
OFS: An Overlay File System for
Cloud-Assisted Mobile Applications

Jianchen Shan, Nafize R. Paiker, Xiaoning Ding,
Narain Gehani, Reza Curtmola, Cristian Borcea

Mobile apps need cloud assistance

• Mobile devices have limited resources

• Systems designed to offload resource-
demanding tasks to cloud

• Tasks offloaded in the forms of:
– Threads: CloneCloud [EuroSys ’11], COMET [OSDI ’12]

– Procedures: MAUI [MobiSys ’10], ThinkAir [Infocom ’12]

– Objects: Sapphire [OSDI ’14]

2

Example of cloud-assisted
mobile app

• Enhanced camera app

1. Take and store a photo

Cloud

2. Offload image processing tasks

on the photo to the cloud

Mobile

3 Read the photo from mobile 4. Do some processing on photo5. Update the photo
6. Read the processed photo7. Display the processed photo

• Characteristics of file I/O in cloud-assisted mobile apps:
– Read and write files on both mobile and cloud
– May require strong consistency (always read latest copy)
– Long I/O latency due to transferring the file over network

3

Existing systems cannot handle file
I/O in cloud-assisted mobile apps

• Don’t support offloading tasks that perform file
operations
– COMET [OSDI ’12]

• Don’t have mechanisms to support consistent
remote file access
– MAUI [MobiSys ’10], ThinkAir [Infocom ’12],

CloneCloud [EuroSys ’11], Sapphire [OSDI ’14]

4

Problems with using network and
distributed file systems

• Strong consistency cannot be achieved with low
latency and low network overhead

• Opened files must be reopened after a task is
offloaded in order to continue accessing the file
– Close → migrate → reopen

• Root privilege needed to setup client software
• User credentials need to be saved in the cloud to

access files
5

File system requirements for cloud-
assisted mobile apps

• Location transparency
– Access remote files as though they were local
– Maintain file sessions during task offloading

• Consistency
– Ensure correct execution of tasks distributed across mobile and

cloud

• Performance
– Provide low latency with little network overhead to save energy and

network bandwidth

• Ease of deployment
– Require minimal privileges in addition to those needed to run tasks
– No need to save to-be-accessed files before application runs

6

Overlay file system (OFS)
• Application-level FS for cloud assisted mobile apps

– Doesn’t need system-wide management
– Can work with any native file system
– Doesn’t incur costly context switches

• Advantages:
– Strong consistency (delayed-update policy)
– Location transparency (file session management)
– Low overhead (low latency file access, low overhead

consistency maintenance)
– Ease of deployment (application level)

7

Outline

• Background
• OFS

– Architecture and design
– Consistency model

• Evaluation
• Conclusion and future work

8

Local

Offloading
middleware

Offloaded taskStandard
file I/O

interface

Offloading
middleware

Local

O

Mobile app
Standard

file I/O
interface

OFS
Block buffer

CloudMobile device

OFS

Block buffer

Consistency

Overall system architecture

• OFS intercepts and monitors file access requests from
tasks in application

• For remote file access, OFS maintains a block buffer to
cache blocks read from remote files through network

Block buffer Block buffer

9

Buffer
management

Session
management

Local/remote access
switch

Standard file I/O interface to app

To native file systems

Block buffer

Consistency
management To other devices

Interface to task
offloading
middleware

OFS architecture

Upper layer:
library linked

with application

Lower layer:
app-level

runtime service
in middleware

10

Buffer

Session
management

Local/remote access
switch

Standard file I/O interface to app

o other devices

Interface to task
offloading
middleware

Attached with
application

OFS middleware

• Intercepts library calls
• Decides whether a call should be handled by native

file system or OFS
• Native file system: local files
• OFS: remote files

OFS architecture

11

Buffer
management

Session
management

Local/remote access
switch

Standard file I/O interface to app

cy
To other devices

Interface to task
offloading
middleware

Attached with
application

OFS middleware

• File session: set of file operations and states between file
open and close

• When a task is offloaded, the state required by the
unfinished file sessions will be correctly set up

OFS architecture

12

management

To native file systems

Block buffer

Consistency
management To other devices

 task

middleware

• Utilizes the delay-update consistency model
• Notified of all calls before it passes the calls to buffer

management
• Confirms that writes will not cause inconsistency issues
• Keeps access information for reads to detect access patterns

OFS architecture

13

Buffer
management

Session
management

To native file systems

Block buffer

Consistency
management To other devices

Interface to task
offloading
middleware

OFS middleware

• Caches only remote files
• Data and metadata reside in virtual address space for fast access
• Metadata maintains location and status of file blocks

OFS architecture

14

Storage

L h

Session Manager

Consistency Manager

Buffer Manager

OFS Middleware

User App

al/Remote Switch

ession Manager

Consistency Manager

Buffer Manager

OFS Middleware

Cloud
Storage

Mobile Cloud

OFS workflow: enhanced camera app

Take and store
photo

Is it remote?

