
BCStore: Bandwidth-Efficient In-memory KV-Store with Batch Coding

Shenglong Li∗, Quanlu Zhang∗, Zhi Yang∗ and Yafei Dai∗†
∗Peking University

†Institute of Big Data Technologies Shenzhen Key Lab for Cloud Computing Technology & Applications
{lishenglong, zql, yangzhi, dyf}@net.pku.edu.cn

Abstract—In-memory key-value store KV-store is a crucial
building block for many systems including large-scale web ser-
vices and databases. Recent research works pay close attention
to data availability of in-memory KV-store. Replication is a
common solution to achieve data availability, but the significant
memory consumption makes it not applicable for memory-
intensive applications. Integrating erasure coding into in-
memory KV-store is an emerging approach to achieve memory
efficiency. However, traditional in-place update mechanism of
erasure coding incurs significant bandwidth cost for write-
intensive workload due to frequent broadcast of data update.

In this paper, we build BCStore, a bandwidth-efficient in-
memory KV-store with erasure coding. We propose a novel
batch coding mechanism to optimize the bandwidth cost,
and verify its feasibility and efficiency through theoretical
analysis. To recycle the memory space due to delete and
update operations, we design an efficient move-based garbage
collection (GC) mechanism with a novel data layout called
virtual coding stripe. Besides, BCStore guarantees consistent
data read and write under these new designs, and supports
fast online data recovery. We evaluate the performance of
BCStore under various workloads. Experimental results show
that BCStore can save up to 41% memory compared with
replication, and achieve up to 2.4x throughput improvement
and 51% bandwidth saving compared to erasure coding with
in-place update.

Keywords-Bandwidth-efficient; Availability; Erasure Coding;
In-memory KV-store

I. INTRODUCTION

Recent years have witnessed an increasing demand on in-
memory computing for large-scale web services and databas-
es, which requires storing large-scale dataset in memory to
serve millions of requests per second. For example, large-
scale in-memory KV-Stores such as Memcached [1] and
Redis [2] have been widely deployed in Facebook [3], Twit-
ter [4] and LinkedIn [5] for improving service performance.

Recent research works pay close attention to data avail-
ability of in-memory KV-store. Even though many services
have persistent storage to guarantee data durability, recover-
ing large amount of data from persistent storage into memory
is time-consuming. For example, Facebook reports that it
takes 2.5-3 hours to recover 120GB data of an in-memory
database from disk to memory [6], which degrades service
performance seriously. Serving requests during recovery also
incurs serious overhead because of inefficient random access
from persistent storage. Thus, data redundancy in memory
is essential for fast failover.

Replication is a traditional way to provide availability for
disk-based storage, but it is too costly for memory-based
storage due to high replication factor. Integrating erasure
coding into in-memory KV-store is an emerging approach to
achieve memory efficiency. As the increase of CPU speed,
erasure coding can be computed fast enough to handle online
services [7].

However, traditional in-place update mechanism of era-
sure coding [8, 9] incurs bandwidth amplification problem
for write requests. When handling a write request, the overall
bandwidth cost involves one update on data block and m
updates on all the parity blocks (m is the number of parity
nodes). The bandwidth cost is amplified by m + 1 times.
Unlike replication which usually maintains three replicas,
erasure coding could have more parity blocks for different
availability requirements. As the number of parity nodes
increases [10, 11], the bandwidth amplification problem
becomes more serious.

Moreover, this problem becomes increasingly severe as
the number of write requests grows [12–14]. For example,
the workload of Yahoo KV-store has shifted from 80%-
90% reads in 2010 to only 50% reads in 2012 [13]. For
large-scale web services, peak load can easily run out
of network bandwidth. Thus, the bandwidth amplification
problem could render serious network congestion. It also
makes the monetary cost of bandwidth several times higher,
especially under the commonly used peak-load pricing mod-
el [15]. Besides, in workload-sharing clusters, the budget of
bandwidth resource for each running application is usually
limited [16].

To address the abovementioned problem, we propose
BCStore, a bandwidth-efficient in-memory KV-store with
erasure coding. The key design of BCStore is to do erasure
coding in a batch manner, which is referred to as batch cod-
ing. Specifically, instead of updating parity blocks for each
request, we aggregate write requests in a small time window
and organize the data of write requests into new stripes for
erasure coding. Then new data blocks and parity blocks are
appended to original stored blocks. With the batch coding,
the bandwidth cost for write requests becomes several times
smaller than in-place update. More importantly, we formally
analyze the induced latency of batch coding, and verify that
it is usually ignorable under modest throughput.

