Fast and Failure-Consistent Updates of
Application Data in Non-Volatile Main Memory
File System

Jiaxin Ou, Jiwu Shu
(ojx11@mails.tsinghua.edu.cn)

Storage Research Laboratory
Department of Computer Science and Technology
Tsinghua University

Outline

d Background and Motivation

Failure Consistency

A Failure Consistency (Failure-Consistent Updates)
— Atomicity and durability

— The system 1s able to recover to a consistent state from
unexpected system failures

3 Application Level Consistency

— Update multiple files atomically and selectively

Example:

Atomic Group/{

write(fdl, “datal”); |, ; Either both writes persist
write(fd2, “data2”):; successfully, or neither does

; 3.

Existing approaches for supporting

aEEIication level consistencx on NVMM

Application
(e.g., SQL.ite, MySQL)

Consistent update
protocol (Journaling)

NVMM-based FS
(e.g., BPFS, PMFS)

NAVALY

Existing approaches for supporting

aQEIication level consistencx on NVMM

Application
(e.g., SQL.ite, MySQL)

Consistent update
protocol (Journaling

Complex and

Error-prone [osoi 14]

NVMM-based FS
(e.g., BPFS, PMFS)

NAVALY

Existing approaches for supporting

aQEIication level consistencx on NVMM

Application Application
(e.g., SQL.ite, MySQL) (e.g., SQLite, MySQL)

Consistent update
protocol (Journaling

Complex and | |
Error-prone [osoi 14] Traditional
NVMM-based ES Transactional FS (Valor)l
(e.g., BPFS, PMFS) Consistent update
protocol (Journaling)

| |
| DRAM Page Cache |
| |

| Block Layer |

Existing approaches for supporting

aQEIication level consistencx on NVMM

Application Application
(e.g., SQL.ite, MySQL) (e.g., SQLite, MySQL)

Consistent update
protocol (Journaling

Complex and | |
Error-prone [osoi 14] Traditional
NVMM-based ES Transactional FS (Valor)l
(e.9., BPFS, PMFS) Consistent update
protocol (Journaling)
ﬂ_—-_-_-_ﬂ_

’T DRAM Page Cache .I\\
| |

(\ 'L; Block Layer |~ /

Existing approaches for supporting

aQEIication level consistencx on NVMM

Application Application
(e.g., SQL.ite, MySQL) (e.g., SQLite, MySQL)
Consistent update High double-copy
protocol (Journaling and block layer
Complex and overheads
error-prone [ospi 14] Traditional
NVMM-based ES Transactional FS (Valor
(e.9., BPFS, PMFS) Consistent update
protocol (Journaling)
ﬂ_-—-—-_ﬂ_

’T DRAM Page Cache .I\\
| |

(\ 'L; Block Layer |~ /

Existing approaches for supporting

aQEIication level consistencx on NVMM

Application Application
(e.g., SQL.ite, MySQL) (e.g., SQLite, MySQL)
Consistent update High double-copy
protocol (Journaling and block layer
Complex and overheads
error-prone [ospi 14] Traditional
NVMM-based ES Transactional FS (Valor
(e.9., BPFS, PMFS) Consistent update
protocol (Journaling)

High journaling
overheads

Existing approaches for supporting

aEEIication level consistencx on NVMM

Application
(e.g., SQL.ite, MySQL)

Consistent update
protocol (Journaling

Complex and
error-prone [osol 14]

NVMM-based FS
(e.g., BPFS, PMFS)

High journaling
overheads

Application
(e.g., SQLite, MySQL)

High double-copy

and block layer
overheads

Traditional
Transactional FS (Valor

Consistent update
protocol (Journaling)

Our Goal:
Correct Application
Level Consistency +

High Performance

-10-

Existing approaches for supporting

aEEIication level consistencx on NVMM

Application
(e.g., SQL.ite, MySQL)

Consistent update
protocol (Journaling

Complex and
error-prone [osol 14]

NVMM-based FS
(e.g., BPFS, PMFS)

High journaling
overheads

Application
(e.g., SQLite, MySQL)

High double-copy

and block layer
overheads

Traditional
Transactional FS (Valor

Consistent update
protocol (Journaling)

Application
(e.g., SQL.ite, MySQL)

FCFS

Consistent update
protocol (NVMM-
optimized WAL)

Comparison of Different File Systems on

NVMM Storage

Apgllcatlon Level
onS|stency

Valor [FAST 09] FCFS

Low High
Performanc& | »Performance

Ext2, Ext3, Ext4 BPFS [sosP 09],
PMFS [EuroSys 14],
NOVA [FAST 16]

