0 05 1 15 2 25 3 35 4 45
Number of Requests Between Flushes Size (Sectors) Time (seconds)
(c) Video Playback
Requests Between Flushes Size Between Flushes Time Between Flushes
T T T T T T T T T T T T
100 B
]] 80 L]
(2} (2} 9]
g g g
£ - 1 £ 6of 1
3 3 19
<4 <4 IS
& 1 & 1 & 40 1
]] 20|]
I TIME ——
0 0 0 i I
0 20 40 60 80 100 0 1000 2000 3000 4000 5000 6000 7000 0 05 1 15 2 25 3 35 4
Number of Requests Between Flushes Size (Sectors) Time (seconds)
(d) E-mail Sync
Fig. 5. Data Gathered Between Two Flushes
Number of Requests per Blocks Number of Requests per Blocks Number of Requests per Blocks Number of Requests per Blocks
- - - WRITE —— 70 - - - —WRITE —— 350 - - - WRITE —— 45 - - - —WRITE ——
1 60] 300 1 40 1
] 2 235 1
1 g 50 1 % 250 1 % 2 |
1 & 40 1 & 200 4 &2 1
4 s 30 B ° 150 4 S 20 1
3 2 2 5]
4 E20 q E 100 b E
2 2 2 10! 1
g 10 1 50 | 1 5F 1
0 50 100 150 200 250 300 % 50 100 150 200 250 300 %0 S0 100 150 200 250 300 % 50 100 150 200 250
Access Rank (Greatest to Least) Access Rank (Greatest to Least) Access Rank (Greatest to Least) Access Rank (Greatest to Least)
(a) Burst Mode Camera (b) MP3 Streaming (c) Camera (d) Batch Uninstall
Fig. 6. Selected Locality Behavior. All access ranks afte® Bave been ignored.

to fully contain the working set. To confirm this, we repeated V. SYSTEM IMPLICATIONS
the workload under the conditions of reduced available RAM _) N
(1 GB) and found that blocks were being accessed twice due/Vith these key observations, we are now in a position to
to page cache replacement. In general, we have found sopf@Sent several important system implications. Additigna
localities to be good, while others are heavily skewed. this section also provides an executive summary of our an-
Workloads with good localities include Burst Mode Camer&Wers to the questions we raised at the beginning of thisrpape
Figure 6(a), with 153 blocks covering nearly all of the 1/0 /O writes are very small and of varying 1/O latency. In
write requests to 880 total unique blocks, with the 10 mo8tl of our mobile applications, we see excessive small write
accessed blocks accounting for 25.6% of all accesses. bxoplfOs. The write I/Os exhibit strong locality; some blocke ar
Sync also had 187 blocks being re-written. Other workloadi¢avily rewritten while most are only written once. These
with multiple blocks being re-written include Contact Add!/O writes can be of a highly variable latency. Regardless
MP3 Streaming, and Web Request. Most workloads, howevef, how large or small the write, we saw a range between
had heavily skewed localities, where one or very few blocks ms and 10 ms in nearly every workload. This suggests
were re-written in some cases hundreds of times. In an egtrefiat write performance, overall, is quite poor. This is riost
case, Camera saw one block out of 3,293 unique blocRgcause NAND flash does not handle random and small writes
being re-accessed 305 times, as shown in Figure 6(c). OtMél. Consequently, applications which write a lot of data t
workloads also saw very few blocks being accessed in a rarigerage will be the biggest culprits of I/O latency. Becaate

between about 10 to 150 accesses. these small and latent writes, the camera workload saw a near
70% 1/0O overhead. Even with the Dropbox sync workload’s
D. End-to-end Impact of Storage 1/Os heavy reliance on a network connection to download data,

Although storage 1/Os are generally slow, the end-to-ersinall writes contributed to this workload being the 5th most
impact of storage 1/Os to mobile application performancaffected workload from I/O latency. This implies that mebil
is complex and depends on various factors, such as relatd@p designers should pay specific attention to write oersfi
computing and network speed. In this section, we show tggpecially frequent small writes. Buffering and clustgrin
aggregate storage 1/0 time in the overall workload comgieti small writes into large ones can effectively reduce theceffe
time. Figure 7 and Table IIl provide the details. Aggressive flushing is a common practice in all applica-

