A Long-Term User-Centric Analysis of Deduplication Patterns

32nd International Conference on Massive Storage Systems and Technology (MSST 2016)

Zhen Sun,^{1,2} Geoff Kuenning,³ Sonam Mandal,² Philip Shilane,⁴ Vasily Tarasov,⁵ Nong Xiao,^{1,6} Erez Zadok²

¹HPCL, NUDT, China; ²Stony Brook University; ³Harvey Mudd College; ⁴EMC Corporation; ⁵IBM Research – Almaden; ⁶SYSU, China

Outline

- Introduction
- Data-set description
- Deduplication-ratio & File-based Analysis
- User-based Analysis
- Conclusion and Future Work

Introduction

- Deduplication has been widely deployed in both backup and primary storage.
- Data sets analysis plays an important role in deduplication study.
 - Backup Storage (FAST'13, MSST'14).
 - Primary Storage (ATC'15, SYSTOR'09, SYSTOR'12, FAST'11).
 - Archival Storage (ICIVC'12).
 - HPC centers (SC'12).
 - And more.....

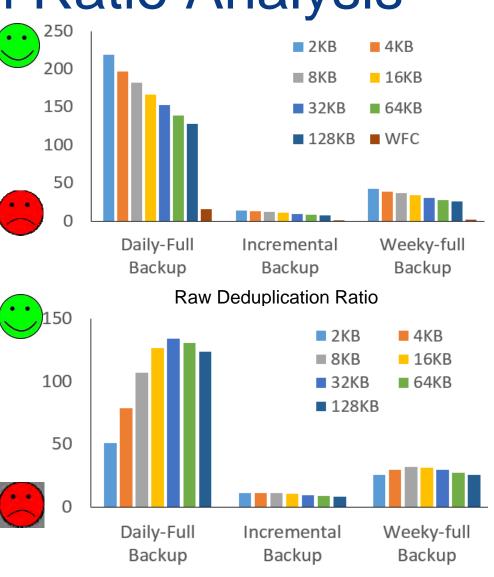
Motivation

- More data-set studies are needed:
 - Data-set characteristics vary significantly.
 - Whole file chunking (WFC) efficiency varies from 20%~87% (ATC'12, SC'12, FAST'12).
 - Most previous works study static data-set or cover a short period.
 - New findings can help us make better design decisions.
- What makes our work special:
 - Long-term backup study.
 - Covering > 4,000 snapshots from > 21 months.
 - User-Centric:
 - Study from users' perspective produces surprising results.

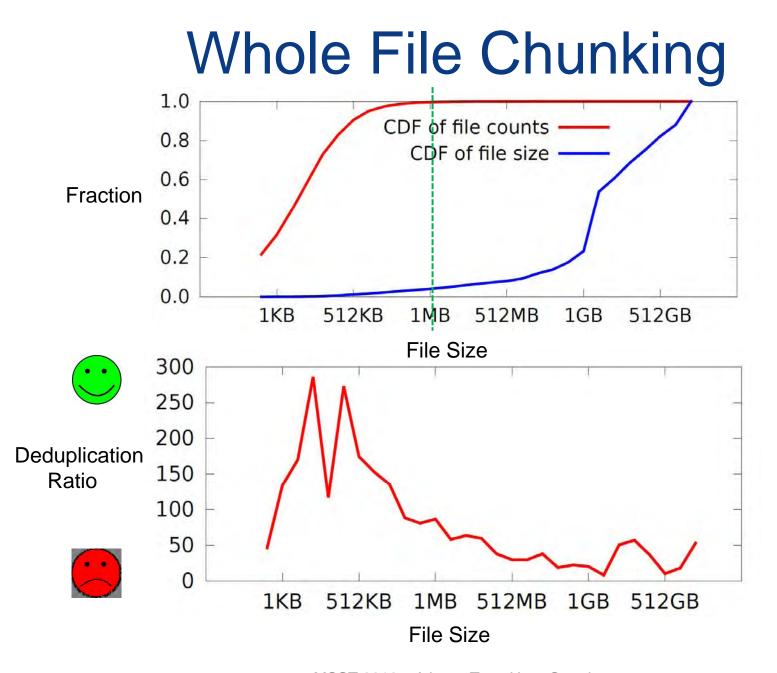
Data Set: FSL-Homes

Data Set	FSL-Homes
Organization	1 snapshot per user per day
Total Size	456TB
Start and end time	03/09/2012 - 11/23/2014
Number of users	33
Number of Snapshots	4,181 dailies (about 21 months)
Chunking methods	Content-defined Chunking, Whole File Chunking
Average Chunking Size	2, 4, 6, 8, 16, 32, 64 and 128 KB
Hashing Method	48 bit MD5 hash. (Hash collision rate < 0.004% using 2KB chunking)
Number of files	130 million
Meta-data included	File pathname, size, atime, mtime, ctime, UID, GID, permission bits, device ID, inode number

