
IMPACT OF DATA
PLACEMENT ON
RESILIENCE IN
LARGE-SCALE OBJECT
STORAGE SYSTEMS

PHILIP CARNS
Argonne National Laboratory
carns@mcs.anl.gov

KEVIN HARMS

JOHN JENKINS

MISBAH MUBARAK

ROBERT ROSS
Argonne National Laboratory

CHRISTOPHER CAROTHERS

Rensselaer Polytechnic Institute

May 6, 2016

Santa Clara, CA

32ND INTERNATIONAL CONFERENCE ON MASSIVE STORAGE
SYSTEMS AND TECHNOLOGY (MSST 2016)

MOTIVATION

Distributed object storage is an

essential building block for

large-scale data processing

� Replication is often employed to achieve resilience on commodity hardware

� Replicated systems must rebuild quickly after failures to limit MTTDL

� This leads to critical evaluation questions:

– How long will it take to recover from a failure?

– What are the weakest links in the architecture or algorithm?

– Do data set characteristics affect performance?

� These questions are important but increasingly difficult to answer at scale:

– Data paths and dependencies are more complex

– Rigorous measurement of deployed systems requires considerable time and

resources

2

APPROACH

� CODES: Co-Design of Exascale Storage Architectures and Science Data

Facilities

– Toolkit for discrete event simulation of large storage and network systems

– Modular configuration of algorithms, workloads, and hardware components

– Includes several validated sub-models

� ROSS: Rensselaer's Optimistic Simulation System

– Parallel discrete event simulator underlying CODES

– Uses “Time Warp” synchronization to achieve scalable performance

� CODES and ROSS enable detailed design space exploration. In this case:

– Real-world data population parameters

– Simulate O(thousand) servers, O(billions) objects, O(petabytes) of data

– Use device parameters (JBOD and IB) drawn from commodity data centers

– Existing placement algorithms

See paper for model validation details

Parallel Discrete Event Simulation with CODES and ROSS

3

REBUILD MODEL

� We focus on the simulation of a critical scenario:

– Initial state: a collection of servers storing a large replicated object population

– One random server fails

– Simulate the data transfers necessary to rebuild missing replicas

� Object placement is crucial to performance

4

Basic object placement

example: consistent hashing

[1] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “CRUSH: Controlled, scalable, decentralized

placement of replicated data,” in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC06)

� Placement algorithms with good declustering

properties enable the system to leverage more

aggregate bandwidth during rebuild

� We used CRUSH [1] as our baseline :

– Algorithmic and deterministic

– Hierarchical organization of resources

– Pluggable “bucket” algorithms

– Flexible placement rules

EXAMPLE CASE STUDY

AGGREGATE REBUILD BANDWIDTH EXAMPLE
CRUSH straw bucket placement algorithm with placement groups

6

� System:

– Generalized object storage model

– Data can be streamed between pairs

of servers at ~1.5 GiB/s

– Vary the server count and data

volume

� Data set:

– Extrapolated from “1000 Genomes”

[2] file size characteristics

– 60 TiB (counting replication) of data

per server

� Graph:

– Shows aggregate rebuild rate on a

log-log scale

– Ideally, aggregate rebuild bandwidth

would increase linearly as more

servers are added

Simulated rate tracks ideal rate roughly at small

scale, but not at large scale

[2] 1000 Genomes Project Consortium and

others, “A map of human genome variation from

population-scale sequencing,” Nature, vol. 467,

no. 7319, pp. 1061–1073, 2010

AGGREGATE REBUILD
A closer look at inter-server traffic

7

� We examine the slowest 64-server

sample in greater detail

� Plot the data transfers between pairs

of servers using Circos [3]

� Server “10” is not shown: it is the

failed server in this example

� The servers began the simulation with

even utilization…

� … but traffic during rebuild is poorly

balanced

� Servers with more active peers were

generally able to sustain a higher rate

[3] Krzywinski et al., “Circos: An information aesthetic

for comparative genomics,” Genome Research, vol.

19, no. 9, pp. 1639–1645, 2009.

AGGREGATE REBUILD
Where were objects reconstructed?

8

� Histogram (red) shows the number of

replicas rebuilt per server

� Overlayed with the number of

placement groups rebuilt per server

� The simulation followed the example

of usage of CRUSH in Ceph:

– Objects are mapped into a smaller

number of placement groups

– Placement group IDs are mapped

to servers using CRUSH

– Many objects share the same

mapping to reduce placement cost

� The failed server in this example participated in 190 out of 4096 PGs

– Pseudo-random distribution: one server took responsibility reconstructing 7

PGs, while four servers took responsibility for no PGs

� Imbalance of replica targets led to imbalance in data transfers

TUNING PLACEMENT TO IMPROVE AGGREGATE
REBUILD RATE

9

� Can this be improved?

