Adaptive policies for balancing performance and lifetime of mixed SSD arrays through workload sampling

Sangwhan Moon
A. L. Narasimha Reddy

Texas A&M University

Outline

- Introduction
 - Mixed SSD Arrays
 - Workload distribution of mixed SSD array
- Problem Statement
- Selective caching policies
- Our approach
 - Online sampling
 - Adaptive workload distribution
- Evaluation
- Conclusion

Different classes of SSDs

Mixed SSD array

- High-end SSDs cache
 - Faster: PCle interface
 - Reliable: SLC eMLC (write endurance = 100K)
 - Expensive per gigabyte
- Low-end SSDs main storage
 - Slower: Serial ATA interface
 - Less reliable: MLC TLC (write endurance < 30K)
 - Cheap per gigabyte

Workload distribution of mixed SSD array

LRU Caching Policy

r, w Read/write workload

 W_C, W_S Writes per flash cell

 m_r, m_w Cache read/write miss rate

 N_C, N_S The number of SSDs

 $C_{\scriptscriptstyle C}, C_{\scriptscriptstyle S}$ The capacity of SSD

 $l_{\it C}, l_{\it S}$ Write endurance of cache/storage

$$w_{S} = \frac{m_{w}w}{N_{S} \cdot C_{S}}$$
 Lifetime = min $\left(\frac{l_{C}}{w_{C}}, \frac{l_{S}}{w_{S}}\right)$

Workload distribution of mixed SSD array

1 high-end SSD cache for 3 low-end SSDs

 $1.r \checkmark 2.w$

High-end SSDs

read miss 🐪	dirty entry eviction
$3.m_r r$	$5.(m_r r + m_w w) \cdot d$

Low-end SSDs

$W_C = \frac{1}{2}$	$0.85 \cdot 250MB/s$
	1·100 <i>GB</i>

ltem	Description	Specification
High-end SSD (SLC)	Capacity	100 GB
	Write Endurance	100 K
Low-end SSD (MLC)	Capacity	200 GB
	Write Endurance	10 K
Workload	Read/write (MB/s)	100 / 250
	Read/write cache hit rate	50% / 15%
	Read / write length	4KB / 64KB

high-end low-end
$$1.47$$
 years, 6.34 years

Problem statement

- High-end SSDs cache can wear out faster than low-end SSDs main storage
 - Caching less results in poor performance
 - Caching more results in poor reliability
- Static workload classifiers can be less efficient
- The characteristics of workload can change over time
- Objectives
 - Balance the performance and lifetime of cache and storage at the same time

metric: Latency over Lifetime (less is better)

Selective caching policies

- Request Size based Caching Policy
- Hotness based Caching Policy

Static workload classifiers cannot distribute workload across cache and storage precisely

Selective caching policies

Control trade-offs between performance and lifetime

p (threshold): the probability of caching data

p is more: cache wears out faster, performance enhances p is less: cache wears slower, performance degrades

Backend Storage

Probabilistic Caching Policy

Online sampling

Estimate latency over lifetime for each sampling cache

Main Storage

Simulation environment

- Trace-driven simulator
- Microsoft Research Cambridge I/O Block Trace
 - 13 enterprise applications trace for a week
- Cache provisioning = 5%
 - Cache size / Storage size
- Unique data size of workload / Storage Size = 0.5
- Caching policies
 - LRU, size-based (+ sampling), hotness-based (+ sampling), probabilistic (+ sampling)

Adaptive threshold

Different workload traces

- Overall, reduced latency over lifetime by 60%.
 - Very effective on some traces (mds, stg, web, prn, usr, proj, src1, src2)
 - Less effective on very skewed workload (wdev, rsrch, ts, hm, prxy)

Different sampling rates

 Higher sampling rate results in more accurate estimation (beneficial) and less space for adaptive cache (harmful)

Conclusion

- We showed that high-end SSD cache can wear out faster than low-end SSD main storage.
- We proposed sampling based selective caching to balance the performance and lifetime of cache and storage.
- Trace-based simulation showed that the proposed caching policy is effective.

Q & A