Based on the percentage of 1/0 latency throughout thiens. In nearly every case, a pattern of very short page cache
duration of the workload, we can distinctly identify 3 majoflushes occur (e.g., fsync()). These flushes contain tylgical
groupings of applicationg1) Light-I/O Applications:Four of less than 40 I/Os of small size and happen very frequently.
the five network workloads were found to be lightly affectedhis is caused by applications which are constantly trigger
by I/O latency, with the exception of Dropbox Sync, whicka flush operation in order to ensure data safety and persesten
stores a lot of data to the device in its initial sync. Alin the event of some failure. This, in turn, requires the esyst
other network workloads were found to have less than 9% stop and wait for the data to be written to the storage.
of 1/0 latency. This suggests that the network may haveSuch a blocking effect further magnifies the effect of slow
larger contribution in the run time of certain applicationswrites on NAND flash. This aggressive flushing has a large
Video Playback was also only lightly affected by storagénpact to overall system performance: because each ithterva
I/0s, as a large number of sequential reads can be quickigtween flushes is so short, little data is being written per
loaded to memory by the OS prefetchinf®) Moderate- operation, implying that more time is spent waiting than may
I/O applications: The two uninstall workloads, Burst Modebe necessary. As a result, the user is left waiting for all of
Camera, and Dropbox Sync are moderately affected by stordlge I/Os to complete before they can proceed further. Becaus
I/Os. This implies that in some cases, even a network badbese flushes trigger sequences of short and random writes,
application may be affected in part by storage 1/O latendgy if they inadvertently contribute to the overall problem ofrage
is storing a large amount of daté8) Heavy-1/O applications: latency and reduce the possibility of organizing more fatate
Three applications are heavily affected by storage I/Oniate large writes as well. A potential solution to reducing latgn
The Video Recording application is understandably afféctewould be to use these flush operations conservatively, thus
as it stores a high quantity of data to the storage when tteglucing the frequency of data being written to storageoAls
video is completed and saved. Angry Birds was the seconbbile app developers should understand the impact of such
worst affected workload. This may be in part due to thBushes to ensure I/O operations are not issued arbitramily a
complexity of the game itself, as the features of the gans@ould also avoid abusing the SQLite library for randomly
may both read the game files and write back progress datestoring small data items - the main source of frequent, small
allow for settings or game saving. The Camera workload wagnchronized writes.
the most affected by I/O latency, which accounts for nearly I/O reads are mostly one-time access and of relatively
70% of the run time, as high resolution pictures are writtenpredictable latencies In our experiments, reads exhibit a

In general, our findings indicate that the significance aéther linear behavior between latency and request size in
storage 1/Os to the end-to-end performance of mobile appsarly every workload. This finding is consistent with our
varies across workloads. understanding about reads in NAND flash, in that they are

Ratio of Latency over Test Duration

70 T T T T T T T T T T T T

60 [~ T
g 50 ~ [l Read-Meta
i) 40 4 | Read
c .
8 30 F | | Write—Async
o (] Write-Sync
[l 20 [~ 1

AppRM
Dropbox
Email
VidRec
VidPlay

(&) © (%]
Q © a2
L 9 g
@ E g
> © o
m O O

AngryBirds
BatchUninstall
WebRequest
RoutePlan
MP3Stream

Fig. 7. Ratio of Latency over Test Duration for a given woddo

|| Application Name | Number of I/Os| Number of Reads| Number of Writes| Test Duration (ms)| Percentage of 1/0 Latenc%

Angry Birds 846 567 279 7414.26 19.8508
App Removal 511 294 217 5667.04 11.5023
Batch Uninstall 1238 326 912 13346.3 11.5861

Burst Mode Camerg 2257 11 2246 17880.6 13.3792
Camera 2319 229 2090 5429.02 69.8771
Contacts 348 113 235 18736.6 2.97313

Dropbox Sync 1983 299 1684 18313.9 12.2474

E-mail Sync 2177 414 1763 61163.4 4.69179
Web Request 173 70 103 4484.59 7.51333
Route Plotting 1950 550 1400 27424.3 8.16327
MP3 Streaming 728 17 711 17606.3 4.33635
Video Playback 256 165 91 7961.2 7.01778

Video Recording 1304 248 1056 10301.7 16.7913
TABLE Il

1/0s BY WORKLOAD

fast and predictable. In addition, these reads are, alnmostor speed them up. The former can be achieved through less
all cases, one-time access. This is directly a result of thse of flushes, while the latter could be realized by adopting
memory being capable of fully containing the workload witta faster storage medium, such as persistent memory [6].