Due to the append mode of batch coding, we need to



recycle the memory space of data blocks which are deleted
or updated. To recycle the space quickly, we propose an
efficient move-based garbage collection (GC) mechanism.
To make GC equally efficient for variable-sized data, we
further design a novel data layout called virtual coding
stripe, to arrange variable-sized data in well-aligned stripes.
We also formally prove the bandwidth efficiency of GC
mechanism.

Under the batch coding and GC mechanism, BCStore
guarantees consistent data read and write through maintain-
ing stable states for successful requests. Moreover, the stable
state facilitates consistent data recovery after failures. Online
data recovery is also designed in our system for serving
requests quickly during recovery.

We have implemented BCStore based on an asynchronous
communication framework [17] and use Memcached as
back-end storage. For comparison, we also deploy Cocy-
tus [7], an in-memory KV-store which employs in-place up-
date for erasure coding. We evaluate BCStore under various
workloads with different key distributions and value sizes,
and also evaluate the systems with different configurations of
erasure coding. The results show that BCStore can save up
to 41% memory compared with replication, and achieve up
to 2.4x throughput improvement and 51% bandwidth saving
compared to Cocytus with little latency overhead.

Our contribution can be summarized as follows:
• We are the first to design batch coding in in-memory

KV-store, which achieves high bandwidth efficiency.
• We devise a novel move-based GC mechanism for

quickly memory recycling, and propose a new data
layout to arrange variable-sized data for efficient GC.

• We prove the feasibility and efficiency of batch coding
and GC mechanism through analyzing latency cost and
bandwidth cost in theory.

• We design new strategies for consistent read and write
and fast data recovery based on batch coding.

• We build an in-memory KV-store integrating above
designs. Comprehensive evaluation shows the efficiency
of our system.

The rest of this paper is organized as follows. The next
section describes necessary background about replication
and erasure coding and explains the bandwidth amplifica-
tion problem. Section III describes our key designs and
theoretical analysis. Section IV demonstrates our system
and implementation. Section V shows experimental results.
Finally, Section VI discusses related work, and Section VII
concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce two classic redundant
schemes for data availability. Then we pinpoint the band-
width amplification problem of in-place update used in
erasure coding.

Data node 1

Parity node 1 P

P

Data node 2

Data node 3

Parity node 2

obj1 obj4’ obj7

obj2 obj5 obj8’

obj3’ obj6
Delta(obj8, obj8’)

obj9

Update

Update

Update(obj8->obj8’)

Figure 1. In-place update for small objects.

A. Two Redundant Schemes

Replication. Replication is widely used in storage system
to achieve high data availability. In replication scheme, each
data node has n backup nodes to store data replications to
tolerate n failures. However, replication incurs significant
memory overhead for achieving data availability of mem-
ory, the memory usage is amplified by n + 1 times. For
many memory-intensive applications, memory is a scarce
resource [18]. And in workload-sharing clusters, the memory
budget for each application is limited, which makes the
situation even worse. Thus, replication is not suitable to be
applied for large-scale in-memory applications.

Erasure Coding. Erasure coding is a space-efficient re-
dundancy scheme to provide data availability. We denote a
(k,m)-code as an erasure coding scheme. Data is organized
into k equal-size blocks called data blocks. Data blocks are
encoded to generate m coded blocks called parity blocks.
Data blocks are distributed across k data nodes and parity
blocks are distributed across m parity nodes.

More specifically, each parity block is computed by a
linear combination of data blocks. For a (k, m)-code, let
{aij}1≤i≤m,1≤j≤k to be the coefficients of the linear com-
binations and let {Di}1≤i≤k and {Pi}1≤i≤m denote data
blocks and parity blocks respectively. Parity blocks can be
computed by:

Pi =
k∑
j=1

aijDj (1)

We consider Maximum Distance Separable erasure cod-
ing, i.e. , the original data can be reconstructed from any
k blocks of k + m data and parity blocks. The storage
blow up of (k,m) coding scheme is only (k + m)/k,
which saves much space compared with replication. Mean-
while, the increase of CPU speed enables fast erasure
coding (both encoding and decoding can be done at 4.24-
5.52GB/s), which makes erasure coding applicable for online
in-memory services [7].