� We repeated the experiments with the same data set, same number of servers,

and same hardware parameters, but with the following changes:

– Eliminated placement groups (each object is placed independently)

– Added a new bucket algorithm based on Chord-style consistent hashing

algorithm with virtual nodes

� System achieves much higher

and more consistent

aggregate rebuild rate with

object-granular placement

� New bucket algorithm is more

computationally efficient while

retaining key properties of

CRUSH straw bucket

CASE STUDY DISCUSSION

Findings

� Sensible object placement policies at small scale can have unexpected

consequences at large scale

� Object-granular replication enables near-ideal scalability in distributed rebuild

� Existing consistent hashing algorithms can be adapted for use in CRUSH to

reduce CPU costs

� Simulation methodology was effective for design space exploration

Impact

� How would a file system be implemented by changing the placement granularity?

– Ceph notably uses placement groups for a variety of purposes beyond

placement calculation: also impacts peering, write-ahead logging, and fault

detection, for example

– Our simulation does not encompass the entire file system design

� Are there other benefits to object-granular placement?

– Potential for fine-grained prioritization or scheduling of object reconstruction

10

THE IMPACT OF DATA POPULATION

CHARACTERISTICS

CONTRASTING REAL-WORLD DATA
POPULATIONS
The file-level perspective

12

� File size histogram comparing

relative file counts and data

volume

� Top: 1000 Genomes dataset

(used in previous case study)

� Bottom: Mira file system

(GPFS storage for IBM Blue

Gene / Q system)

� Both exhibit a large count of small files, but most of the actual data volume is

stored in large files

� On Mira, files between 256 and 512 GiB hold more data than any other file size

bin

CONTRASTING REAL-WORLD DATA
POPULATIONS
The object-level perspective

13

� This histogram shows the

same data set as the previous

slide…

� …but the histograms are in

terms of underlying object

sizes rather than file sizes

� 1000 Genomes: files are split

into 64 MiB objects according

to typical MapReduce strategy

� Mira: files are widely striped in

round-robin fashion

� This distinction in file decomposition leads to a pronounced difference in object

size distribution

– Top example dominated by a single bin: 64 MiB objects

– Bottom example dominated by much larger objects

CONTRASTING REAL-WORLD DATA
POPULATIONS

14

� This plot shows the aggregate

rebuild rate for both dataset

examples

� Similar trends in performance as

system scale increases, but

1000 Genomes examples is 2x

faster

� Two notable reasons:

– Mira data set has a higher proportion of small objects that cause lower

messaging efficiency (ratio of control msg to data msg traffic; seek costs)

– Extraordinarily large Mira objects (up to 100s of GiB) dominate transfers

between pairs of servers and cause bottlenecks

� Data population characteristics can have a surprising impact on performance

The rebuild algorithm perspective

ASSESSING THE METHODOLOGY

THE USE OF PDES FOR ANALYSIS OF
DISTRIBUTED STORAGE ALGORITHMS

� Simulation approach offered a number of advantages:

– Ability to evaluate scenarios that would be difficult to recreate in a real-world

test environment

– Fast turn-around time enabled ensemble studies (see box-and-whisker plots)

to discriminate typical behavior from outliers

– Object and message level granularity allowed us to evaluate realistic, non-

idealized data sets and account for transport efficiency and seek time

� Did we really need to run it in parallel?

– Largest simulations tracked 3.9 billion replicas and issued over 200 million

discrete events to rebuild a subset of them

– We executed this scenario in roughly ~30 seconds with 256 MPI processes

– The same model would not execute in serial at all due to memory limitations

– We put more effort into model validation than performance tuning; more

speed is likely possible

16

SUMMARY AND FUTURE WORK

We used parallel discrete event simulation to study the performance of replicated

object storage reconstruction at scale. Key factors in performance included:

� Object placement algorithm (and it’s declustering characteristics)

� Granularity of placement

� Nature of the data stored on the system

Possible future directions:

� Evaluate more complex failure modes

� Study additional hardware parameters and architectures

� What about erasure coding?

� The “big picture” of storage system design beyond rebuild behavior

17

THE CODE

All tools used in this study are available with permissive open source licenses:

� Libch-placement (placement algorithm library and CRUSH patch):

https://xgitlab.cels.anl.gov/codes/ch-placement

� Codes-rebuild model (model of distributed object rebuild):

https://xgitlab.cels.anl.gov/codes/codes-rebuild

� CODES project:

http://www.mcs.anl.gov/projects/codes/

� ROSS project:

http://carothersc.github.io/ROSS/

18

www.anl.gov

THANK YOU!

This material was based upon work supported by the U.S. Department of

Energy, Office of Science, Advanced Scientific Computer Research, under

contract DE-AC02-06CH11357. The research used resources from the

Argonne Leadership Computing Facility (ALCF).

Speaker: Phil Carns

carns@mcs.anl.gov

