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lookups, until we can do them as a batch. (Lazy is exact.)
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2~ We have a large amount of data, with lots of duplicate data
(e.g. weekly backups).

2~ We read through the data, and if we see something we've seen
before, we replace it with an index entry (saving disk space).

#~ The data is broken up into chunks (Rabin Hash).

2~ The chunks are fingerprinted (SHA1): same fingerprint —
duplicate chunk.
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Lazy deduplication...

2 Bloom filter: identifies many

uniques (not all). [Commonly
used.]

buffer: stores fingerprints in
hash buckets; searched later
on disk (“lazy")—when full,
whole buckets are searched in
one go (stored on-disk in hash
buckets)

post-lookup:  searching the
cache after buffering (maybe
multiple times)

pre-lookup:  searching the
cache before buffering [not
shown]

prefetching: bidirectional,
triggers post-lookup
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# Ordinarily, we prefetch the subsequent on-disk fingerprints after a
duplicate is found on disk—these will probably be the next incoming
fingerprints. But this doesn't work with the lazy method (where
fingerprints are buffered).

2 To overcome this obstacle, each buffered fingerprint is given a...

£ rank, used to determine the on-disk search range; and a
& buffer cycle, indicating where duplicates might be on-disk.

It looks like this:

rank r:

fingerprints O D

r lookup

fingerprints
stored on disk

Do 000908080 ]

2048 fingerprints

O incoming unique {} on-disk unique I:‘ buffered / on-disk match
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(See our paper for the details and further experiments.)

The time it takes to deduplicate a dataset (on SSD):

Vm (220GB)  Src (343GB) FSLHomes (3.58TB)

eager way 282 sec. 476 sec. 5824 sec.
lazy way 151 sec. 226 sec. 3939 sec.

(eager = non-lazy [exact] way—i.e., no buffering before accessing
the disk)

Conclusion: Lazy is faster.



On-disk lookups...

Disk access time (sec.) on SSD:

Vm Src FSLHomes

eager lazy eager lazy eager lazy

on-disk lookup 176 20 325 45 4598 1639
prefetching 46 60 52 68 298 655
other 50 71 99 113 028 1645

total disk access 222 80 377 113 4896 2294

total dedup. 282 151 476 226 5824 3939

Conclusion: Lazy reduces the disk bottleneck.



Throughput...
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Conclusion: Lazy has better throughput on both SSD and HDD,
but moreso on slower HDD.