Data Set: FSL-Homes

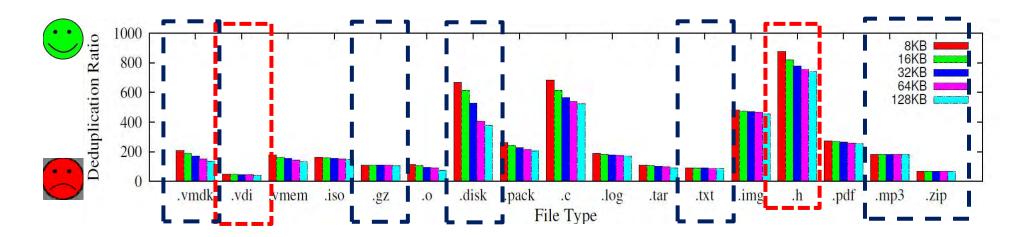

- Limitations:
 - File content is not stored.
 - Time/Space consuming to store all the data.
 - Not suitable for content-based analysis.
 - Some periods were not collected.
 - Data-collection is hard for many reasons.
 - Long breaks when data-set remained unchanged.
- Link: <u>http://tracer.filesystems.org</u>
 - Contains both tools and data-set.
 - Has been used in a number of papers.
 - Data set will be periodically updated.

Deduplication Ratio Analysis


Simulated 3 backup methods:

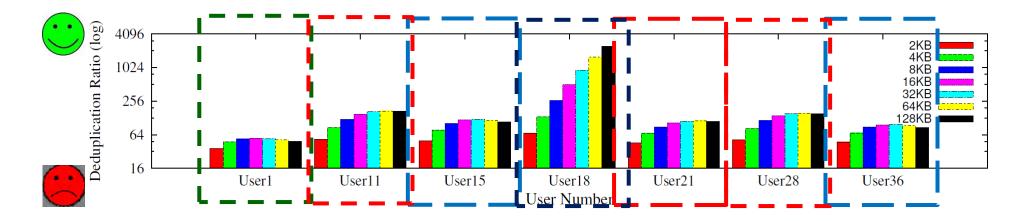
- Daily-Full backup.
- Incremental backup.
- Weekly-full backup.
- Due to high redundancy:
 - Meta-data consumes large fraction of total space.
 - Small chunking size is not always better.
 - Different backup methods have their own best chunking size.

Effective Deduplication Ratio

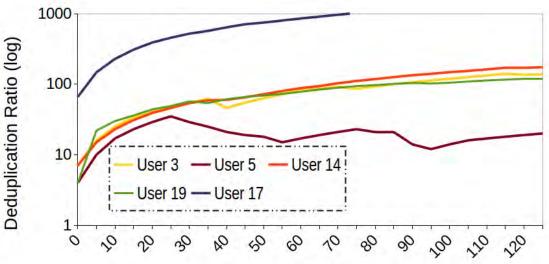


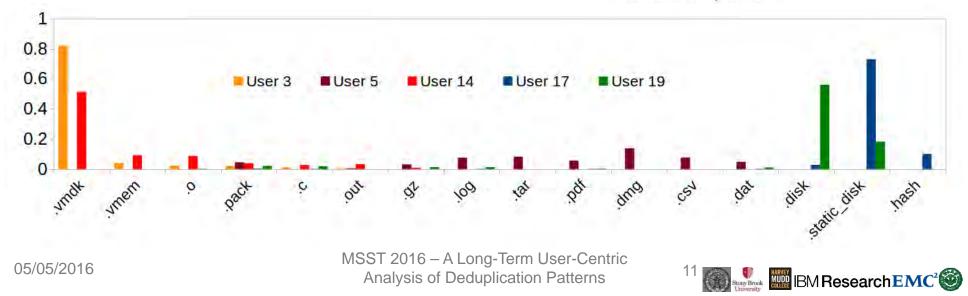
File Analysis

- VMDK files take ~60% of total space .
- Different file types have hugely different deduplication ratio and sensitivity to chunking


.gz .pack .vmem .blkparse .out .dat Rest .vmdk .iso .o .tcpdump .txt .pdf .tar File Type

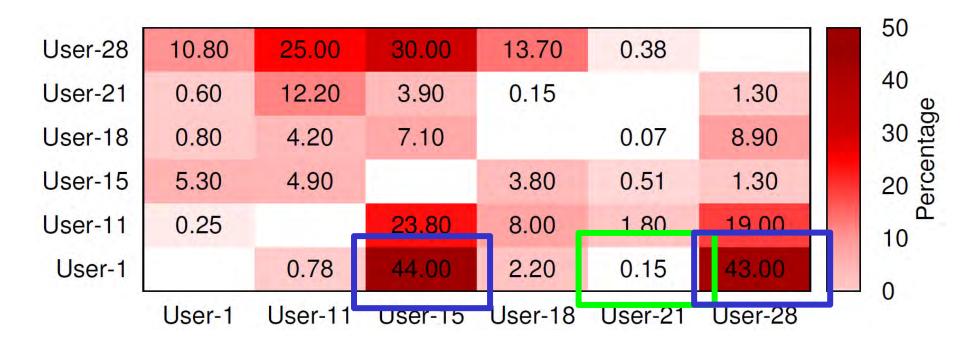
Per-User Analysis 1/2


- All representative users are carefully chosen.
 - We selected users that covered different characteristics.
- Users' deduplication ratio differs a lot.
- Users' sensitivity to chunking size is also different.



