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Failure Consistency

A Failure Consistency (Failure-Consistent Updates)
— Atomicity and durability

— The system 1s able to recover to a consistent state from
unexpected system failures

3 Application Level Consistency

— Update multiple files atomically and selectively

Example:

Atomic Group/{

write(fdl, “datal”); |, ; Either both writes persist
write(fd2, “data2”):; successfully, or neither does

; 3.
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Comparison of Different File Systems on

NVMM Storage

Apgllcatlon Level
onS|stency

Valor [FAST 09] FCFS

Low High
Performanc& | »Performance

Ext2, Ext3, Ext4 BPFS [sosP 09],
PMFS [EuroSys 14],
NOVA [FAST 16]

4
File System Level
Consistency -12-



a FCFS Design
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An Example of How to Use FCFS

tx 1d = tx_begin();

tx add(tx 1d, {d1);
write(fd1l, “datal™); :> tx_add(tx_1d, fd2);
write(fd2, “data2”); write(fd1, “datal”);

} write(fd2, “data2”);

Atomic Group/

tx commit(tx 1d);

tx_begin(TxInfo) creates a new transaction

tx _add(TxID, Fd) relates a file descriptor a designated transaction
tx commit(TxID) commits a transaction

tx_abort(TxID) cancels a transaction entirely



Opportunities and Challenges for Providing
Fast Faillure-Consistent Update in NVMM FS

d Opportunities
— Direct access to NVMM allows fine-grained logging

— Asynchronous checkpointing can move the checkpointing
latency off the critical path under low storage load

A Challenges

— #1: How to guarantee that a log unit will not be shared by
different transactions? (Correctness)

— #2: How to balance the tradeoff between copy cost and log
tracking overhead? (Performance)

— #3: How to improve checkpointing performance under high
storage load? (Performance)

-15-



Key Ideas of FCFS

3 Our Goal: to propose a novel NVMM-optimized file system
(FCFES) providing the application-level consistency but without
relying on the OS page cache layer

d Key ldeas of FCFS (NVMM-optimized WAL):

— Hybrid Fine-grained Logging to address Challenge #1 and #2
e Decouple the logging method of metadata and data updates
o Using fast Two-Level Volatile Index to track uncheckpointed log data
— Concurrently Selective Checkpointing to address Challenge #3

e Committed updates to different blocks are checkpointed concurrently

o Committed updates of the same block are checkpointed using Selective
Checkpointing Algorithm

-16-



1. Hybrid Fine-grained Logging

a Challenge #1: Correctness

> Logging granularity (byte vs cacheline)
— a log unit should not be shared by different transactions

e Smallest unshared unit is
a file

« File 1s allocated based on
block

Byte Granularity Byte Granularity

Cacheline Granularity Cacheline Granularity
-17-



1. Hybrid Fine-grained Logging

d Challenge #2: Performance tradeoff : log tracking cost vs data
copy cost

» Impacted by logging granularity (byte vs cacheline) & logging
mode (undo VS redo

Metadata Data
(update size is small) (update size can be

very large

Byte granularity undo Cacheline granularity
logging redo logging



1. Hybrid Fine-grained Logging

3 Another Challenge: How to reduce the log tracking cost of the
data log (cacheline granularity redo logging) ?

— Example: each 64B cacheline log unit may need at least 16 bytes of
index

d Solution: Two-Level Volatile Index

» Different versions’ log blocks form a
pending list
* First level: logic block = pending list head
(radix tree)

 Second level: traversing the pending list to get
the physical block which contains the latest
data of a cacheline using the cacheline bitmap

Overheads: Each 4KB log blocks requires
at most 16 bytes of index data (first level)
and 8 bytes of bitmap (second level)

(Logic block, cacheline 1d) == (physical block) -19-



2. Concurrently Selective Checkpointing

Challenge #3: How to improve checkpointing performance
under high storage load?

d Concurrent Checkpointing

— Committed updates to different blocks are checkpointed
concurrently to enhance the concurrency of checkpointing

3 Selective Checkpointing

— Committed updates of the same block are checkpointed
using Selective Checkpointing Algorithm to reduce the
checkpointing copy overhead

-20-



2. Concurrently Selective Checkpointing

a Another Challenge: How to ensure correct failure
recovery due to out-of-order checkpointing?

— What if a newer log entry is deallocated before an older log entry
and the system crashes before deallocating the older one?

— How to guarantee that the commit log entry 1s deallocated at last?

3 Solution: Maintaining two ordering properties during log
deallocation
— Redo log entries are deallocated following the pending list order

— Using a global committed list to ensure the deallocation order

between the commit log entry and other metadata/data log entries
of a transaction?

_21-



2. Concurrently Selective Checkpointing

Q Selective Checkpointing Algorithm

— Leveraging NVMM’s byte-addressability to reduce the
checkpointing copy overhead
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Note: DO~D3 refers to different versions of block D; C;; is the jth cacheline in the ith version of block D
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2. Concurrently Selective Checkpointing

Q Selective Checkpointing Algorithm

— Leveraging NVMM’s byte-addressability to reduce the
checkpointing copy overhead
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Stepl: a new permanent data block, which has the largest number of

latest cachelines, is carefully selected
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2. Concurrently Selective Checkpointing

Q Selective Checkpointing Algorithm

— Leveraging NVMM’s byte-addressability to reduce the
checkpointing copy overhead
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Step2: Copy the latest cacheline data from other blocks to the newly-

selected permanent block
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2. Concurrently Selective Checkpointing

Q Selective Checkpointing Algorithm

— Leveraging NVMM’s byte-addressability to reduce the
checkpointing copy overhead
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Note: DO~D3 refers to different versions of block D; C;; is the jth cacheline in the ith version of block D

Step3: Modify the reference to origin original block to refer to newly-

selected permanent block atomically
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2. Concurrently Selective Checkpointing
3 Overhead Comparison

Selective
Checkpointing

Selective Checkpointing Algorithm significantly

Traditional Constant
Checkpointing

reduces the checkpointing copy overhead
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d Evaluation
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Evaluations of Failure-Consistent Updates

« NC is a no-consistency system

« FG-WAL implements the failure-consistent update protocol using fine-grained write-ahead logging

SCSP implements the failure-consistent update protocol using short-circuit shadow paging [SOSP 09]
 Valor is a traditional transactional file system

 The latency of FCFS-based version 1s the lowest among all
failure-consistent versions (FG-WAL, SCSP, Valor)

28



Evaluations of Real Applications

Throughput Performance NVMM Write Size

« NC turns off the transactional part of each application

O FCFS-based applications outperform the original ones by up
to 93% (MySQL running YSCB workload)
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d Conclusion
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Conclusion

A Existing NVMM file systems do not guarantee the consistency
of application data, while application’s own consistency
protocols are complex and error-prone

A FCFS 1s the first NVMM-optimized file system which enables
both correctness and high performance for applications to
consistently update their data on NVMM storage

A FCFS employs an NVMM-optimized WAL scheme to reduce
the overhead towards supporting failure consistency by fully
leveraging NVMM’s byte addressability and high concurrency
but without relying on the page-cache layer

d FCFS’s failure-consistent update protocol and FCFS-based
applications significantly outperform conventional protocols and
original applications respectively -31-
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