

Pfimbi: Accelerating Big Data Jobs Through Flow-Controlled Data Replication

Simbarashe Dzinamarira*

Florin Dinu[△] T. S. Eugene Ng*

*Rice University, △EPFL

DFSs have a critical role on the Big-Data landscape

- Rich ecosystem of distributed systems around Hadoop and Spark
- Predominantly use HDFS for persistent storage
- A performant HDFS benefits all these system

Synchronous data replication in HDFS and its shortcomings

- Bottlenecks affect the whole pipeline
- Contention between primary writes and replication

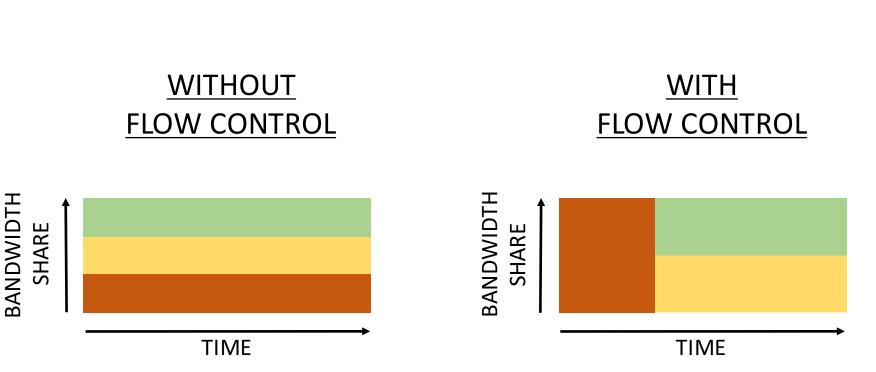
Synchronous replication seldom helps boost application performance

- In a study by Fetterly et al. only about 2% of data was read within 5 minutes of being written [TidyFS: USENIX ATC 2011]
- Fast networks reduce the cost of non-local reads
- There can be data locality without replication

Synchronous replication impedes industry efforts to improve HDFS

Heterogeneous storage

Memory as a storage medium


Asynchronous replication relieves the effects of pipeline bottlenecks

Beside asynchronous replication, we need flow control to manage contention

Pfimbi effectively supports flow controlled asynchronous replication

Allows diverse flow control policies

Cleanly separates mechanisms from policies

Isolates primary writes from replication

Avoids IO underutilization

Pfimbi Overview

• Inter-node flow control

Inter-node flow control

- Client API: (# of replicas, # of synchronous replicas)
- Timely transfer of replicas to ensure high utilization
- Flexible policies for sharing bandwidth

Synchronous

Asynchronous

Hierarchical flow control allows Pfimbi to implement many IO policies

- Example 1 : prioritize replicas earlier in the pipeline
- Example 2 : fair sharing of bandwidth between jobs

Intra-node flow control

- Isolate synchronous data from asynchronous data
- Avoid IO underutilization

Intra-node flow control Pfimbi's strategy

- Keep the disk fully utilized
- Limit the amount of replication data in the buffer cache

Buffer cache

Threshold for asynchronous replication : $\mathbf{T} + \mathbf{\delta}$

OS threshold for flushing buffered data: T

	Typical Values
T	10% of RAM (~13GB)
δ	500MB
Buffer Cache	20% of RAM (~26GB)

Additional topics that are discussed in detail in the paper

- Other activity metrics and their shortcomings
- Consistency
 - We maintain read and write consistency
- Failure handling
 - Same mechanism as in HDFS to recover from failures
- Scalability
 - Pfimbi's flow control is distributed

Evaluation

- 30 worker nodes
 - NodeManagers collocated with DataNodes
- 1 Master node
 - ResourceManager collocated with NameNode
- Storage
 - 2TB HDD
 - 200GB SSD
 - 128GB DRAM

Pfimbi improves job runtime and exploits SSDs well

Necessity of flow control when doing asynchronous replication

Pfimbi performs well for a mix of different jobs: SWIM workload

Policy Example: Pfimbi can flexibly divide bandwidth between replica positions

Related Work

- Sinbad [SIGCOMM 2013]
 - Flexible endpoint to reduce network congestion
 - Does not eliminate contention within nodes
- TidyFS [USENIX ATC 2011]
 - Asynchronous replication
 - No flow control leads to arbitrary contention
- Retro [NSDI 2015]
 - Fairness and prioritization using rate control
 - Synchronous replication

Conclusion

- Pfimbi effectively supports flow controlled asynchronous replication
 - Successfully balances managing contention and maintaining high utilization
 - Expressive and backward compatible with HDFS