Storage performance modeling for future systems

Yoonho Park

May 3, 2016

Agenda

- Storage challenges
- Burst buffer
- APEX workflows document
- Machines analyzed
- LANL workflows performance modeling
- Workflow time distribution
- CORAL burst buffer
- Ongoing work

Storage challenges

- Current parallel file systems are unable to **consistently** deliver an adequate fraction of aggregate disk bandwidth
- I/O patterns that lead to irregularity and unpredictability
 - Multiple processes writing to a shared file (N:1)
 - Bursty I/O (e.g. checkpointing) vs Underutilization (very low baseline)
- Increased capacity and bandwidth requirements for future systems (exascale)

Burst buffer

- Absorbs bursty I/O patterns via higher bandwidth and lower latency (compared to parallel file system)
- Allows parallel file system to be sized for capacity (not overdesigned)
 - HDD capacity grows faster than bandwidth
 - SSD still is more expensive than disk for capacity

- Use cases
 - Checkpoint and resilience
 - Analysis, post-processing, and visualization
 - Caching and performance optimization
 - Extend memory capacity (e.g. large problems)

APEX workflows document

- Specification of large-scale scientific simulation and data-intensive workflows
 - Workflow phases
 - Campaign duration
 - Workload percentage
 - Wall time (pipeline duration)
 - Resources allocation (e.g. CPU cores and total memory for routine vs hero runs)
 - Anticipated increase factors (problem size and number of pipelines) by 2020
 - I/O details (e.g. files accessed)
 - Amount of data retained (temporary, campaign, and forever)

- The information obtained from the document and discussed throughout the meetings with the APEX labs has been used to:
 - Model performance improvement provided by having burst buffer for a variety of use cases
 - Design and enhance future storage hierarchy architectures and underlying components (e.g. OS support, transparency, and usability)

Machines analyzed

IEM				
levi				
╧══╛╤╘			 4	4
▃▃▁▁▁▁▁▁				
			_	
			-	
		-		

	Cielo	Edison	Trinity*
Nodes	8,944	5,576	9,436
Total cores	143,104	133,824	301,952
Cores per node	16	24	32
Total memory (TB)	286	357	1,208
Memory per node (GB)	32	64	128
Bandwidth per node (GB/s)	85	103	137
PFS capacity (TB)	7,600	7,560	82,000
BB capacity (TB)	-	-	3,700
PFS bandwidth (TB/s)	0.16	0.17	1.45
BB bandwidth (TB/s)	-	-	3.30

- Trinity burst buffer to main memory ratio: 1.75 X
- Application efficiency estimated to be 88% (12% of checkpoint overhead) [3]
- Trinity burst buffer nodes:

* CPU only (no accelerators) Trinity data obtained from [4]

LANL workflows performance modeling

- Performance modeling (predictions) based on anticipated increased problem sizes for 2020
- Around 2x I/O performance improvement from parallel file system to burst buffer
 - Graph also shows results for half BB bandwidth

- Around 20x improvement over Cielo parallel file system (for the same checkpoint interval)
 - Essential to maintain checkpointing feasible

-

Workflow time distribution

• Drastic performance improvement for checkpointing and other I/O operations

Predictions based on checkpoint interval of 1 hour and current problem size (hero run, without increasing factors)

Workflow: LANL LAP

Workflow: LANL Silverton

CORAL burst buffer

- Support rapid checkpoint/restart to reduce the parallel file system performance requirements by an order of magnitude (bandwidth)
- Asynchronous drain checkpoint data to CORAL parallel file system
- Per-node design to maximize throughput and minimize latency to utilize the burst buffer for checkpointing

- Deterministic performance
 - Burst buffer bandwidth variation should not exceed 5% and must not degrade over a period of 5 years
- Reliability of the burst buffer is a function of node electronics and SSD drive
 - MTTF of more than 2 million hours
 - Mean time to data loss solely based on ٠ SSD is designed to be at least 434 hours (4,608 nodes)
 - Burst buffer is non-volatile, data can still be retrieved up to three months after node failure or power outage

Ongoing work

- Workflows specification is also being used to model other performance characteristics (e.g. processing, memory, and networking)
- Modeling performance, cost, and other aspects of different burst buffer architectures (e.g. per-node vs specialized burst buffer nodes)