B. Bandwidth Amplification Problem

Currently, erasure coding has started to be applied to in-
memory KV-store to achieve data availability. As the objects



P

P

obj3’

obj8’

obj4’Data node 1

Parity node 1 P

P

Data node 2

Data node 3

Parity node 2

obj1 obj4 obj7

obj2 obj5 obj8

obj3 obj6 obj9

Batch coding
Append

Figure 2. Batch coding mechanism.

in KV-store are usually small, it is not feasible to divide an
object into multiple data blocks for coding. Thus, in-place
update is applied to encode small objects [7]. Figure 1 shows
the principle of in-place update. An object is not divided
but encoded with other objects. We call the object group for
coding as a coding stripe (e.g. the group including obj1, obj2
and obj3). In each coding stripe, each object can be seen as a
data block. For an object update (e.g. obj8), a delta between
the new object and its old version is computed, then the
delta will be sent to all the parity nodes for updating the
corresponding parity blocks.

The principle can be formalized by the following formula,

P
′

i (o) = Pi(o) + ait(D
′

t(o)−Dt(o)) (2)

Suppose that a word Dt(o) at offset o in data block Dt is
updated to a new word D

′

t(o), the word Pi(o) at offset o of
each parity block Pi needs to be updated to the new word
P
′

i (o) accordingly.
Obviously, in-place update mechanism incurs bandwidth

amplification for write requests. The overall bandwidth cost
of handling one write request consists of the traffic on one
data node and m parity nodes, which can be computed by
adding the size of updated object and m times the size of
delta. Since the size of delta is equal to the size of object, the
bandwidth cost of handling one write request is amplified
by m+ 1 times. This problem would be more serious with
the increase of m [10, 11] and with prevalence of the write-
intensive workload [12–14].

III. DESIGN AND ANALYSIS

A. Basic Batch Coding

To solve the bandwidth amplification problem of in-place
update, we resort to batch coding mechanism. Instead of
updating all the parity blocks in place for each write request,
we aggregate write requests and organize the objects into
coding stripes. After batching enough objects for construct-
ing a stripe, new parity blocks are computed in a batch
manner based on batched objects. Then new data blocks

and parity blocks are sent to corresponding data nodes and
parity nodes and appended to original blocks.

Specifically, as shown in Figure 2, when obj3, obj4 and
obj8 are updated, new objects including obj3’, obj4’ and
obj8’ are batched in a stripe before sending to storage
nodes. Then new parity blocks are computed by the new
objects. After coding, new data blocks and parity blocks are
sent to storage nodes. The updated blocks in the original
coding stripe are marked as invalid blocks (white blocks in
the Figure 2). With batch coding mechanism, every k data
blocks will generate m parity blocks, thus the bandwidth
cost of parity blocks is m

k times the bandwidth cost of data
blocks. The bandwidth amplification of batch coding is only
m
k + 1 times, while the bandwidth amplification of in-place

update is m+ 1 times.

Latency cost analysis. Batch coding induces extra latency
cost of requests due to waiting for batch coding. Intuitively,
the higher the throughput becomes, the less latency is
induced by batching one coding stripe. On the other hand,
higher throughput put heavy pressure on network capacity,
thus, batch coding is more urgently required under heavy
load.

We formally analyze this latency problem to find out the
condition that keeps batch coding’s bandwidth benefit. The
expectation waiting time for filling up one coding stripe
can be represented by E(t) (the deduction can be seen in
Appendix IX-A):

E(t) =

∫ ∞
0

t ∗ (T ∗ (1− 1/e
T∗t
k )(k−1))/(e

T∗t
k ) dt (3)

T is the request throughput and k is the number of data
nodes. Figure 3 shows the relation between throughput and
expectation of latency cost. With the increase of throughput,
the expectation of latency cost decreases. When request
throughput exceeds 104 ops/s, the expectation of latency
cost for waiting one coding stripe is less than 550us. When
request throughput reaches 106 ops/s, the expectation of
latency cost for waiting one coding stripe is only 5.5us,
which is far less than the network latency.

