
Fast and Failure-Consistent Updates of
Application Data in Non-Volatile Main Memory

File System

Jiaxin Ou, Jiwu Shu

(ojx11@mails.tsinghua.edu.cn)
Storage Research Laboratory
Department of Computer Science and Technology
Tsinghua University

-2-

Outline

Background and Motivation

FCFS Design

Evaluation

Conclusion

-3-

Failure Consistency

Failure Consistency (Failure-Consistent Updates)

− Atomicity and durability
− The system is able to recover to a consistent state from

unexpected system failures
Application Level Consistency

− Update multiple files atomically and selectively

Atomic_Group{
write(fd1, “data1”);
write(fd2, “data2”);
}

Either both writes persist
successfully, or neither does

Example:

-4-

Existing approaches for supporting

application level consistency on NVMM

NVMM-based FS

(e.g., BPFS, PMFS)

NVMM

Application

(e.g., SQLite, MySQL)

Consistent update

protocol (Journaling)

-5-

NVMM-based FS

(e.g., BPFS, PMFS)

NVMM

Application

(e.g., SQLite, MySQL)

Existing approaches for supporting

application level consistency on NVMM

Consistent update

protocol (Journaling)

Complex and

error-prone [OSDI 14]

-6-

Traditional

Transactional FS (Valor)

DRAM Page Cache

Block Layer

NVMM

Application

(e.g., SQLite, MySQL)

NVMM-based FS

(e.g., BPFS, PMFS)

NVMM

Application

(e.g., SQLite, MySQL)

Existing approaches for supporting

application level consistency on NVMM

Consistent update

protocol (Journaling)

Complex and

error-prone [OSDI 14]

Consistent update

protocol (Journaling)

-7-

Traditional

Transactional FS (Valor)

DRAM Page Cache

Block Layer

NVMM

Application

(e.g., SQLite, MySQL)

NVMM-based FS

(e.g., BPFS, PMFS)

NVMM

Application

(e.g., SQLite, MySQL)

Existing approaches for supporting

application level consistency on NVMM

Consistent update

protocol (Journaling)

Complex and

error-prone [OSDI 14]

Consistent update

protocol (Journaling)

-8-

Traditional

Transactional FS (Valor)

DRAM Page Cache

Block Layer

NVMM

Application

(e.g., SQLite, MySQL)

NVMM-based FS

(e.g., BPFS, PMFS)

NVMM

Application

(e.g., SQLite, MySQL)

High double-copy

and block layer

overheads

Existing approaches for supporting

application level consistency on NVMM

Consistent update

protocol (Journaling)

Complex and

error-prone [OSDI 14]

Consistent update

protocol (Journaling)

-9-

Traditional

Transactional FS (Valor)

DRAM Page Cache

Block Layer

NVMM

Application

(e.g., SQLite, MySQL)

NVMM-based FS

(e.g., BPFS, PMFS)

NVMM

Application

(e.g., SQLite, MySQL)

High double-copy

and block layer

overheads

Existing approaches for supporting

application level consistency on NVMM

Consistent update

protocol (Journaling)

Complex and

error-prone [OSDI 14]

Consistent update

protocol (Journaling)

High journaling

overheads

-10-

Traditional

Transactional FS (Valor)

DRAM Page Cache

Block Layer

NVMM

Application

(e.g., SQLite, MySQL)

NVMM-based FS

(e.g., BPFS, PMFS)

NVMM

Application

(e.g., SQLite, MySQL)

High double-copy

and block layer

overheads
Our Goal:

Correct Application

Level Consistency +

High Performance

Existing approaches for supporting

application level consistency on NVMM

Consistent update

protocol (Journaling)

Complex and

error-prone [OSDI 14]

Consistent update

protocol (Journaling)

High journaling

overheads

-11-

Traditional

Transactional FS (Valor)

DRAM Page Cache

Block Layer

NVMM

Consistent update

protocol (Journaling)

Application

(e.g., SQLite, MySQL)

NVMM-based FS

(e.g., BPFS, PMFS)

NVMM

Application

(e.g., SQLite, MySQL)

High double-copy

and block layer

overheads

FCFS
Consistent update

protocol (NVMM-

optimized WAL)

Application

(e.g., SQLite, MySQL)

NVMM

Existing approaches for supporting

application level consistency on NVMM

Consistent update

protocol (Journaling)