a fairly small working-set size. As long as the memory is 16 impact of storage I/Os to the end-to-end application
capable of containing the working-set, the system will NQfa formance is workload dependent In total, storage 1/0

see a significant amount of latency from regd I/Os, as it ol caq performance degradation appears to be reliant on the
need_s to read storage blogks once. Accordingly, reads do Bfﬁe of application being used. The typical percentage of
contribute as much of an impact to I/O related latency. Thiiency due to storage I/0s falls between 7 and 20 percent.
also is in part due to the read benefits that come from USIDG found that network-heavy applications, such as the E-mai
NAND based flash storage, as these reads will be able t0 f&,jication or the MP3 Streaming application, had much less
completed efficiently. This, again, implies that mobileteys |5tency due to storage 1/0s at just over 4% each. Conversely,
and app developers need to focus more on optimizing Writes,imedia based apps saw typically more latency attribute

to storage 1/0Os, such as the camera workload with nearly 70%
tency. Of the four different specific types of reads and writed2€NCy. These trends are not necessarily strict, as thetoro

we see primarily read-aheads and synchronous writes _rkload indicated that an application may be both heav_ily
quantity. By percentage of latency over test duration, hewe '€iant on a network and affected by storage 1/Os. Comparing
we find that synchronous writes contribute an overwhelmirfg2Mera and its burst mode version, we can find that leveraging
amount of the total latency from storage 1/0s. This laterscy 6@ buffering can effectively reduce the impact of st@rag
compounded by the aggressive flushing experienced in ed& 't @lso implies that other mobile apps with intensive
workload. Because applications are constantly flushingats Wtes should consider such a simple technique to optimize
intervals (e.g., 200 ms), the device has to spend a large mmadRerformance.

of time writing back the data to storage and the applicationsCompared to desktop applications, mobile apps show
remain in a state of being blocked. This finding implies thaeveral unique and distinct characteristics.In our experi-

we need to either reduce the amount of synchronous writegnts, we have observed several interesting propertieof m

Synchronous Writes make up a majority of the 1/0 la-

bile apps. First, we see a large volume of synchronous writAadroid. Jeong et al. investigated the results of changarg v
and frequent use of flushes in mobile apps. This is relateditwus features of the Android operating system and discavere
the mobile apps’ heavy reliance on the SQLite library, arttiat by making changes to the file system and changing the
we rarely see such patterns in desktop applications. Secooplerating mode of the SQLite database, they were able to
most mobile apps have a more relatively small working setmove this journaling of journal effect and achieve a 300%
than typical desktop applications. On one hand, it allowstmgerformance upgrade from SQLite [13]. Recently, Kim et al.
reads to be comfortably accommodated in memory. On tdeveloped an algorithm known as LS-MVBT (multi-version
other hand, it makes mobile apps more write 1/O intensivg-tree with lazy split) to reduce the number o§ync calls
and the write performance issues even more obvious. Desktalpich trigger the journaling in Ext4 [16]. By maintaining
applications, in contrast, are typically more read intemsind the recovery information within the database instead of a
most writes are asynchronous. Thus, the optimization gogsirnal log, they were able to achieve a 1,220% performance
for mobile and desktop applications are very different. improvement over the default SQLite logging modes. Shen,
In general, through our experimental studies, the implickark, and Zhu have also identified several implementation i
tions of the answers show that there is a definite space ftations of the Android operating system and through amglyi
optimization with respect to storage 1/Os. A solution thatild a custom journaling mode they were able to improve overall
overcome the need to constantly commit data to storagedatabase performance by 7% [23]. Additional work in storage
a short interval, thus only writing small amounts of datareas contributes to the understanding of the uniqueness of
would in turn reduce the overall latency which the user mustobile storage to traditional desktop systems. Chen et al.
experience. By reducing the amount of flushing, much of theerformed several tests on flash based SSDs and identified
storage 1/0O latency can be negated which will consequentigveral performance issues that can appear with writes with
optimize application performance on a much larger scale. iegards to flash storage, indicating a need to study flashgsor
the meantime, we should also note that storage 1/0Os accountquely of traditional storage understandings of HDDs [5]
for a moderate portion of the overall mobile app performancéo overcome these innate problems, and those caused by the
which indicates that when optimizing mobile app perform@ncJournaling of Journal anomaly, Lee et al. show that F2FS,
we must consider all system components in a whole packagefile system designed to perform for devices using flash
storage, outperforms the existing EXT4, effectively reingv
VI. RELATED WORK Journaling of Journal by using append only logging [17].
Recognizing the impact of writes to reads, Nguyen et al.
In recent years, inefficiencies of mobile device optimaati proposed a scheduling scheme to reduce application delay by
have received interests in academia. These prior studies cqrioritizing read over write 1/0Os and grouping them based on
various aspects of mobile systems, from power managemeribrities [20]. Kim et al. developed a buffer cache reptaeet
(e.g., [7], [9], [19], [21]), privacy and security (e.g.,][8 scheme to influence the 1/O performance on flash [15]. In
[10], [12]), applications (e.g., [11], [22], [24], [25])n@l many this paper, our main focus is to characterize the 1/0 behavio
others. In this section, we will focus on the prior work th&t iof mobile apps and its interaction with the underlying flash
most related to this paper. memory. Besides observing frequent flushes, we have also
Storage I/Os are important to mobile system performanémund that the end-to-end impact of these 1/O latenciesesari
and user experience. Kim et al. have presented benchmatkpending on applications, which deserves further rekearc
of Android performance, showing that storage may conteibut
more of an effect on system performance than previously VIl. CONCLUSIONS
thought [14]. In contrast to this early work, which focused
primarily on SD-card based external storage, our studies ar Mobile devices have become increasingly important in our
based on the internal eMMC flash storage and show that tit@ly computing. In this paper, we present a comprehensive
impact of storage to the overall user-perceivable perfogaa study on the storage 1/0 behavior of mobile applications and
is moderate for most mobile apps. Lee and Won first noticéldeir interaction with the underlying flash-based stordgye.
several inefficiencies within the various layers of the Andr carefully selecting 13 workloads from 5 categories, we per-
stack [18]. They found that although these layers have befenm extensive experimental studies in an attempt to discov
well designed, several issues with journaling still exdséend the trends that would allow for overall device performance
were causing issues with device performance. This anomadptimization. Our analysis shows that although the numiber o
later known asJournaling of Journglwas determined as thestorage based 1/0s comprises a smaller number of the overall
result of the innate competition of the journaling actiorfs d/Os for a running application, the mobile apps exhibit wiq
the SQLite database which unexpectedly triggered the higho patterns. I/O writes, especially those from synchranou
cost journaling in the Ext4 file system [13]. Due to theserites and fast flushing, contribute most to latency in these
unexpected interactions between SQLite and Ext4, solsitiostorage 1/0s. As a result, a large window of optimization
to address these problems have been proposed, though atdkists at the system level for Android OS design. On the
time have not been adopted into Android, as our results stiggether hand, we have also acknowledged that the end-to-end
that small sync write issues still remain a problem withirmpact of I/O latencies to application performance depentds

