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MOTIVATION

Distributed object storage is an 

essential building block for 

large-scale data processing

� Replication is often employed to achieve resilience on commodity hardware

� Replicated systems must rebuild quickly after failures to limit MTTDL

� This leads to critical evaluation questions:

– How long will it take to recover from a failure?

– What are the weakest links in the architecture or algorithm?

– Do data set characteristics affect performance?

� These questions are important but increasingly difficult to answer at scale:

– Data paths and dependencies are more complex

– Rigorous measurement of deployed systems requires considerable time and 

resources
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APPROACH

� CODES: Co-Design of Exascale Storage Architectures and Science Data 

Facilities

– Toolkit for discrete event simulation of large storage and network systems

– Modular configuration of algorithms, workloads, and hardware components

– Includes several validated sub-models

� ROSS: Rensselaer's Optimistic Simulation System

– Parallel discrete event simulator underlying CODES

– Uses “Time Warp” synchronization to achieve scalable performance

� CODES and ROSS enable detailed design space exploration. In this case:

– Real-world data population parameters

– Simulate O(thousand) servers, O(billions) objects, O(petabytes) of data

– Use device parameters (JBOD and IB) drawn from commodity data centers

– Existing placement algorithms 

See paper for model validation details

Parallel Discrete Event Simulation with CODES and ROSS
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REBUILD MODEL

� We focus on the simulation of a critical scenario:

– Initial state: a collection of servers storing a large replicated object population

– One random server fails

– Simulate the data transfers necessary to rebuild missing replicas

� Object placement is crucial to performance
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Basic object placement

example: consistent hashing

[1] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “CRUSH: Controlled, scalable, decentralized 

placement of replicated data,” in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC06)

� Placement algorithms with good declustering

properties enable the system to leverage more 

aggregate bandwidth during rebuild

� We used CRUSH [1] as our baseline :

– Algorithmic and deterministic

– Hierarchical organization of resources

– Pluggable “bucket” algorithms

– Flexible placement rules



EXAMPLE CASE STUDY



AGGREGATE REBUILD BANDWIDTH EXAMPLE
CRUSH straw bucket placement algorithm with placement groups
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� System:

– Generalized object storage model

– Data can be streamed between pairs 

of servers at ~1.5 GiB/s

– Vary the server count and data 

volume

� Data set: 

– Extrapolated from “1000 Genomes” 

[2] file size characteristics

– 60 TiB (counting replication) of data 

per server

� Graph:

– Shows aggregate rebuild rate on a 

log-log scale

– Ideally, aggregate rebuild bandwidth 

would increase linearly as more 

servers are added

Simulated rate tracks ideal rate roughly at small 

scale, but not at large scale

[2] 1000 Genomes Project Consortium and 

others, “A map of human genome variation from 

population-scale sequencing,” Nature, vol. 467, 

no. 7319, pp. 1061–1073, 2010



AGGREGATE REBUILD
A closer look at inter-server traffic
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� We examine the slowest 64-server 

sample in greater detail

� Plot the data transfers between pairs 

of servers using Circos [3]

� Server “10” is not shown: it is the 

failed server in this example

� The servers began the simulation with 

even utilization…

� … but traffic during rebuild is poorly 

balanced

� Servers with more active peers were 

generally able to sustain a higher rate

[3] Krzywinski et al., “Circos: An information aesthetic 

for comparative genomics,” Genome Research, vol. 

19, no. 9, pp. 1639–1645, 2009.



AGGREGATE REBUILD
Where were objects reconstructed?
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� Histogram (red) shows the number of 

replicas rebuilt per server

� Overlayed with the number of 

placement groups rebuilt per server 

� The simulation followed the example 

of usage of CRUSH in Ceph: 

– Objects are mapped into a smaller 

number of placement groups

– Placement group IDs are mapped 

to servers using CRUSH

– Many objects share the same 

mapping to reduce placement cost

� The failed server in this example participated in 190 out of 4096 PGs

– Pseudo-random distribution: one server took responsibility reconstructing 7 

PGs, while four servers took responsibility for no PGs

� Imbalance of replica targets led to imbalance in data transfers



TUNING PLACEMENT TO IMPROVE AGGREGATE 
REBUILD RATE
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� Can this be improved?  