To limit the latency cost of batch coding, we allow appli-
cations to set a latency bound ε. When real-time throughput
can meet the condition E(t) < ε, we use batch coding to
deal with write requests. Otherwise, we use in-place update
instead of batch coding to meet the latency requirement.
Within the latency bound, multiple coding stripes can be
encoded in a batch to improve the efficiency of batch coding.

B. Garbage Collection

Based on batch coding mechanism, data blocks and parity
blocks are appended to the storage, without updating original
coding stripes in place. When a request updates an existing
object in original stripe, we still allocate new coding stripe
to store the new object and compute new parity blocks. Then



GC GC

Data 
nodes

Parity 
nodes

Original stripes Batched stripes

(a) Heuristic GC. The first stripe and fourth stripe
are chosen to GC.

GC GC

Original stripes Batched stripes

Data 
nodes

Parity 
nodes

(b) Heuristic GC with Zipfian workload. The first
stripe and the second stripe are chosen to GC.

GC GC

Original stripes Batched stripes

Data 
nodes

Parity 
nodes

(c) Worst case of GC. Each stripe has an invalid
block.

Figure 4. GC performance for different coding spaces.

10
3

10
4

10
5

10
60

1000

2000

3000

4000

5000

6000

Throughput(ops/s)

La
te

nc
y(

us
)

Figure 3. The relation between throughput and waiting time for filling up
one coding stripe (k = 3).

the object in the original coding stripe becomes invalid.
However, we can not delete the invalid object directly,
because it is needed to guarantee the redundant degree
of other objects in the same stripe. With the increase of
the number of update requests, invalid data blocks would
degrade memory efficiency.

Thus, we need to design a garbage collection (GC)
algorithm to recycle the space of invalid block. Our key
solution is moving valid blocks to replace the invalid ones
among coding stipes in order to fill up the coding stripes with
valid blocks, then the empty coding stripes can be released.
The efficiency of move-based garbage collection depends on
the number of moved blocks, because moving a data block
causes a delta broadcast to update all the parity blocks.

To achieve bandwidth efficiency, we propose a heuristic
garbage collection algorithm. The key idea is to move the
valid blocks from the stripes with the most invalid blocks
to the stripes with the least invalid blocks to replace the
invalid blocks. The block moving strategy is illustrated in
Figure 4(a). In this case, white blocks are updated by the
requests in batched stripes and becomes invalid. We select
the valid blocks in the first stripe, and moves the blocks to
the third stripe. Similarly, we move the valid blocks from the
fourth stripe to the sixth stripe. Then invalid data blocks and
parity blocks in the first and fourth stripe can be released.

Note that given any situation of coding stripes, our GC
can free all the invalid blocks with the least moved blocks.

Data node 1
Hot

cold

Sort

Batched 
objects

Data node 2

Data node 3

Parity node1

Parity node2

Figure 5. Data arrangement based on key popularity. Different color
represents different popularity.

Because the number of released stripes is fixed in any GC
method, moving blocks in the stripes with the most invalid
blocks can minimize the number of moves. Then bandwidth
cost for updating parity blocks can be minimized. Though
garbage collection algorithm adds CPU cost for handling
update workload, we assume that computation will not be
the bottleneck with the speedy CPU cores.

Popularity-based data arrangement. We further improve
our GC’s efficiency by leveraging the characteristic of com-
mon workloads with skewed key distribution (e.g. Zipf [19]).
We aim to make the invalid blocks concentrate on few
stripes, which can reduce the number of moved blocks.

We propose a popularity-based block arrangement method
to improve GC efficiency. Specifically, as shown in Figure 5,
batched requests are sorted according to key popularity,
then we place the sorted request objects into the coding
stripe in the order of key popularity. Because hot objects
are more easily accessed together, more invalid blocks will
be generated in few coding stripes. As Figure 4(b) shows,
with this data arrangement method, the following requests in
batched stripes can be concentrated in the first three stripes
based on Zipfian workload. Thus, only one data block needs
to be moved to release two stripes.

Bandwidth analysis. Because GC induces extra bandwidth
cost, we need to analyze the overall bandwidth cost of
batch coding compared with in-place update to verify the
bandwidth efficiency of batch coding. Here, we propose a
theorem to give a upper bound of the overall bandwidth cost
of batch coding.