Store the photo
locally

no

Offload heavy workload thread
from mobile to the cloud

15

OFS Middleware

OFS Middleware

Local
Storage

Cloud
Storage

 ssionResume S

p Update the

photo

Is it remote?yes Update file state

Display the photo

Mobile Cloud

Migrate the thread back to mobile
from cloud

 Load file blocks

Maintain consistency between cloud and mobile
If any of the file blocks in block buffer are invalid, fetch valid copies

from cloud and return file blocks

OFS workflow: enhanced camera app

16

User App

Consistency Manager

Buffer Manager

OFS Middleware

User App

Local/Remote Switch

Consistency Manager

Buffer Manager

OFS Middleware

Cloud
Storage

Mobile Cloud

Destroy SessionDestroy Session

Update file state

OFS workflow: enhanced camera app

17

Local
Storage

Outline

• Background
• OFS

– Architecture and design
– Consistency model

• Evaluation
• Conclusion and future work

18

T
Cloud

Mobile

Delayed-update algorithm
• Monitor file access pattern to efficiently maintain

strong consistency
– Combination of write-invalidate and write-update

• Invalidate duplicates
• Update them when they are about to be read

w w w

R

19

w

In
va

lid
at

e

…

U
pd

at
e

w w w

R

w

In
va

lid
at

e
……

U
pd

at
e

Outline

• Background
• OFS

– Architecture and design
– Consistency model

• Evaluation
• Conclusion and future work

20

Experiments
• Goal: compare OFS against with write-invalidate,

write-update, and NFS
• Traces: real-life mobile app file access traces

derived from U. of Buffalo’s PhoneLab testbed
– Thread offloading: offload complete threads
– Procedure offloading: offload parts of threads

• Metrics:
– Average read and write latency
– Average I/O latency
– Network overhead
– Mobile device active time

21

OFS incurs lowest I/O latency

Thread offloading Procedure offloading

• 85%, 37%, and 33% lower latency than write-update, write-
invalidate, and NFS

• Procedure offloading incurs 22% lower latency than
thread offloading

22

OFS reduces read latency at the cost
of write latency

• Read latency is 14x lower, and write latency is 2-3x higher than write
invalidate and NFS

• Read-intensive workloads benefit more from OFS than write-intensive
workloads

Thread offloading Procedure offloading

23

OFS achieves lower I/O latency with
slightly higher network overhead

• 6% higher network overhead than write-invalidate and NFS
• Procedure offloading leads to lower network overhead than thread

offloading

24

OFS reduces mobile device active time
more effectively than other policies

Procedure offloading

• I/O overhead must be effectively reduced to really benefit from
task-offloading to the cloud
• Speedup application and save battery power 25

Conclusion and future work
• OFS provides efficiency, consistency, and location

transparency
• OFS lowers substantially file access latency at the cost of

small network overhead
• OFS reduces the active time of mobile devices when

running cloud-assisted apps
• OFS is more effective with read-intensive workloads and

procedure offloading
• Future work: integrating OFS in our Moitree middleware

26

Thanks!

http://cs.njit.edu/~borcea/avatar

Acknowledgment: NSF Grants CNS 1409523, CNS
1054754, DGE 1565478, and DUE 1241976. NSA
Grant H98230-15-1-0274, DARPA/AFRL Contract:

A8650-15-C-7521.

27

http://cs.njit.edu/~borcea/avatar

Backup slides

28

Consistency management in OFS
• Objectives:

– Strong consistency
• No stale data => application correct execution, simple

application development

– Low access latency and network overhead
• Write-invalidate and write-update

– Relaxed consistency
• Health monitoring app

29

Delayed-update algorithm
• Monitor file access pattern to determine

when to update duplicates
– Combination of write-invalidate and write-update
– Invalidate duplicates and then update them when they are

about be to read

T
Cloud

Mobile

w w w w w w w w w w w w w w w

Overwritten counter = Overwritten threshold = 0 012330

R R R R R R R

Invalidate InvalidateupdateInvalidateupdateInvalidate

miss hit hit miss hit miss hit

0 3201 21

update updateInvalidate

2102130210101

Invalidate

30

Delayed-update algorithm
• Monitor file access pattern to efficiently maintain

strong consistency
– Combination of write-invalidate and write-update
– Invalidate duplicates; update them when they are about be to read

T
Cloud

Mobile

w w w w w w w w w w w w w w w

R R R R R R R

In
va

lid
at

e

Miss Hit Hit Miss Hit Miss Hit

In
va

lid
at

e

U
pd

at
e

In
va

lid
at

e

U
pd

at
e

In
va

lid
at

e

U
pd

at
e

In
va

lid
at

e
U

pd
at

e

In
va

lid
at

e
31

Number of overwrites per transfer

Thread offloading Procedure offloading

• OFS transfer data more frequently than write-invalidate and NFS
• Cannot accurately predict and may update data too soon
• Explain why OFS incurs slightly higher write latency and network overhead

• OFS transfer data less frequently for procedure offloading
• Explain why procedure offloading perform better than thread offloading in terms of

write latency and network overhead
32

Block buffer hit ratio

Thread offloading Procedure offloading

• OFS has higher hit ratio than write-invalidate and NFS (99% Avg)
• Indicates that the delayed-update algorithm in OFS can effectively adjust

the overwrite threshold and update duplicates to minimize buffer misses
• Explains why OFS has lower read latency

• Procedure offloading has higher hit ratio than thread offloading
• Explains why the read latency is lower for procedure offloading than for thread

offloading 33

