
Understanding I/O Performance Behaviors of
Cloud Storage from a Client’s Perspective

Binbing Hou, Feng Chen
Louisiana State University

Ren Wang, Michael Mesnier
Intel Labs

Zhonghong Ou
Beijing Univ. of Posts & Telecomm.

Storage in the Cloud Era

Enterprise Cloud Storage Personal Cloud Storage

• Personal cloud storage subscriptions will reach 1.3 billion by 20171

• Public/private cloud storage market is predicted to be $65.41 billion by 20202

1

[1] https://technology.ihs.com/410084/subscriptions-tocloud-storage-services-to-reach-half-billion-level-this-year.
[2] http://www.marketsandmarkets.com/Market-Reports/cloud-storage-market-902.html.

Cloud Storage vs. Conventional Storage

Is our past wisdom on storage still applicable to cloud storage?

SCSI Cloud
Storage
Cluster

Internet

servers

PCs

mobile devices

• Cloud storage cluster

- Massively parallelized

- High throughput

• Clients
- Highly diverse

- Different capabilities

• Connection

- World-wide internet

- HTTP-based protocol

2

Measurement Methodology

• Investigating cloud storage as storage services

- “Black-box” testing

- Adopting HTTP-based APIs rather than POSIX-like APIs

- Purposely avoiding the client-side optimization techniques

• Test Workloads
- Request Type: PUT (upload), GET (download)

- Parallelism degree: 1 – 64

- Request size: 1KB – 16MB

- Metrics: Bandwidth and Latency

• Platform to be tested:

- Cloud: select Amazon S3 (the data center in Oregon)

- Clients: customizing five Amazon EC2 instances varying capabilities

3

Outline

• Basic Observations

• Effect of Client’s Capability

• Effect of Geo-distance

4

• Case Study

• System Implications

Effect of Parallelism

5

Basic Observations

+ 18X

- 10%

• Effect of parallelism on bandwidth

• Proper parallelization dramatically improves the bandwidth (e.g., 18x speedup).

• Over-parallelization may cause performance degradation (e.g., 10% degradation).

• Effect of parallelism on request latency

• Proper parallelization does not significantly affect the latency.

• Over-parallelization may lead to the latency increasing linearly.

Effect of Request Size

• Effect of request size on bandwidth

• Increasing request size can significantly increase the bandwidth (e.g., 770x speedup).

• The benefit brought by increasing request size is not unlimited (i.e., diminishing improvement).

• Effect of request size on request latency

• Larger requests generally have higher request latencies.

• The latency does not necessarily increase when request size increases (e.g., 1KB-16KB).

6

Basic Observations

+ 770X
+ 29%

+ 55%

+ 210%
Comparable

Parallelism vs. Request Size

• Both are helpful to improve bandwidth but have limitations.

• Does there exist any optimal combination?
- e.g., Upload a 4MB object

- Reasonable combinations: 4MBx1, 1MBx4, 256KBx16, 64KBx64

7

Basic Observations

Parallelism vs. Request Size (cont.)

• What if comparable bandwidth with different combinations?

- e.g., Upload 16 objects of 1KB

- Bandwidth: 16KB X 1 = 4KB X 4 = 1KB X 16

8

In such cases, larger requests consume less CPU resources.

Basic Observations

5%
15%

65%

Effect of Client’s Capability

9

Client Instance Location vCPU Memory Storage

Baseline m1.large Oregon 2 7.5 GB Magnetic (410 GB)

CPU-plus c3.xlarge Oregon 4 7.5 GB Magnetic (410 GB)

MEM-minus m1.large Oregon 2 3.5 GB Magnetic (410 GB)

STOR-ssd m1.large Oregon 2 7.5 GB SSD (410 GB)

GEO-Sydney m1.large Sydney 2 7.5 GB Magnetic (410 GB)

• Experimental comparisons

- Comparing the performance of Baseline client with other four clients separately

- Client CPU: Baseline (2 CPUs) vs. CPU-plus (4 CPUs)

- Client memory: Baseline(7.5GB) vs. MEM-minus(3.5GB)

- Client storage: Baseline (Magnetic) vs. STOR-ssd (SSD)

Client’s Capability

• Experimental comparisons

- Comparing the performance of Baseline client with other four clients separately

- Client CPU: Baseline (2 CPUs) vs. CPU-plus (4 CPUs)

- Client memory: Baseline(7.5GB) vs. MEM-minus(3.5GB)

- Client storage: Baseline (Magnetic) vs. STOR-ssd (SSD)

Effect of Client CPU

• Client CPU

- CPU is responsible for both data packets sending/receiving and client I/O.

