32nd International Conference on Massive Storage Systems and Technology (MSST 2016) May 2 - 6, 2016

Fine-grained Metadata Journaling on NVM

Cheng Chen, Jun Yang, Qingsong Wei, Chundong Wang, and Mingdi Xue

Data Storage Institute, A*STAR, Singapore

REATING GROWTH, ENHANCING LIVE

Introduction

CPU

Memory

- Journaling file system
 - Write a "journal" to a circular log area before updating actual content
 - Can be metadata only or both metadata and data
- Problems
 - Performance penalty
 - Inefficient journal writes due to block-based interface

Storage

Overview

- Enable journaling has performance penalty
- Our observation
 - Around ~40% performance drop under common workloads
 - Journal write amplification due to block-based design
 - E.g. few inode changes cause the **entire** inode block to be written
- Next generation of non-volatile memory (NVM)
 - DRAM-like byte-addressability and performance + persistency
 - But journaling on NVM still costs ~35% performance drop
 - How to improve? Eliminate journal write amplification
- Our solution: Fine-grained metadata journaling
 - A new journal format to fully utilize the byte-addressable of NVM
 - Redesign the journaling process to reduce the writes
 - Reduce more than 90% unnecessary journal writes
 - Achieve up to 15x performance improvement under different workloads

Background

Conventional Journaling File System

Background

- NVM (Next Generation of Non-volatile Memory)
 - Provides DRAM-like performance and disk-like persistency

Motivation

Institute

Design Decisions

- I. Use NVM as the journaling device
- II. Utilize the byte-addressability to eliminate the **journal write amplification**
- III. Further reduce the journal writes that requires ordered memory writes

Our Solution

Fine-grained Metadata Journaling

- Move all the journal to NVM
- Use inode as the basic unit for journaling

Fine-grained Journal Format

- Traditional approach
 - Block-based
 - **Descriptor/Commit Block**
 - Wasted space and writing time

- Modified Metadata inode inode inode inode Magic Count no. [3] no. [2] no. [N] no. [1] ... Number (e.g., 256B for inodes) Integral Multiple of Metadata Size (e.g., n.256B)
- **TxnInfo**
 - **CPU-cache friendly**
 - Configurable size
 - Consistent

Optimized Workflow - Commit

Before Committing

Optimized Workflow - Checkpoint

Before Checkpointing

Start Checkpointing

Optimized Workflow - Recovery

Before Recovery

Experimental Setup

- NVDIMM server
 - Intel Xeon E5-2650
 - 2.4GHz, 512KB/2MB/20MB L1/L2/L3 Cache
 - 4GB DRAM, 4GB NVDIMM
 - NVDIMM has the same performance as DRAM
 - 300GB 15K-RPM HDD x 2
- Testing target
 - Baseline: Ext4 with JBD2 on Disk
 - "ordered" mode
 - Ext4 with JBD2 on NVM
 - Still block-based
 - Use memcpy with CLFLUSH and MFENCE
 - Our solution
 - Modified JBD2 with new log format and commit, checkpoint, recovery process
 - Write journal to NVM through memcpy with CLFLUSH and MFENCE

CREATING GROWTH, ENHANCING LIVES

Performance Result (1)

Performance Result (2)

FileMicro_Writefsync Workloads

Performance Improvement		Journal Write Reduction
Conventional Journaling on HDD	Conventional Journaling on NVM	Block-based Journaling
↑15.8x		↓ 93.7%

More in The Paper

- Performance of other workloads
 - FileBench Varmail
 - Postmark
- Impact of the size of TxnInfo
 - Commit behavior
 - Overall throughput tuning

Conclusion

- We reveal the **journal write amplification** problem
 - Mainly due to the block interface
 - Journaling penalty is still high with high-performance NVM as journal device
- We propose Fine-grained Metadata Journaling
 - Exploit the **byte-addressability** and high-performance of **NVM**
 - A new fine-grained journal format
 - CPU-cache friendly
 - Further reduce the amount of journal writes
 - Modified workflow of commit, checkpoint and recovery in journaling
- Achieve up to **15x** performance boost under different workloads

THANK YOU!

Q & A

Jun Yang Email: <u>yangju@dsi.a-star.edu.sg</u>

CREATING GROWTH, ENHANCING LIVES