
Understanding Storage I/O Behaviors of Mobile Applications

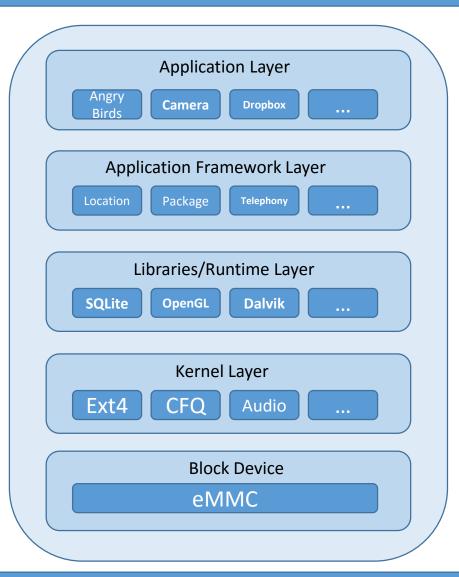
Jace Courville jcourv@csc.lsu.edu Feng Chen fchen@csc.lsu.edu

Louisiana State University

Department of Computer Science and Engineering

The Rise of the Smartphone

http://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/


- Smart device use has steadily increased since 2007
- Users are switching to these devices for daily computing tasks

Unique Behaviors of Mobile Applications

- Flash-based storage medium
 - High read performance, poor random write performance
- Latencies have a greater impact on device usability
 - Optimizations need to be latency-oriented
- Distinct software stack and distinct app characteristics

The Android Architecture

- Applications are considered "users" with their own unique ID and set of permissions
- Applications run in a protected environment and privileged operations are encapsulated in a small set of API interfaces
- Libraries such as SQLite are heavily used in nearly all mobile apps

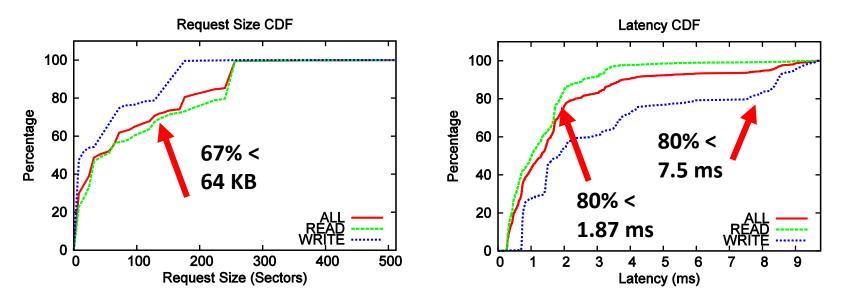
Prior wisdom may not apply

Key Questions

- How much do storage I/Os impact workload performance?
- Which type of storage I/Os contribute the most to latency?
- Are there any consistent trends in application performance?
 - Are behaviors different over different categories of workloads?
- What are the systems implications of storage I/O Latency?

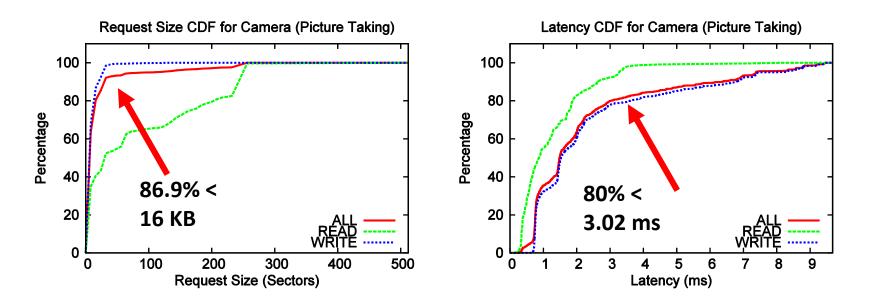
Experimental Setup

- Google Nexus 5, 32 GB eMMC storage, 2 GB RAM
- AOSP Android 5.1 OS / Linux kernel 3.4.0
- Iktrace / blkparse used to collect and interpret I/Os
 - Traces are stored on ramfs to eliminate blktrace overhead
 - Device restarted between each test to remove variance
 - blktrace started following end of interaction
- Metrics Gathered:
 - I/O Request Size, I/O Latency
 - Information Between Successive Flushes
 - Locality
 - Percentage of I/O time