- Comparison: Baseline (2 CPUs) vs. CPU-plus (4 CPUs)

10

• Client CPU has significant effects on small requests.

• Client CPU does not have significant effects on large requests.

Client’s Capability

Comparable

Large gap

Effect of Geo-distance

• Geo-distance

- Comparison: Baseline (in Oregon) vs. GEO-Sydney (in Sydney)

- RTT: 0.28ms (same data center in Oregon) vs. 176ms (from Sydney to Oregon)

11

• Effect of geo-distance on bandwidth
- Geo-distance has significant effect on peak bandwidth of small requests

- Geo-distance does not significantly affect peak bandwidth of large requests

Geo-distance

Small gapLarge gap

Effect of Geo-distance (cont.)

• Geo-distance

- Comparison: Baseline (in Oregon) vs. GEO-Sydney (in Sydney)

- RTT: 0.28ms (same data center in Oregon) vs. 176ms (from Sydney to Oregon)

12

• Effect of geo-distance on latency
- RTT plays a critical role but is not the only determining factor

Geo-distance

Flatter curve

Large gap
Converge

Large gap

Case Study: Client-side Caching

• Client-side caching and chunking
- Chunking is a key technique used in cloud storage

- Chunking will affect the caching efficiency

- Small chunk size may lead to high cache miss ratio

- Large chunk size may be risky of loading unwanted data

• Experimental platform
- Cloud storage services: Amazon S3 in Oregon

- Client: a workstation in Louisiana

- Emulator: converting POSIX operations to HTTP requests; disk cache support

• Trace
- Converted from a segment of NFS trace of Harvard SOS project3

- Workload size: 4.8 GB

- Average file size: 12.9 MB

13

[3] https://www.eecs.harvard.edu/sos/traces.html

Case Study

Amazon S3

PUTGET

Disk Cache

Client

Read Write

Case Study: Proper Chunk Size for Caching

• How can we determine a proper chunk size?
- Bandwidth-based method can give some hints

- Select a relatively small size that can approximately reach the peak bandwidth

14

Case Study

Proper chunk size ≈ 4MB ?

When chunk size exceeds 4MB:
• cannot bring significant benefit
• high risk of loading unwanted data

4MB

Case Study: Proper Chunk Size for Caching(cont.)

• Experimental comparison

- Standard LRU, 200 MB disk cache, write back every 30s

- Comparison: 64KB, 1MB, 4MB, 8MB, 16MB

• 4MB leads to the lowest read/write latencies.

15

Case Study

95.2ms

51.4ms

109.8ms

66.8ms

60.2ms

88.6ms

Case Study: Proper Chunk Size for Caching(cont.)

• How does chunking policy affect caching efficiency?

- Increasing request size significantly improves the performance (i.e., hit ratio).

- Excessively large request size causes performance degradation.

- high cache miss penalty=high download latency (4s to 4MB, 14.2s to 16MB).

16

Case Study

Read hit ratio
64KB: 77.8%

Read hit ratio
4MB: 98.4%

Write hit ratio
4MB: 99.4%

Write hit ratio
64KB: 88.9%

System Implications

• Properly combining parallelism and request size

- Reshaping the workloads: chunking/bundling, parallelizing

- Optimal bandwidth can be achieved by proper combination

• Client-aware optimization
- Special attentions should be paid to exploiting client’s capability

- Small requests (CPU) vs. large requests(Memory, Storage)

- Client aware optimization: e.g., smartphone (weak CPU)

• Geographical distance plays an important role
- The negative effects can be offset by proper optimization

- Latency-sensitive applications: e.g., file system, database

- Bandwidth-sensitive applications: e.g., backup, video services

17

Conclusion

• We present a comprehensive measurement of cloud storage

from the perspective of the client side.

• Our case studies demonstrate that user experiences can be better
optimized by understanding cloud I/O behaviors.

• Based on our findings, we present a series of system implications.

18

Thank you!
{bhou, fchen}@csc.lsu.edu

zhonghong.ou@bupt.edu.cn
{ren.wang, michael.mesnier}@intel.com

mailto:{bhou@csc.lsu.edu
mailto:zhonghong.ou@bupt.edu.cn
mailto:michael.mesnier}@intel.com