4
File System Level
Consistency -12-

a FCFS Design

Outline

13-

An Example of How to Use FCFS

tx 1d = tx_begin();

tx add(tx 1d, {d1);
write(fd1l, “datal™); :> tx_add(tx_1d, fd2);
write(fd2, “data2”); write(fd1, “datal”);

} write(fd2, “data2”);

Atomic Group/

tx commit(tx 1d);

tx_begin(TxInfo) creates a new transaction

tx _add(TxID, Fd) relates a file descriptor a designated transaction
tx commit(TxID) commits a transaction

tx_abort(TxID) cancels a transaction entirely

Opportunities and Challenges for Providing
Fast Faillure-Consistent Update in NVMM FS

d Opportunities
— Direct access to NVMM allows fine-grained logging

— Asynchronous checkpointing can move the checkpointing
latency off the critical path under low storage load

A Challenges

— #1: How to guarantee that a log unit will not be shared by
different transactions? (Correctness)

— #2: How to balance the tradeoff between copy cost and log
tracking overhead? (Performance)

— #3: How to improve checkpointing performance under high
storage load? (Performance)

-15-

Key Ideas of FCFS

3 Our Goal: to propose a novel NVMM-optimized file system
(FCFES) providing the application-level consistency but without
relying on the OS page cache layer

d Key ldeas of FCFS (NVMM-optimized WAL):

— Hybrid Fine-grained Logging to address Challenge #1 and #2
e Decouple the logging method of metadata and data updates
o Using fast Two-Level Volatile Index to track uncheckpointed log data
— Concurrently Selective Checkpointing to address Challenge #3

e Committed updates to different blocks are checkpointed concurrently

o Committed updates of the same block are checkpointed using Selective
Checkpointing Algorithm

-16-

1. Hybrid Fine-grained Logging

a Challenge #1: Correctness

> Logging granularity (byte vs cacheline)
— a log unit should not be shared by different transactions

e Smallest unshared unit is
a file

« File 1s allocated based on
block

Byte Granularity Byte Granularity

Cacheline Granularity Cacheline Granularity
-17-

1. Hybrid Fine-grained Logging

d Challenge #2: Performance tradeoff : log tracking cost vs data
copy cost

» Impacted by logging granularity (byte vs cacheline) & logging
mode (undo VS redo

Metadata Data
(update size is small) (update size can be

very large

Byte granularity undo Cacheline granularity
logging redo logging

1. Hybrid Fine-grained Logging

3 Another Challenge: How to reduce the log tracking cost of the
data log (cacheline granularity redo logging) ?

— Example: each 64B cacheline log unit may need at least 16 bytes of
index

d Solution: Two-Level Volatile Index

» Different versions’ log blocks form a
pending list
* First level: logic block = pending list head
(radix tree)

 Second level: traversing the pending list to get
the physical block which contains the latest
data of a cacheline using the cacheline bitmap

Overheads: Each 4KB log blocks requires
at most 16 bytes of index data (first level)
and 8 bytes of bitmap (second level)

(Logic block, cacheline 1d) == (physical block) -19-

2. Concurrently Selective Checkpointing

Challenge #3: How to improve checkpointing performance
under high storage load?

d Concurrent Checkpointing

— Committed updates to different blocks are checkpointed
concurrently to enhance the concurrency of checkpointing

3 Selective Checkpointing

— Committed updates of the same block are checkpointed
using Selective Checkpointing Algorithm to reduce the
checkpointing copy overhead

-20-

2. Concurrently Selective Checkpointing

a Another Challenge: How to ensure correct failure
recovery due to out-of-order checkpointing?

— What if a newer log entry is deallocated before an older log entry
and the system crashes before deallocating the older one?

— How to guarantee that the commit log entry 1s deallocated at last?

3 Solution: Maintaining two ordering properties during log
deallocation
— Redo log entries are deallocated following the pending list order

— Using a global committed list to ensure the deallocation order

between the commit log entry and other metadata/data log entries
of a transaction?