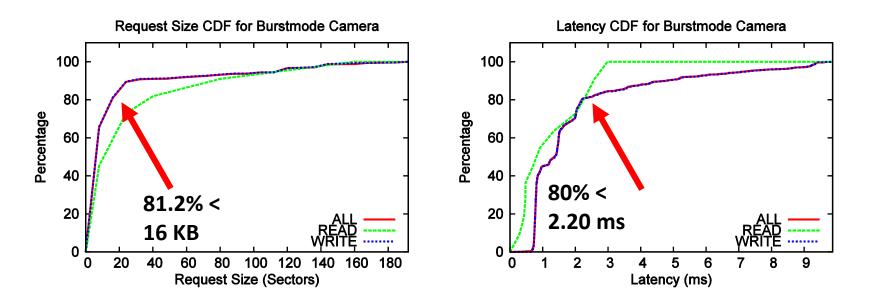

I3 Workloads from 5 categories representing real-world scenarios

Workload Name	Workload Type	R/W Ratio	Read- based	Write- based	Description
Angry Birds	Game	2.03 /1	Х		Load the Angry Birds Application
App Removal	Device Utility	1.35 /1	х		Uninstall an Application
Batch Uninstall	Device Utility	1/ 2.79		Х	Uninstall several Applications through ADB at once
Camera	Multimedia	1/ <mark>9.12</mark>		Х	Default Camera used to take 3 pictures in sequence
Burst Mode Camera	Multimedia	1/ 204.1		х	Burst Mode Camera app used to take 100 photos in burst
Video Recording	Multimedia	1/ 4.25		X	Uses default Camera to record a 5 second video
Video Playback	Multimedia	1.81 /1	Х		Plays back the recorded 5 second video
Add Contact	Productivity	1/ 2.07		Х	New contact is added through the Contacts app
Sync Dropbox	Network	1/ 5.63		Х	Links an existing DropBox account to the device and syncs
Sync E-Mail	Network	1/ 4.25		X	Links an existing E-mail account to the device and syncs
Web Request	Network	1/ 1.47		Х	Load the Facebook web site through the default browser
Route Plot	Network	1/ <mark>2.54</mark>		х	Plots a GPS route using the Google Maps app
MP3 Stream	Network	1/ 41.8		х	Streams 15 seconds of a song in the Spotify app

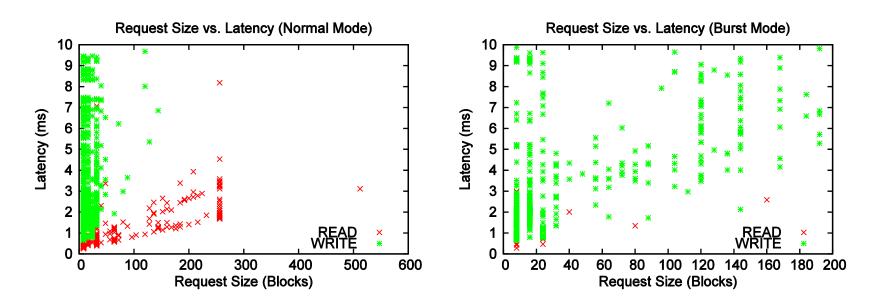
Outline of Experiments


- Basic Observations
 - Two key factors: Request Size and Latency
- Flushing Behavior
 - Directly impacts I/O speed on NAND flash-based storage
 - Requests, Total Size, Time Between Successive Flushes
- Access Locality
 - Has strong implications to cache efficiencies
- Total Storage I/O Latency impact
 - What percentage of runtime is storage I/O latency?