workloads, meaning that optimizations must be customiped[t6] W.-H. Kim, B. Nam, D. Park, and Y. Won.

applications.

(1]
(2]

(4]
(5]

[6

(7]

(8]

9]

[10]

(11]

[12]

[13]

[14]

[15]

ACKNOWLEDGMENT

[17]
The authors thank anonymous reviewers for their con-
structive comments to improve this paper. This work was
supported in part by Louisiana Board of Regents under grants
LEQSF(2014-17)-RD-A-01 and LEQSF-EPS(2015)-PFUND-
391, National Science Foundation under grant CCF-1453705,
and generous support from Intel Corporation.

REFERENCES

[20]

Yet Another Flash File System. http://www.yaffs.net.

Without Much Fanfare, Apple Has Sold Its 500 Millionth
iPhone. http://www.forbes.com/sites/markrogowsky/2038/25/
without-much-fanfare-apple-has-sold-its-500-miltioriphone/, 2014.
Market Share: Devices, All Countries, 4Q14 Update. ityww.gartner.
com/newsroom/id/2996817, 2015.

Android. The Android Source Code.

F. Chen, D. A. Koufaty, and X. Zhang. Understanding Imsic Char-
acteristics and System Implications of Flash Memory Basdl State
Drives. InProceedings of the Eleventh International Joint Confeeenc
on Measurement and Modeling of Computer Systems (SIGMESTGIY
pages 181-192, New York, NY, USA, 2009. ACM.

F. Chen, M. P. Mesnier, and S. Hahn. A Protected Block Bewior

Persistent Memory. IRroceedings of the 30th International Conferencg23]

on Massive Storage Systems and Technology (MSSTSbfita Clara,
CA, June 2-6 2014.

X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta, and R. Vati@mby.
Smartphone Background Activities in the Wild: Origin, EgerDrain,
and Optimization. InProceedings of the 21st Annual International
Conference on Mobile Computing and Networking (MobiCory'Paris,
France, September 7-11 2015. ACM.

P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H.R&aroiu,
and A. Wolman. Protecting Data on Smartphones and Tableta fr
Memory Attacks. InProceedings of the 20th International Conference
on Architectural Support for Programming Languages and 1@peg
Systems (ASPLOS'18stanbul, Turkey, March 14-18 2015. ACM.