Complex and

error-prone [OSDI 14]

High journaling

overheads

-12-

Comparison of Different File Systems on

NVMM Storage

High
Performance

Application Level
Consistency

File System Level
Consistency

Low
Performance

Valor [FAST 09]

Ext2, Ext3, Ext4 BPFS [SOSP 09],
PMFS [EuroSys 14],
NOVA [FAST 16]

FCFS

Traditional
Transactional File

Systems

Traditional File
Systems

State-of-the-art
NVMM-based File

Systems

-13-

Outline

Background and Motivation

FCFS Design

Evaluation

Conclusion

-14-

An Example of How to Use FCFS

Atomic_Group{
write(fd1, “data1”);
write(fd2, “data2”);
}

tx_id = tx_begin();
tx_add(tx_id, fd1);
tx_add(tx_id, fd2);
write(fd1, “data1”);
write(fd2, “data2”);
tx_commit(tx_id);

Interface Description

tx_begin(TxInfo) creates a new transaction

tx_add(TxID, Fd) relates a file descriptor a designated transaction

tx_commit(TxID) commits a transaction

tx_abort(TxID) cancels a transaction entirely

-15-

Opportunities and Challenges for Providing

Fast Failure-Consistent Update in NVMM FS

Opportunities

− Direct access to NVMM allows fine-grained logging
− Asynchronous checkpointing can move the checkpointing

latency off the critical path under low storage load
Challenges

− #1: How to guarantee that a log unit will not be shared by
different transactions? (Correctness)

− #2: How to balance the tradeoff between copy cost and log
tracking overhead? (Performance)

− #3: How to improve checkpointing performance under high
storage load? (Performance)

-16-

Key Ideas of FCFS

Our Goal: to propose a novel NVMM-optimized file system
(FCFS) providing the application-level consistency but without
relying on the OS page cache layer

Key Ideas of FCFS (NVMM-optimized WAL):

− Hybrid Fine-grained Logging to address Challenge #1 and #2
 Decouple the logging method of metadata and data updates
 Using fast Two-Level Volatile Index to track uncheckpointed log data

− Concurrently Selective Checkpointing to address Challenge #3
 Committed updates to different blocks are checkpointed concurrently
 Committed updates of the same block are checkpointed using Selective

Checkpointing Algorithm

-17-

1. Hybrid Fine-grained Logging

 Challenge #1: Correctness
 Logging granularity (byte vs cacheline)

− a log unit should not be shared by different transactions

Metadata

• Smallest unshared unit is
a metadata structure

• a metadata structure can
be of any size (e.g.,
directory entry)

Data

• Smallest unshared unit is
a file

• File is allocated based on
block

Byte Granularity

Cacheline Granularity

Byte Granularity

Cacheline Granularity

-18-

1. Hybrid Fine-grained Logging

 Challenge #2: Performance tradeoff : log tracking cost vs data
copy cost
 Impacted by logging granularity (byte vs cacheline) & logging

mode (undo vs redo)

Metadata

(update size is small)

• Byte granularity redo
logging has high log
tracking cost

Byte granularity undo
logging

Data
(update size can be

very large)

• Undo logging has high
data copy cost for large
update

• Byte granularity redo
logging has high log
tracking cost

Cacheline granularity
redo logging

-19-

1. Hybrid Fine-grained Logging

 Another Challenge: How to reduce the log tracking cost of the
data log (cacheline granularity redo logging) ?
− Example: each 64B cacheline log unit may need at least 16 bytes of

index
Solution: Two-Level Volatile Index

Different versions’ log blocks form a
pending list
• First level: logic block pending list head

(radix tree)
• Second level: traversing the pending list to get

the physical block which contains the latest
data of a cacheline using the cacheline bitmap

Overheads: Each 4KB log blocks requires
at most 16 bytes of index data (first level)
and 8 bytes of bitmap (second level)

(Logic block, cacheline id) (physical block)

-20-

2. Concurrently Selective Checkpointing

Challenge #3: How to improve checkpointing performance
under high storage load?

Concurrent Checkpointing

− Committed updates to different blocks are checkpointed
concurrently to enhance the concurrency of checkpointing

Selective Checkpointing

− Committed updates of the same block are checkpointed
using Selective Checkpointing Algorithm to reduce the
checkpointing copy overhead

-21-

2. Concurrently Selective Checkpointing

Another Challenge: How to ensure correct failure
recovery due to out-of-order checkpointing?
− What if a newer log entry is deallocated before an older log entry

and the system crashes before deallocating the older one?
− How to guarantee that the commit log entry is deallocated at last?