Virtual space

Data node 1

Parity node 1

Virtual
coding 
stripe 1

Data node 2

Data node 3

Parity node 2

Physical spaceData node 1

Virtual
coding 
stripe 2

Virtual
coding 
stripe 3

Figure 6. Virtual coding stripe. Green blocks in data nodes are the batched
variable-size objects.

Theorem 1. Given uniform write requests over data nodes,
the overall bandwidth of batch coding plus garbage collec-
tion can not exceed that of in-place update, even in the worst
case.

Here we take an example to understand the worst case
intuitively. As Figure 4(c) shows, each stripe has only one
invalid block. Based on our GC method, each GC stripe
needs to move k−1 blocks (k is the number of data nodes),
which costs the most GC bandwidth. Through adding the
GC bandwidth and the bandwidth cost of coding blocks,
we can obtain the overall bandwidth of batch coding. With
the guarantee of this theorem, batch coding can always save
bandwidth compared with in-place update, even in the worst
case. The detailed proof can be seen in Appendix IX-B.

C. Batch Coding for Variable-sized Objects

In particular, objects in the coding stripe are not aligned
well due to variable object sizes, which makes it difficult
to do garbage collection. Because the objects with variable
sizes make coding stripe size different, invalid blocks can not
be replaced by other blocks easily. Moving a block needs to
match the block size to find an appropriate position.

To solve this problem, we make objects aligned in virtual
coding stripes as shown in Figure 6. Each virtual coding
stripe has a large fixed-length space and is aligned in virtual
address. The objects with different sizes can be loaded into
the virtual data blocks in each coding stripe. The size of
parity block is the same as the biggest object in the virtual
coding stripe. We append zero to the other objects for coding
alignment. Note that there is little memory waste for this data
arrangement, because the data arrangement demonstrated
above is in virtual space, only the real data is mapped to
physical space as shown in Figure 6. With virtual coding
stripe, the blocks can always be moved between stripes,
which can facilitate garbage collection.

Client
Batch process

Batch 
coding

Garbage 
collection

Metadata 
management

Client

Client

Data process

Storage group

Preprocessing

Data process

Data process

Parity process

Parity process

Figure 7. System architecture.

IV. SYSTEM AND IMPLEMENTATION

In this section, we demonstrate BCStore in detail. We
first illustrate our system architecture to give an overview
of our system. Then we describe how to handle read and
write in BCStore. At last we elaborate the mechanisms for
consistency and data recovery.

A. System Architecture

As shown in Figure 7, the key component in BCStore
is batch process. Each batch process is associated with a
group of storage processes including data processes and
parity processes, which are distributed on different nodes.
Batch process can be deployed on front-end web servers [3]
to collect requests and do batch coding before the requests
are sent to storage nodes.

During the batch processing, batch process receives write
requests from clients and batches them together within
a small time window. During preprocessing, the requests
are deduplicated according to key for reducing bandwidth
cost and sorted based on key popularity for improving the
efficiency of garbage collection. Then the data of write
requests are arranged in virtual coding stripes and are
encoded to compute parity blocks. At last, data blocks and
parity blocks are sent to corresponding data processes and
parity processes.

Besides, batch process maintains metadata of coding
stripes, such as the mapping from key to corresponding
coding stripes. Through metadata lookup, batch process can
recycle memory space for garbage collection.

In BCStore, we only apply erasure coding on values, while
keys and metadata are replicated on multiple machines for
redundancy, because they are usually much smaller than
values [7]. We use “object” to denote the value of a key-
value pair in the following subsections.

B. Handle Read and Write

To support read and write requests based on batch coding,
we introduce our metadata design. BCStore leverages the
address of the coding stripe as key to index blocks, which
is represented by a monotonous incremental id cid.



A read request can be executed as follows. When batch
process receives a read request, it first finds out the data
process that takes charge of the key by computing the key’s
hash (e.g. consistent hash). Meanwhile, it retrieves the key’s
coding stripe address. Then it sends the address to that data
process to ask for the object.

For write requests, BCStore allocates new coding stripes
to load request objects and records the mapping of key to
coding stripe. After encoding, the data blocks and parity
blocks with the coding stripe address are sent to corre-
sponding storage processes based on key’s hash. When write
requests update existing keys, batch process updates the key
index from original coding stripe to new one and marks the
old data blocks in the original stripe as invalid. The metadata
of each coding stripe is also leveraged by garbage collection.