_21-

2. Concurrently Selective Checkpointing

Q Selective Checkpointing Algorithm

— Leveraging NVMM’s byte-addressability to reduce the
checkpointing copy overhead

D3: Cs0| C31] Ca2| C33| C34| Css

Log Block
A
O
$
Q
N
&
&
Q
s
§

O
H
Q)
=
=]
@]
-
@]
ik}
[o+]
@]
=
W
@]
=
=
@]
=
[Sa]

Original
Block
r
w)
o
£
£
Q
S
0
't
0

Note: DO~D3 refers to different versions of block D; C;; is the jth cacheline in the ith version of block D

_29-

2. Concurrently Selective Checkpointing

Q Selective Checkpointing Algorithm

— Leveraging NVMM’s byte-addressability to reduce the
checkpointing copy overhead

—
D3| Cso| Ca1| Caz| Ca3| Caa| Css I

D2 C20 C21 C22 C23 C24 C25

Log Block
A

O

=
Q
=
=)
Q
-

Cl? clB Cl4 ClE

Coz| Co3| Coa| Cos

Original
Block
/J{—) r
w)
e
't
£

Step 1
Note: DO~D3 refers to different versions of block D; C;; is the jth cacheline in the ith version of block D

Stepl: a new permanent data block, which has the largest number of

latest cachelines, is carefully selected
_23-

2. Concurrently Selective Checkpointing

Q Selective Checkpointing Algorithm

— Leveraging NVMM’s byte-addressability to reduce the
checkpointing copy overhead

« D3| Ci0| C31| C32| C33| C34| C3s Cso0| Cs1| Cz2| Ci3| Caa| Cos
X e e & |
o
QCJD 7| D20 | €y Cor| Coz| Cos| Coa| Cas " Ca0| Ca1| Coz| Co3| Cog | Cps
o \
= | by L’,ﬁ T T T e Te Copy Coy, Ci3,5 Cos
— 2 1 Cio| Cia| Ciz| Ci3| Cia| Cys 10| Ci1| Ciz| Ci3| Cig| Cus
_ ’ from D,, D, D, to D,
£ X
o DO: | Coo | Co1| Coz| Cos| Coa| Cos Coo | Co1| Coz| Co3| Cosz| Cos
2=
O Step 1 Step 2

Note: DO~D3 refers to different versions of block D; C;; is the jth cacheline in the ith version of block D

Step2: Copy the latest cacheline data from other blocks to the newly-

selected permanent block
_24-

2. Concurrently Selective Checkpointing

Q Selective Checkpointing Algorithm

— Leveraging NVMM’s byte-addressability to reduce the
checkpointing copy overhead

R D3I C3o C31 C32 C33 C34 C35 CHD CSl sz Cl? C34 COS D3
S = === _ == |
°
m — :
o D2 | ¢y | Cou| Coz| Cos| Caa| Cas ’ Cz0| Ca1| Ca2| Ca3| Caq| Cys ’ D,
9 \ \ FS Block
D1 / / Pointer
— ClO Cll C12 CJ_3 C14 C15 .-": C]_o Cl]_ C]_2 C13 C14 C15 .-"II Dy
[X
'
C
= O
QE{DO Coo | Co1| Coz| Coz| Coa| Cos Coo | Co1| Coz| Cos| Cos| Co Do L
=M
O Step 1 Step 2 Step 3

Note: DO~D3 refers to different versions of block D; C;; is the jth cacheline in the ith version of block D

Step3: Modify the reference to origin original block to refer to newly-

selected permanent block atomically
_25-

2. Concurrently Selective Checkpointing
3 Overhead Comparison

Selective
Checkpointing

Selective Checkpointing Algorithm significantly

Traditional Constant
Checkpointing

reduces the checkpointing copy overhead

_26-

d Evaluation

Outline

_27-

Evaluations of Failure-Consistent Updates

« NC is a no-consistency system

« FG-WAL implements the failure-consistent update protocol using fine-grained write-ahead logging

SCSP implements the failure-consistent update protocol using short-circuit shadow paging [SOSP 09]
 Valor is a traditional transactional file system

 The latency of FCFS-based version 1s the lowest among all
failure-consistent versions (FG-WAL, SCSP, Valor)

28

Evaluations of Real Applications

Throughput Performance NVMM Write Size

« NC turns off the transactional part of each application

O FCFS-based applications outperform the original ones by up
to 93% (MySQL running YSCB workload)

_20-

d Conclusion

Outline

-30-

Conclusion

A Existing NVMM file systems do not guarantee the consistency
of application data, while application’s own consistency
protocols are complex and error-prone

A FCFS 1s the first NVMM-optimized file system which enables
both correctness and high performance for applications to
consistently update their data on NVMM storage

A FCFS employs an NVMM-optimized WAL scheme to reduce
the overhead towards supporting failure consistency by fully
leveraging NVMM’s byte addressability and high concurrency
but without relying on the page-cache layer

d FCFS’s failure-consistent update protocol and FCFS-based
applications significantly outperform conventional protocols and
original applications respectively -31-

Thank You !

Jiaxin Ou, Jiwu Shu
(0jx11@mails.tsinghua.edu.cn)

_32-