Solution: Maintaining two ordering properties during log
deallocation
− Redo log entries are deallocated following the pending list order
− Using a global committed list to ensure the deallocation order

between the commit log entry and other metadata/data log entries
of a transaction?

-22-

2. Concurrently Selective Checkpointing

Selective Checkpointing Algorithm

− Leveraging NVMM’s byte-addressability to reduce the
checkpointing copy overhead

D3:

D2:

D1:

D0:

Note: D0~D3 refers to different versions of block D; Cij is the jth cacheline in the ith version of block D

L
o
g

 B
lo

ck
O

ri
g

in
a
l

B
lo

ck

-23-

2. Concurrently Selective Checkpointing

Selective Checkpointing Algorithm

− Leveraging NVMM’s byte-addressability to reduce the
checkpointing copy overhead

D3:

D2:

D1:

D0:

Step1: a new permanent data block, which has the largest number of
latest cachelines, is carefully selected

Note: D0~D3 refers to different versions of block D; Cij is the jth cacheline in the ith version of block D

L
o
g

 B
lo

ck
O

ri
g

in
a
l

B
lo

ck

-24-

2. Concurrently Selective Checkpointing

Selective Checkpointing Algorithm

− Leveraging NVMM’s byte-addressability to reduce the
checkpointing copy overhead

D3:

D2:

D1:

D0:

Note: D0~D3 refers to different versions of block D; Cij is the jth cacheline in the ith version of block D

Step2: Copy the latest cacheline data from other blocks to the newly-
selected permanent block

Copy C22 , C13 , C05
from D2 , D1, D0 to D3

L
o
g

 B
lo

ck
O

ri
g

in
a
l

B
lo

ck

-25-

2. Concurrently Selective Checkpointing

Selective Checkpointing Algorithm

− Leveraging NVMM’s byte-addressability to reduce the
checkpointing copy overhead

D3:

D2:

D1:

D0:

Step3: Modify the reference to origin original block to refer to newly-
selected permanent block atomically

Note: D0~D3 refers to different versions of block D; Cij is the jth cacheline in the ith version of block D

L
o
g

 B
lo

ck
O

ri
g

in
a
l

B
lo

ck

-26-

2. Concurrently Selective Checkpointing

Traditional Constant
Checkpointing

• Copy 3 blocks = 3 * 6 *
64 B = 1152 B

Overhead Comparison

Selective
Checkpointing

• Copy 3 cacheline and
modify one block pointer
= 3 * 64 B + 8 B = 200 B

Selective Checkpointing Algorithm significantly
reduces the checkpointing copy overhead

-27-

Outline

Background and Motivation

FCFS Design

Evaluation

Conclusion

-28-

Evaluations of Failure-Consistent Updates

• NC is a no-consistency system
• FG-WAL implements the failure-consistent update protocol using fine-grained write-ahead logging
• SCSP implements the failure-consistent update protocol using short-circuit shadow paging [SOSP 09]
• Valor is a traditional transactional file system

 The latency of FCFS-based version is the lowest among all
failure-consistent versions (FG-WAL, SCSP, Valor)

-29-

Evaluations of Real Applications

• NC turns off the transactional part of each application
Throughput Performance NVMM Write Size

 FCFS-based applications outperform the original ones by up
to 93% (MySQL running YSCB workload)

-30-

Outline

Background and Motivation

FCFS Design

Evaluation

Conclusion

-31-

Conclusion

 Existing NVMM file systems do not guarantee the consistency
of application data, while application’s own consistency
protocols are complex and error-prone

 FCFS is the first NVMM-optimized file system which enables
both correctness and high performance for applications to
consistently update their data on NVMM storage

 FCFS employs an NVMM-optimized WAL scheme to reduce
the overhead towards supporting failure consistency by fully
leveraging NVMM’s byte addressability and high concurrency
but without relying on the page-cache layer

 FCFS’s failure-consistent update protocol and FCFS-based
applications significantly outperform conventional protocols and
original applications respectively

-32-

Thank You !

Jiaxin Ou, Jiwu Shu
(ojx11@mails.tsinghua.edu.cn)