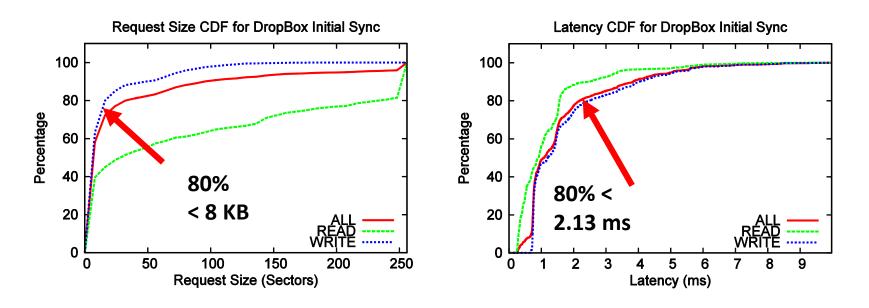
Basic Observations: Angry Birds


- Average case Small request sizes of varying latency
- Read-Heavy Workload
 - Highest number of reads of any workload (567)
- 67.8% of all I/Os are smaller than 64 KB
- Writes longer than reads

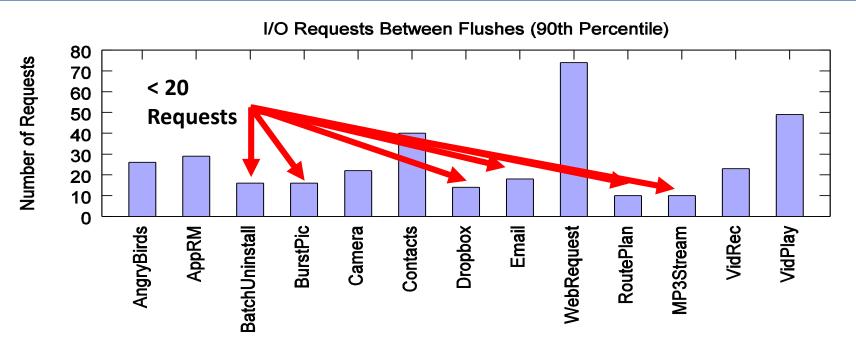
Basic Observations: Camera – Normal Mode


- Highly write-heavy 9.12 writes to 1 read (3rd highest)
 - 2nd highest total writes (2090)
- All writes are very small 86.9% smaller than 16 KB

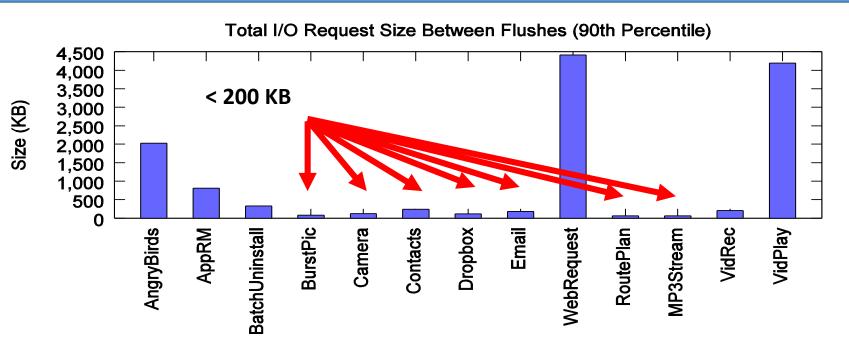
Basic Observations: Camera – Burst Mode


- Most write-heavy workload (204.1 writes to every 1 read)
 - Most writes of any workload at 2246
 - Fewest reads of any workload at 11
 - Writes are more variable in size
- Only 156 more reads than the Normal Mode workload