� We repeated the experiments with the same data set, same number of servers, 

and same hardware parameters, but with the following changes:

– Eliminated placement groups (each object is placed independently)

– Added a new bucket algorithm based on Chord-style consistent hashing 

algorithm with virtual nodes

� System achieves much higher

and more consistent

aggregate rebuild rate with 

object-granular placement

� New bucket algorithm is more

computationally efficient while

retaining key properties of

CRUSH straw bucket



CASE STUDY DISCUSSION

Findings

� Sensible object placement policies at small scale can have unexpected 

consequences at large scale

� Object-granular replication enables near-ideal scalability in distributed rebuild

� Existing consistent hashing algorithms can be adapted for use in CRUSH to 

reduce CPU costs

� Simulation methodology was effective for design space exploration

Impact

� How would a file system be implemented by changing the placement granularity?

– Ceph notably uses placement groups for a variety of purposes beyond 

placement calculation: also impacts peering, write-ahead logging, and fault 

detection, for example

– Our simulation does not encompass the entire file system design

� Are there other benefits to object-granular placement?

– Potential for fine-grained prioritization or scheduling of object reconstruction
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THE IMPACT OF DATA POPULATION 

CHARACTERISTICS



CONTRASTING REAL-WORLD DATA 
POPULATIONS
The file-level perspective
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� File size histogram comparing 

relative file counts and data 

volume 

� Top: 1000 Genomes dataset 

(used in previous case study)

� Bottom: Mira file system 

(GPFS storage for IBM Blue 

Gene / Q system)

� Both exhibit a large count of small files, but most of the actual data volume is 

stored in large files

� On Mira, files between 256 and 512 GiB hold more data than any other file size 

bin



CONTRASTING REAL-WORLD DATA 
POPULATIONS
The object-level perspective
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� This histogram shows the 

same data set as the previous 

slide…

� …but the histograms are in 

terms of underlying object 

sizes rather than file sizes 

� 1000 Genomes: files are split 

into 64 MiB objects according 

to typical MapReduce strategy

� Mira: files are widely striped in 

round-robin fashion

� This distinction in file decomposition leads to a pronounced difference in object 

size distribution

– Top example dominated by a single bin: 64 MiB objects

– Bottom example dominated by much larger objects



CONTRASTING REAL-WORLD DATA 
POPULATIONS
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� This plot shows the aggregate 

rebuild rate for both dataset 

examples

� Similar trends in performance as 

system scale increases, but  

1000 Genomes examples is 2x 

faster

� Two notable reasons:

– Mira data set has a higher proportion of small objects that cause lower 

messaging efficiency (ratio of control msg to data msg traffic; seek costs)

– Extraordinarily large Mira objects (up to 100s of GiB) dominate transfers 

between pairs of servers and cause bottlenecks

� Data population characteristics can have a surprising impact on performance

The rebuild algorithm perspective



ASSESSING THE METHODOLOGY



THE USE OF PDES FOR ANALYSIS OF 
DISTRIBUTED STORAGE ALGORITHMS

� Simulation approach offered a number of advantages:

– Ability to evaluate scenarios that would be difficult to recreate in a real-world 

test environment

– Fast turn-around time enabled ensemble studies (see box-and-whisker plots) 

to discriminate typical behavior from outliers

– Object and message level granularity allowed us to evaluate realistic, non-

idealized data sets and account for transport efficiency and seek time

� Did we really need to run it in parallel?

– Largest simulations tracked 3.9 billion replicas and issued over 200 million 

discrete events to rebuild a subset of them

– We executed this scenario in roughly ~30 seconds with 256 MPI processes

– The same model would not execute in serial at all due to memory limitations

– We put more effort into model validation than performance tuning; more 

speed is likely possible
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SUMMARY AND FUTURE WORK

We used parallel discrete event simulation to study the performance of replicated 

object storage reconstruction at scale.  Key factors in performance included:

� Object placement algorithm (and it’s declustering characteristics)

� Granularity of placement

� Nature of the data stored on the system

Possible future directions:

� Evaluate more complex failure modes

� Study additional hardware parameters and architectures

� What about erasure coding?

� The “big picture” of storage system design beyond rebuild behavior
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THE CODE

All tools used in this study are available with permissive open source licenses:

� Libch-placement (placement algorithm library and CRUSH patch):

https://xgitlab.cels.anl.gov/codes/ch-placement

� Codes-rebuild model (model of distributed object rebuild):

https://xgitlab.cels.anl.gov/codes/codes-rebuild

� CODES project:

http://www.mcs.anl.gov/projects/codes/

� ROSS project:

http://carothersc.github.io/ROSS/
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