Lazy Exact Deduplication

Jingwei Ma, Rebecca J. Stones, Yuxiang Ma,
Jingui Wang, Junjie Ren, Gang Wang, Xiaoguang Liu

College of Computer and Control Engineering,
Nankai University, China.

5 May 2016

mos . sme::

Lazy exact deduplication

Lazy exact deduplication

Lead author: Jingwei Ma, PhD student at Nankai University
(supervisor: Prof. Gang Wang).

Lazy exact deduplication

Lead author: Jingwei Ma, PhD student at Nankai University
(supervisor: Prof. Gang Wang). Couldn’t get USA visa in time
= | will present this work.

Lazy exact deduplication

Lead author: Jingwei Ma, PhD student at Nankai University
(supervisor: Prof. Gang Wang). Couldn’t get USA visa in time
= | will present this work.

Credit where credit is due: Jingwei Ma did the lion’s share of this
work (development, implementation, experimentation, etc.).

Lazy exact deduplication

Lead author: Jingwei Ma, PhD student at Nankai University
(supervisor: Prof. Gang Wang). Couldn’t get USA visa in time
= | will present this work.

Credit where credit is due: Jingwei Ma did the lion’s share of this
work (development, implementation, experimentation, etc.).

Lazy deduplication: ‘Lazy’ in the sense that we postpone disk
lookups, until we can do them as a batch.

Lazy exact deduplication

Lead author: Jingwei Ma, PhD student at Nankai University
(supervisor: Prof. Gang Wang). Couldn’t get USA visa in time
= | will present this work.

Credit where credit is due: Jingwei Ma did the lion's share of this
work (development, implementation, experimentation, etc.).

Lazy deduplication: ‘Lazy’ in the sense that we postpone disk
lookups, until we can do them as a batch. (Lazy is exact.)

Deduplication: What usually happens...

2~ We have a large amount of data, with lots of duplicate data
(e.g. weekly backups).

Deduplication: What usually happens...

2~ We have a large amount of data, with lots of duplicate data
(e.g. weekly backups).

2~ We read through the data, and if we see something we've seen
before, we replace it with an index entry (saving disk space).

Deduplication: What usually happens...

2~ We have a large amount of data, with lots of duplicate data
(e.g. weekly backups).

2~ We read through the data, and if we see something we've seen
before, we replace it with an index entry (saving disk space).

mos mme

Deduplication: What usually happens...

2~ We have a large amount of data, with lots of duplicate data
(e.g. weekly backups).

2~ We read through the data, and if we see something we've seen
before, we replace it with an index entry (saving disk space).

mos mme

#~ The data is broken up into chunks (Rabin Hash).

Deduplication: What usually happens...

2~ We have a large amount of data, with lots of duplicate data
(e.g. weekly backups).

2~ We read through the data, and if we see something we've seen
before, we replace it with an index entry (saving disk space).

#~ The data is broken up into chunks (Rabin Hash).

2~ The chunks are fingerprinted (SHA1): same fingerprint —
duplicate chunk.

Deduplication: What usually happens...

2~ Disk bottleneck: Most fingerprints are stored on disk —
lots of disk reads (“have | seen this before?") = slow.

Deduplication: What usually happens...

2~ Disk bottleneck: Most fingerprints are stored on disk —
lots of disk reads (“have | seen this before?") = slow.
2~ Caching and prefetching reduce the disk bottleneck problem:

Deduplication: What usually happens...

2~ Disk bottleneck: Most fingerprints are stored on disk —
lots of disk reads (“have | seen this before?") = slow.
2~ Caching and prefetching reduce the disk bottleneck problem:

fingerprints - - -

cache

cache miss

o (Lo L[]

The first time we see fingerprints fa, fg, ...

Deduplication: What usually happens...

2~ Disk bottleneck: Most fingerprints are stored on disk —
lots of disk reads (“have | seen this before?") = slow.
2~ Caching and prefetching reduce the disk bottleneck problem:

fingerprints - - -

cache

cache miss

o (Lo L[]

The first time we see fingerprints fa, fg, ...

fingerprints - - -

cache ¢

cache miss| W prefetching
P —
disk ’

The second time we see fingerprints fa, g, ...

Lazy deduplication...

fingerprints -+ | fa | fg | fc | fo |-

cache

disk

Lazy deduplication...

2 Bloom filter: identifies many
uniques (not all). [Commonly
used.]

fingerprints - - - fa s fc 1)

Bloom!
filter

cache

"Nonon

Lazy deduplication...

2 Bloom filter: identifies many
uniques (not all). [Commonly
used.]

fingerprints - - - fa s fc 1)

¢ buffer: stores fingerprints in

hash buckets; searched later .

on disk (“lazy")—when full, firer

whole buckets are searched in o NN ;
one go (stored on-disk in hash buffer |

buckets)

cache

"Nonon

Lazy deduplication...