E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, Srdg

R. Chandra, and P. Bahl. MAUI: Making Smartphones Last Lorngth
Code Offload. InProceedings of the 8th Annual International Confer-
ence on Mobile Systems, Applications, and Services (Msii®y San
Francisco, CA, June 15-18 2010. ACM.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mcil,
and A. N. Sheth. TaintDroid: an information-flow trackingsggm for
realtime privacy monitoring on smartphones.Rroceedings of the 9th
USENIX Conference on Operating Systems Design and Imptatizen
(OSDI'10), Vancouver, Canada, October 4-6 2010. USENIX.

Y. Go, N. Agrawal, A. Aranya, and C. Ungureanu. Relialf®nsistent,
and Efficient Data Sync for Mobile Apps. IRroceedings of the 13th
USENIX Conference on File and Storage Technologies (FASTSanta
Clara, CA, Feburary 16-19 2015. USENIX.

S. Guha, M. Jain, and V. N. Padmanabhan. Koi: A Locafoivacy
Platform for Smartphone Apps. Proceedings of the 9th USENIX Sym-
posium on Networked Systems Design and Implementation!(d23D
San Jose, CA, April 25-27 2012. USENIX.

S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won. /O Stackripétion
for Smartphones. IProceedings of the 2013 USENIX Annual Technical
Conference (USENIX ATC'13pages 309-320, San Jose, CA, 2013.
USENIX.

H. Kim, N. Agrawal, and C. Ungureanu. Revisiting Stogadpr
Smartphones. liProceedings of the 10th USENIX Conference on File
and Storage Technologies (FAST'1ZBan Jose, CA, February 14-17
2012.

H. Kim, M. Ryu, and U. Ramachandran. What is a Good BuBeche
Replacement Scheme for Mobile Flash StoragePrceedings of the
2012 ACM SIGMETRICS Conference (SIGMETRICS’Lahdon, UK,
June 11-15 2012. ACM.

[19]

[21]

[22]

[24]

[25]

Resolving Jouiingl

of Journal Anomaly in Android I/O: Multi-Version B-tree whitLazy
Split. In Proceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST 14¢gges 273-285, Santa Clara, CA, 2014.
USENIX.

C. Lee, D. Sim, J. Hwang, and S. Cho. F2FS: A New File Syster
Flash Storage. IfProceedings of the 13th USENIX Conference on File
and Storage Technologies (FAST'1ppges 273-286, Santa Clara, CA,
Feb. 2015. USENIX Association.

K. Lee and Y. Won. Smart Layers and Dumb Result: |0 Charézation

of an Android-based Smartphone. Rroceedings of the Tenth ACM
International Conference on Embedded Software (EMSORTi&ges
23-32, New York, NY, USA, 2012. ACM.

J. Li, A. Badam, R. Chandra, S. Swanson, B. Worthingtand

Q. Zhang. On the Energy Overhead of Mobile Storage Systems. |
Proceedings of the 12th USENIX Conference on File and S¢ofi@gh-
nologies (FAST'14)Santa Clara, CA, Feburary 17-20 2014. USENIX.
D. T. Nguyen, G. Zhou, G. Xing, X. Qi, Z. Hao, G. Peng, andYang.
Reducing Smartphone Application Delay through Read/Wsitdation.

In Proceedings of the 13th International Conference on MoBilstems,
Applications, and Services (MobiSys’1F)lorence, Italy, May 18-22
2015. ACM.

A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang. é&-i@rained
Power Modeling for Smartphones Using System Call Tracinga |
Proceedings of the 6th Conference on Computer SystemsS¥zsifd)
Salzburg, Austria, April 10-13 2011. ACM.

L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, be@iller,
and S. Shayandeh. Applnsight: Mobile App Performance Muimig

in the Wild. In Proceedings of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSD/'#®)lywood,
CA, October 8-10 2012. USENIX.

K. Shen, S. Park, and M. Zhu. Journaling of Journal Isn{dst)
Free. InProceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST 14gages 287—293, Santa Clara, CA, 2014.
USENIX.

Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. Why are Welo®/sers
Slow on Smartphones? Proceedings of the 12th Workshop on Mobile
Computing Systems and Applications (HotMobile;1Phoenix, AZ,
March 1-2 2011. ACM.

F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zharand Q. Li.
Optimizing Background Email Sync on Smartphones.Phoceedings
of the 11th International Conference on Mobile Systems liéqons,
and Services (MobiSys’13Jaipei, Taiwan, June 25-28 2013. ACM.