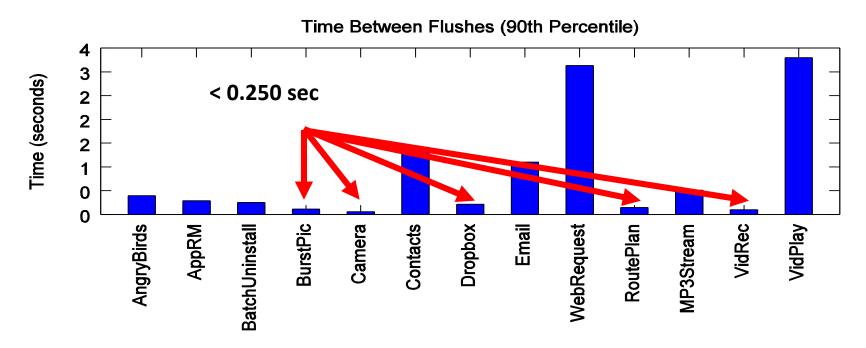
Basic Observations: Camera


- Both Camera modes experience variable latency for I/O writes
- Normal mode workload sees smaller writes, reads
- Burst workload sees very few reads, much larger writes

Basic Observations: Dropbox Sync

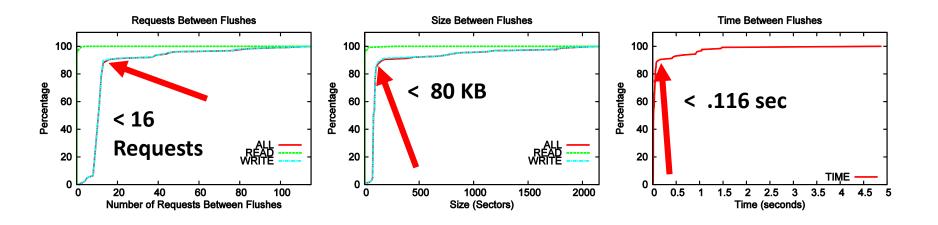

- Network-based workload Majority small writes (80% < 8 KB)
- Compared to other workloads, reads are larger
- All writes have highly variable latencies

Flushing Behavior


- Application Developers may wish to ensure data persistence
- Android OS uses flush operation to send buffered data to storage
- Too much flushing can be a bad thing
 - Can result in increased latency, therefore decreased performance
- Trend of excessive flushing is common

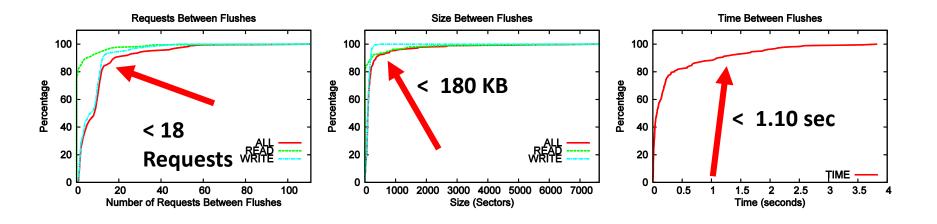
Flushing Behavior

- Application Developers may wish to ensure data persistence
- Android OS uses flush operation to send buffered data to storage
- Too much flushing can be a bad thing
 - Can result in increased latency, therefore decreased performance
- Trend of excessive flushing is common


Flushing Behavior

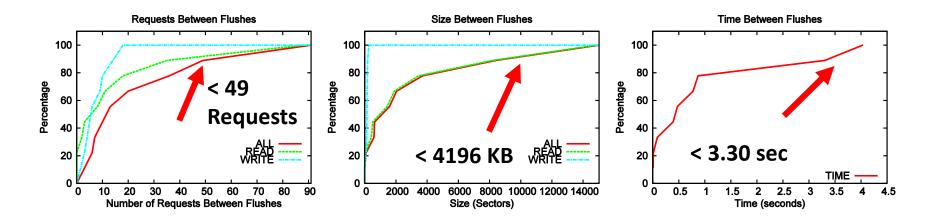
- Application Developers may wish to ensure data persistence
- Android OS uses flush operation to send buffered data to storage
- Too much flushing can be a bad thing
 - Can result in increased latency, therefore decreased performance
- Trend of excessive flushing is common