Per-User Analysis 2/2

- Why users' deduplication ratio differ so much?
 - Users' lifetime?
 - Users' file types?
 - Users' own characteristics:
 - Internal deduplication ratio.
 - Activity level.


No. of snapshots

User-Groups Analysis

Redundancies among users vary significantly.

• Users can be divided into groups.

Stony Brook

IBM Research EMC²

Conclusion and Future Work

• Conclusion:

- ◆ A long-term large-scale data-set collected and published online.
- Data-set analyzed from whole data-set and users' perspective.
 - Large chunking size may performs better in deduplication ratio.
 - WFC is not suitable for our data-set.
 - File types have different deduplication ratio and chunk size sensitivity.
 - Data in different users vary in deduplication ratio and chunk sensitivity.
 - User shared data have much higher popularity than average.
- Future work:
 - Cluster-deduplication.
 - Fragmentation in deduplication backup system.

A Long-Term User-Centric Analysis of Deduplication Patterns

Zhen Sun,^{1,2} Geoff Kuenning,³ Sonam Mandal,² Philip Shilane,⁴ Vasily Tarasov,⁵ Nong Xiao,^{1,6} Erez Zadok²

¹HPCL, NUDT, China; ²Stony Brook University; ³Harvey Mudd College; ⁴EMC Corporation; ⁵IBM Research – Almaden; ⁶SYSU, China

Link for our data-set and tools: <u>tracer.filesystems.org</u>

Tools

- Fs-hasher : Collect snapshots
 - Scans a file-system everyday.
 - Collect file's meta-data and chunk's information.
 - Supports multiple chunking strategies, chunking size and hash functions.
- *Hf-state*: Parse snapshots
 - Prints snapshots in human-readable manner.
 - Multiple options to control it's output.
- Link: *tracer.filesystems.org*

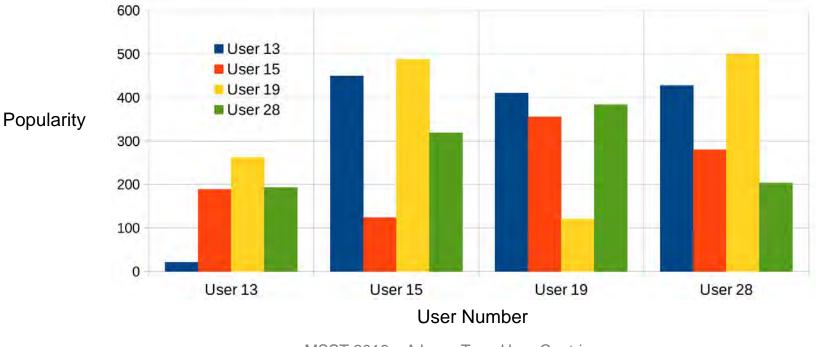
Data-set: FSL-Homes

- FSL-Homes: A long-term user-based backup dataset:
 - One snapshot per user per day.
 - Covered 33 users, >4000 snapshots, > 21months.
 - ♦ 7 variable chunking sizes + whole file chunking (WFC).
 - Rich meta-data which makes it suitable for multiple purpose studies.
 - ♦ 48 bit MD5 hash. (Hash collision rate < 0.004%)</p>
- Limitation:
 - Real data is not stored.
 - Time/Space consuming to store all the data.
 - Unable for content-based analysis.
 - Some periods were not collected.
 - Data-collection is hard for many reasons.
- Link: <u>http://tracer.filesystems.org/traces/fslhomes/</u>

Analysis of Deduplication Patterns

Data set will be periodically updated entric

05/05/2016


Data-set: FSL-Homes

Data Set	Homes
Organization	1 snapshot per user per day
Total Size	456TB
Start and end time	03/09/2012 - 11/23/2014
Number of users	33
Number of Snapshots	4181 dailies (about 21 months)
Chunking methods	Content-defined Chunking, Whole File Chunking
Average Chunking Size	2, 4, 6, 8, 16, 32, 64 and 128 KB
Hashing Method	48 bit MD5 hash. (Hash collision rate < 0.004%)
Number of files	130 million
Meta-data included	File pathname, size, atime, mtime, ctime, UID, GID, permission bits, device ID, inode number

User-groups Analysis (2)

- Redundant data shared by users in a group are largely similar.
- Chunks shared among users have much higher popularity than average.