C. Consistency

BCStore supports strong consistency when handling read
and write requests. On one hand, read requests should always
read the newest data which are written successfully. On the
other hand, write request should be returned successfully
only if all the redundant blocks are written into back-end
storage.

To guarantee successful writes, BCStore proposes stable
state of batch. Specifically, each batch is assigned with an
xid, which increases monotonously at each batch process.
After coding, data blocks and parity blocks carry the xid and
are sent to corresponding storage processes. When receiving
blocks from batch process, storage processes first write the
blocks into a buffer, and then send back the responses with
xid to batch process. After batch process receives all the
responses with the same xid, the batch with the xid is
regarded as stable batch. Then batch process records xid
as stable batch id and sends responses of the requests in the
stable batch to clients. At last, the stable batch id is sent
to data processes and parity processes, then the blocks in
the buffer with smaller or equal xid are stored to back-end
storage.

When batch process receives a read request, it first embeds
the stable batch id to the request and sends the request to
corresponding data process. Data process first flushes the
buffered data with smaller or equal xid compared with stable
batch id into back-end storage, then retrieves the object from
back-end storage based on coding address and returns it to
client. Thus, read requests can always read the latest writes,
which avoids read inconsistency when failure occurs.

D. Recovery

When a process fails, BCStore needs to reconstruct lost
data while serving client’s requests. Here we introduce the
recovery approaches to handle storage process failure and
batch process failure. We also assume no more than m
storage processes crash simultaneously. Some data would
become unavailable if more than m storage processes crash.

Storage process recovery. When a storage process fails,
each batch process first broadcasts its stable batch id to
corresponding alive storage processes. Storage processes
apply the buffered data which xid is less than or equal
to the stable batch id. After reaching a stable state among
all storage processes, batch process communicates with any
k storage processes on different storage nodes to request
the coding data. Specifically, it looks up the coding stripe
addresses of the keys in each coding stripe, then sends
them to corresponding storage processes. After receiving k
blocks of each coding stripe, batch process recovers the lost
blocks. When a new storage process restarts, it migrates the
recovered data with corresponding index to the new one.

BCStore allows the batch process to handle requests
during recovery to maintain the performance of service. To
handle read requests on the lost data, batch process first
locates the coding stripe based on the request key. Then
the lost data on that coding stripe can be recovered first
and returned to client timely. When handling write requests
onto the failed process, the request data can be stored in
the buffer of batch process temporarily. After a new storage
process restarts, the request data will be migrated to the new
storage process.

Batch process recovery. When batch process fails, a
new batch process is launched on another machine to take
over the jobs of failed batch process. The requests to the
failed batch process will be redirected to the new batch
process. First, it copies the metadata replication of failed
batch process from other batch processes. Then, new batch
process communicates with the storage processes that are
associated with the failed batch process to collect the latest
xids. The minimum number Minxid among those xids is
chosen as the stable batch id. Because the requests in the
stripes with xid ≤ Minxid may have been successfully
returned to clients, while those in the stripes with xid >
Minxid are not returned. After reconstructing the metadata,
new batch process can continue to serve client’s requests.

The uncompleted batches during batch process failure can
be safely discarded without violating linearizability (xids of
these batches are larger than Minxid), because the requests
in these batches have not been replied to the clients. The
data in these batches is also not visible to the following
read requests due to our specific approach of handling
read requests (§ IV-C). The new batch process informs the
associated storage processes to discard the data with batch id
larger than Minxid, and then starts to generate new coding
batches with the batch id from Minxid + 1.

V. EVALUATION

In this section, we evaluate the performance of BCStore
and compare to erasure coding with in-place update and
replication in different aspects including bandwidth cost,
throughput performance, memory consumption and latency
cost.



0

2

4

6

8

10

B
an

dw
id

th
(G

B
)

 

 

BCStore without GC
GC
BCStore with GC
Cocytus

(a) Bandwidth cost for uniform workload.

0

2

4

6

8

10

B
an

dw
id

th
(G

B
)

 

 

BCStore without GC
GC
BCStore with GC
Cocytus

(b) Bandwidth cost for moderate-skewed Zipfian
workload.