Flush Behavior


Burst Mode Camera

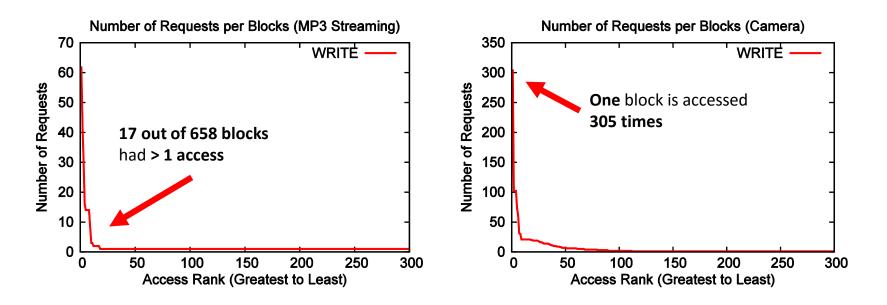
- 90% of Flushes have < 16 I/O requests between successive flush operations.</p>
 - < 80 KB of Data and < .116 sec between flushes</p>
- Very aggressive flushing Extremely short iterations between flushes

Flush Behavior

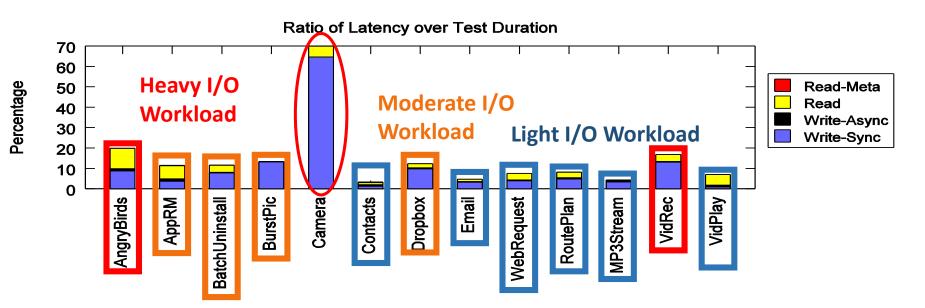

E-mail Sync

- 90% of Flushes have < 18 I/O requests between successive flush operations.</p>
 - < 180 KB of Data and < 1.10 sec between flushes</p>
- Data persistence is desired, so we see utilization of flush operations

Flush Behavior


Video Playback

- 90% of Flushes have < 49 I/O requests between successive flush operations.</p>
 - < 4196 KB of Data and < 3.30 sec between flushes</p>
- I/O writes not heavily used -- not as important to make any data persistent


Locality

Locality

- A common trend Very few blocks experience multiple accesses
- Camera workload had one block re-accessed 305 times
- Only top 300 most accessed blocks shown
 - MP3 Streaming has 658 accessed block Camera has 3293
- Nearly all workloads saw reads as single access only

Impact of Storage I/O latency

- The impact of Storage I/O latency varies by workload
- Camera is the most affected, at nearly 70%
- Asynchronous Writes and Reads were the direct contributors
 - Metadata Reads and Asynchronous writes had little to no impact
- Storage I/O Latency impact may not be user-perceivable

System Implications

- I/O Writes are small with varying latency
 - Small writes range from 1 ms to 10 ms of latency
 - Category independent trend Dropbox was 5th most affected workload
- Aggressive flushing is very common
 - Data safety is a concern for developers results in aggressive flushing
 - Resulting small writes will magnify slow write performance of flash storage
- I/O Reads happen only once in nearly all workloads
 - Confirmed by reducing available RAM to 1 GB
 - Sufficient RAM availability has the most impact
- Synchronous writes are the most common and the biggest issue
 - By numbers, Synchronous Writes and Reads were similar
 - Metadata Reads / Asynchronous writes uncommon with minimal impact
- Storage I/O impact varies by workload
 - Camera workload much larger next most impacted was 20%
 - May not have as much as a user perceivable impact as previously thought

Conclusions

- There is a definite space for storage I/O optimization
- Small, synchronous writes are the biggest cause for I/O latency
- Reducing flushing will negate much of the latency caused by I/Os
- Impact of I/O latency is application and workload dependent
- Any solution must be customized to the individual workload

Thank You!

Jace Courville jcourv@csc.lsu.edu Feng Chen fchen@csc.lsu.edu