

LABORATORIC

File System Trace Replay Methods Through the Lens of Metrology

Thiago Emmanuel Pereira, Francisco Vilar Brasileiro, Lívia Sampaio temmanuel@copin.ufcg.edu.br, fubica@computacao.ufcg.edu.br, livia@computacao.ufcg.edu.br, fubica@computacao.ufcg.edu.br, fubica@computacao.ufcg.edu.br)

Federal University of Campina Grande, Brasil

Very popular but ...

- Many ad hoc trace replay tools no description about their design and implementation
 - · Impossible to reproduce results.

"How to do this accurately is still an open question, and the best we

can do right now is take results with a degree of skepticism" - Traeger, A., Zadok, E., Joukov, N., & Wright, C. P. (2008). A nine year study of file system and storage

benchmarking. ACM Transactions on Storage (TOS)

LABORATÓRIO DE SISTEMAS DISTRIBUÍDOS

WWW,LSD,UFCG.EDU.BR/

Before creating new methods, how good are current trace based methods?

Our take

A metrology case study

A metrology case study

Single-laboratory

Our take

A metrology case study

Single-laboratory

Inter-laboratories

Different operators Different instruments Different environment

Our take

A metrology case study

Single-laboratory

Inter-laboratories

Different operators Different instruments Different environment

Single-lab testing

- 1. Define the measurand
 - The quantity intended to be measured
- 2. Specify the measurement procedure
- 3. Identify the uncertainty sources
- 4. Conduct the measurement characterization
 - In terms of bias, precision, sensitivity, resolution, etc.
- 5. Perform the calibration (or mitigation of measurement errors)
- 6. Calculate the measurement uncertainty
 - An interval [y u, y + u] within the true value of measurand y are expected to be.

File system response time

Measurement procedure

Instruments ARTC replayer (compilation-based) TBBT replayer (event-based)

- 1. Weiss, Zev, et al. "Root: Replaying multithreaded traces with resourceoriented ordering." SOSP. ACM, 2013.
- 2. Zhu, Ningning, Jiawu Chen, and Tzi-Cker Chiueh. "TBBT: scalable and accurate trace replay for file server evaluation." FAST,2005.

1. Weiss, Zev, et al. "Root: Replaying multithreaded traces with resourceoriented ordering." SOSP. ACM, 2013.

trace

TBBT Replayer

Based on TBBT design, running as a real time process to be less **sensitive**

- 1. Zhu, Ningning, Jiawu Chen, and Tzi-Cker Chiueh. "**TBBT: scalable and** accurate trace replay for file server evaluation." FAST,2005.
- Tarihi, Mojtaba, Hossein Asadi, and Hamid Sarbazi-Azad. "DiskAccel: Accelerating Disk-Based Experiments by Representative Sampling." SIGMETRICS, 2015.

Uncertainty sources

TBBT

Reference values

Characterization

- Microbenchmark (5k ops, 4k chunks, [1-4] threads)
 - · Random read (RR), Random write (RW)
 - Sequential read (SR), Sequential write (SW)
- Filebench fileserver workload

Characterization

Microbenchmark

Bias characterization

LABORATÓRIO

LABORATÓRIO DE SISTEMAS DISTRIBUÍDOS

5

Bias characterization

Bias characterization

LABORATÓRIO

TBBT improvements

TBBT improvements

TBBT improvements

Uncertainty

Workload	TBBT	ARTC
Random read	22579.0 ± 2.4% (22891.6 ± 4.8%)	22243.5 ± 1.8%
Random write	22946.1 ± 3.2% (24807.6 ± 18%)	23076.0 ± 4.1%
Sequential read	4.0 ± 32.9% (7.8 ± 253%)	$3.7 \pm 18.6\%$
Sequential write	105.6 ± 1.3% (107.7 ± 4.2%)	$105.8 \pm 0.6\%$

WWW.LSD.UFCG.EDU.BR/

Uncertainty

Before TBBT improvements ARTC is a clear winner

Workload	TBBT	ARTC
Random read	22579.0 ± 2.4% (22891.6 ± 4.8%)	22243.5 ± 1.8%
Random write	22946.1 ± 3.2% (24807.6 ± 18%)	23076.0 ± 4.1%
Sequential read	4.0 ± 32.9% (7.8 ± 253%)	3.7 ± 18.6%
Sequential write	105.6 ± 1.3% (107.7 ± 4.2%)	$105.8 \pm 0.6\%$

Uncertainty

TBBT improvements are affective

Workload	ТВВТ	ARTC
Random read	22579.0 ± 2.4% (22891.6 ± 4.8%)	22243.5 ± 1.8%
Random write	22946.1 ± 3.2% (24807.6 ± 18%)	$23076.0 \pm 4.1\%$
Sequential read	4.0 ± 32.9% (7.8 ± 253%)	$3.7 \pm 18.6\%$
Sequential write	105.6 ± 1.3% (107.7 ± 4.2%)	$105.8 \pm 0.6\%$

WWW.LSD.UFCG.EDU.BR/

Uncertainty

How to choose between replayers?

Workload	TBBT	ARTC
Random read	22579.0 ± 2.4% (22891.6 ± 4.8%)	22243.5 ± 1.8%
Random write	22946.1 ± 3.2% (24807.6 ± 18%)	$23076.0 \pm 4.1\%$
Sequential read	4.0 ± 32.9% (7.8 ± 253%)	$3.7 \pm 18.6\%$
Sequential write	105.6 ± 1.3% (107.7 ± 4.2%)	$105.8 \pm 0.6\%$

Filebench fileserver workload

Characterization

Filebench fileserver workload

- \cdot 4 threads
- · creat, delete, append, read, write, stat
- · variable file sizes
- \cdot Wholefile read and write

Uncertainty

	TBBT	ARTC	Reference
Read	20.73 ± 118.27%	27.21 ± 92.72%	50.72
Write	50.45 ± 79.81%	69.79 ± 33.79%	83.95

	TBBT	ARTC	Reference
Read	20.73 ± 118.27%	27.21 ± 92.72%	50.72
Write	50.45 ± 79.81%	69.79 ± 33.79%	83.95

Replayed response time appears better than reference

TBBT and ARTC memory footprints are smaller than filebench footprint, thus more cache hits

Uncertainty

	TBBT	ARTC	Reference
Read	20.73 ± 118.27%	27.21 ± 92.72%	50.72
Write	50.45 ± 79.81%	<mark>69.79</mark> ± 33.79%	83.95

TBBT response time appears better than ARTC response time

WWW,LSD,UFCG EDU BR/

Uncertainty

Replayers are not able to match captured workload concurrency

Conclusions

Metrology can help:

- Choosing the best instrument for the job (based on the measurement uncertainty)
 - The TBBT replayer, in some cases, is equivalent to the ARTC replayer.
- Improving tools and best practices
 - · Event-based replayer needs improvement
 - Changes in OS scheduler policy may affect sensitive metrics.
 - \cdot Spotting uncertainty sources
 - Differences in experimental environment, such as the amount of available memory, are likely to hurt reproducibility.