0

2

4

6

8

10

B
an

dw
id

th
(G

B
)

 

 

BCStore without GC
GC
BCStore with GC
Cocytus

(c) Bandwidth cost for heavy-skewed Zipfian
workload.

Figure 8. Bandwidth cost for different workloads.

RS(3,2) RS(4,3) RS(5,4)
0

2

4

6

8

10

12

14

B
an

dw
id

th
(G

B
)

 

 

BCStore
Cocytus

Figure 9. Bandwidth cost for different coding
schemes.

0

50

100

150

200

250

300
B

an
dw

id
th

(M
B

/s
)

Time(s)

 

 

0 10 20 30 40
0

1

2

x 10
4

T
hr

ou
gh

pu
t(

op
s/

s)

BCStore
Cocytus
Request throughput

Figure 10. Bandwidth cost for different through-
put.

RS(3,2) RS(4,3) RS(5,4)
0

2

4

6

8

10

12x 10
4

T
hr

ou
gh

pu
t(

op
s/

s)

 

 

BCStore
Cocytus

Figure 11. Throughput performance for different
coding schemes.

A. Setup

Cluster configuration and system parameters. Our
experiments are conducted on 10 machines running SUSE
Linux 11 containing 12 * AMD Opteron Processor 4180
CPUs. The machines are distributed over multiple racks
and connected via 1Gb Ethernet. By default, we implement
RS(3,2) erasure coding on five nodes which can tolerate two
node failures. Each node deploys a storage process to handle
requests. Each node also acts as front-end web server to issue
requests to other nodes. We deploy 10 batch processes on
each node and each batch process is responsible for a range
of key. We set the number of batched requests to be 100
on each batch process. We implement real-time GC in the
experiments to improve memory efficiency.

We build BCStore based on an asynchronous commu-
nication framework [17]. We deploy Memcached [1] as
the back-end storage and leverage libMemcached [20] to
communicate with Memcached server on storage nodes. We
use Jerasure [21] and GF-complete [22] for the Galois-Field
operations in RS coding.

Targets of comparison. We compare BCStore with Cocy-
tus [7], which employs in-place update for erasure coding.
By default, we configure Cocytus with RS(3,2) erasure
coding on five nodes. Each node also acts as front-end web
server to issue requests as the configuration of BCStore.
Besides, we compare with replication for evaluating memory
consumption in Section V-D.

Workload. We use YCSB [23] benchmark to generate our
workload. We generate three workloads through adjusting
the parameter of Zipfian distribution, including uniform
distribution (random keys), moderate-skewed Zipfian distri-
bution, heavy-skewed Zipfian distribution. Keys in the work-
load range from zero to ten million. Since the median of the
value sizes from Facebook [3] are 4.34KB for Region and
10.7KB for Cluster, we test different systems with similar
value sizes, including 1KB, 4KB and 16KB. By default,
value size is set to be 4KB in the following experiments.
We evaluate the systems with 50%:50% read/write ratio
workload based on Yahoo KV-store workload [13].

B. Bandwidth Cost

First, we evaluate overall bandwidth cost of BCStore and
Cocytus with one front-end node. The overall bandwidth
cost of BCStore consists of the traffic between batch nodes
and storage nodes, and GC traffic from data nodes to parity
nodes. The overall bandwidth cost of Cocytus includes the
traffic of data nodes for read and write, and the traffic from
data nodes to parity nodes for data update. Figure 8(a) -
8(c) show the bandwidth cost for different workloads. From
the results, BCStore achieves notable bandwidth saving
compared with Cocytus for all the three workloads. Since
GC can be executed in idle time, BCStore can save more
bandwidth cost during service peak hours.

In Figure 8(a), BCStore costs little GC bandwidth be-
cause there are few update operations in uniform workload.



One front−end Two front−ends Three front−ends
0

2

4

6

8

x 10
4

T
hr

ou
gh

pu
t(

op
s/

s)

 

 

BCStore
Cocytus

(a) Throughput performance for uniform work-
load.

One front−end Two front−ends Three front−ends
0

2

4

6

8

x 10
4

T
hr

ou
gh

pu
t(

op
s/

s)

 

 

BCStore
Cocytus

(b) Throughput performance for moderate-skewed
Zipfian workload.