2 Bloom filter: identifies many
uniques (not all). [Commonly
used.]

2 buffer: stores fingerprints in fingerprints -

hash buckets; searched later .

on disk (“lazy")—when full, firer

whole buckets are searched in o NN ;
one go (stored on-disk in hash bufter |

buckets)

£ post-lookup: searching the
cache after buffering (maybe = cxche &

multiple times) 1

"Nonon

Lazy deduplication...

2 Bloom filter: identifies many
uniques (not all). [Commonly
used.]

2 buffer: stores fingerprints in fingerprints -

hash buckets; searched later .

on disk (“lazy")—when full, firer

whole buckets are searched in o NN ;
one go (stored on-disk in hash bufter |

buckets)

£ post-lookup: searching the
cache after buffering (maybe = cxche &

multiple times) 1

"Nonon

2~ pre-lookup: searching the
cache before buffering [not
shown]

Lazy deduplication...

2 Bloom filter: identifies many

uniques (not all). [Commonly
used.]

buffer: stores fingerprints in
hash buckets; searched later
on disk (“lazy")—when full,
whole buckets are searched in
one go (stored on-disk in hash
buckets)

post-lookup: searching the
cache after buffering (maybe
multiple times)

pre-lookup: searching the
cache before buffering [not
shown]

prefetching: bidirectional,
triggers post-lookup

fingerprints --- fa s fc fo
Bloom
filter
(CT iaiuit (g ettty i y
buffer | W :

cache

"Nonon

Prefetching...

Ordinarily, we prefetch the subsequent on-disk fingerprints after a
duplicate is found on disk

Prefetching...

Ordinarily, we prefetch the subsequent on-disk fingerprints after a
duplicate is found on disk—these will probably be the next incoming
fingerprints.

Prefetching...

Ordinarily, we prefetch the subsequent on-disk fingerprints after a
duplicate is found on disk—these will probably be the next incoming
fingerprints. But this doesn't work with the lazy method (where
fingerprints are buffered).

Prefetching...

Ordinarily, we prefetch the subsequent on-disk fingerprints after a
duplicate is found on disk—these will probably be the next incoming
fingerprints. But this doesn't work with the lazy method (where
fingerprints are buffered).

2 To overcome this obstacle, each buffered fingerprint is given a...

Prefetching...

Ordinarily, we prefetch the subsequent on-disk fingerprints after a
duplicate is found on disk—these will probably be the next incoming
fingerprints. But this doesn't work with the lazy method (where
fingerprints are buffered).

2 To overcome this obstacle, each buffered fingerprint is given a...

£ rank, used to determine the on-disk search range;

Prefetching...

Ordinarily, we prefetch the subsequent on-disk fingerprints after a
duplicate is found on disk—these will probably be the next incoming
fingerprints. But this doesn't work with the lazy method (where
fingerprints are buffered).

2 To overcome this obstacle, each buffered fingerprint is given a...

£ rank, used to determine the on-disk search range; and a
£ buffer cycle, indicating where duplicates might be on-disk.

Prefetching...

Ordinarily, we prefetch the subsequent on-disk fingerprints after a
duplicate is found on disk—these will probably be the next incoming
fingerprints. But this doesn't work with the lazy method (where
fingerprints are buffered).

2 To overcome this obstacle, each buffered fingerprint is given a...

£ rank, used to determine the on-disk search range; and a
& buffer cycle, indicating where duplicates might be on-disk.

It looks like this:

rank r:

fingerprints O D

r lookup

fingerprints
stored on disk

Do 000908080]

2048 fingerprints

O incoming unique {} on-disk unique I:‘ buffered / on-disk match

Experimental results...

(See our paper for the details and further experiments.)

Experimental results...

(See our paper for the details and further experiments.)

The time it takes to deduplicate a dataset (on SSD):

Vm (220GB) Src (343GB) FSLHomes (3.58TB)

eager way 282 sec. 476 sec. 5824 sec.
lazy way 151 sec. 226 sec. 3939 sec.

(eager = non-lazy [exact] way—i.e., no buffering before accessing
the disk)

Conclusion: Lazy is faster.

On-disk lookups...

Disk access time (sec.) on SSD:

Vm Src FSLHomes

eager lazy eager lazy eager lazy

on-disk lookup 176 20 325 45 4598 1639
prefetching 46 60 52 68 298 655
other 50 71 99 113 028 1645

total disk access 222 80 377 113 4896 2294

total dedup. 282 151 476 226 5824 3939

Conclusion: Lazy reduces the disk bottleneck.

Throughput...

Src on SSD

— & —cager —@— lazy

800

data size (GB)

Src on HDD

— & —cager —@—lazy

2

S

£ S »

£ 50

= M 1
0

20 70 120 170 220 270 320 370 420
data size (GB)

Conclusion: Lazy has better throughput on both SSD and HDD,
but moreso on slower HDD.