One front−end Two front−ends Three front−ends
0

2

4

6

8

x 10
4

T
hr

ou
gh

pu
t(

op
s/

s)

 

 

BCStore
Cocytus

(c) Throughput performance for heavy-skewed
Zipfian workload.

Figure 12. Throughput performance for different workloads.

Random Moderate−skewed Heavy−skewed
0

1

2

3

4

5

6

x 10
4

T
hr

ou
gh

pu
t(

op
s/

s)

 

 

batch size = 100
batch size = 500
batch size = 1000

Figure 13. Throughput performance for different
batch sizes.

0 10 20 30 40 50 60
0

1

2

3

4

5x 10
4

Time(s)

T
hr

ou
gh

pu
t(

op
s/

s)

 

 

No failure
Blocked recovery
Online recovery

Figure 14. Throughput for recovery.

0 5 10 15 20 25
0

50

100

150

200

250

300

Time(s)

M
em

or
y(

M
B

)

Figure 15. Real-time memory consumption for
moderate-skewed Zipfian workload.

When key distribution becomes skewed in moderate-skewed
Zipfian distribution, as shown in Figure 8(b), BCStore costs
more GC bandwidth. That is because the number of update
requests increases, which causes more data moves and delta
broadcast to parity nodes. Besides, taking advantage of key
deduplication in batch coding, BCStore costs less bandwidth
for Zipfian workload than uniform workload without GC.
For the workload of heavy-skewed Zipfian distribution, as
shown in Figure 8(c), GC bandwidth cost reduces because
more hot keys concentrate on hot stripes, which can reduce
the number of data moves and delta broadcast. Besides, key
duplication during batch coding can save more bandwidth
for heavy-skewed Zipfian workload.

Then we test the overall bandwidth cost for different
coding schemes including RS(3,2), RS(4,3) and RS(5,4) on
uniform workload. Figure 9 shows that with the increase
of the number of data nodes and parity nodes, BCStore
saves more bandwidth than Cocytus. This is because, with
the increase of parity nodes, Cocytus has to send the delta
to more parity nodes, thus, the bandwidth amplification
increases linearly, i.e. m+1 times. In contrast, the bandwidth
cost for data update in BCStore is proportional to the ratio
between the number of parity nodes and the number of
data nodes due to batch coding. The overall bandwidth of
BCStore can save up to 51% bandwidth cost compared with
Cocytus.

Next, we evaluate the overall bandwidth cost under dif-
ferent throughput with RS(5,4) coding scheme. We run the
uniform workload continuously and change request through-
put per 10 seconds. Then we compare the overall bandwidth
cost per unit time of BCStore and Cocytus. Figure 10 shows
that when request throughput increases, BCStore can save
more bandwidth than Cocytus. When the application sets a
latency bound of batch coding, we can switch from batch
coding to in-place update when throughput is below the
theoretical bound (according to Formula 3). Note that the
bandwidth cost of in-place update is acceptable under low
throughput (e.g. 5000ops/s). When the throughput increases,
we can switch to batch coding to reduce the bandwidth cost
during service peak hours.

C. Throughput

Then, we compare throughput performance between BC-
Store and Cocytus with different number of front-end nodes
for different workloads. As shown in Figure 12(a) - 12(c),
with the increase of the number of front-end nodes, BCStore
can achieve higher throughput than Cocytus. For one front-
end node, the throughput of two systems is similar because
the bandwidth of front-end node becomes bottleneck, even
though BCStore can save more bandwidth than Cocytus.
When we add front-end nodes, the throughput of Cocytus
does not increase significantly, because the bandwidth of



0

1

2

3

4

5

6

7

M
em

or
y(

G
B

)

 

 

Rep
EC
Cocytus
BCStore

(a) Memory consumption for uniform workload.

0

100

200

300

400

500

M
em

or
y(

M
B

)

 

 

Rep
EC
Cocytus
BCStore

(b) Memory consumption for moderate-skewed
Zipfian workload.

0

100

200

300

400

M
em

or
y(

M
B

)

 

Rep
EC
Cocytus
BCStore

(c) Memory consumption for heavy-skewed Zip-
fian workload.

Figure 16. Memory consumption for different workloads.

1KB 4KB 16KB
0

200

400

600

800

1000

1200

Value size

La
te

nc
y(

us
)

 

 

BCStore

Cocytus

(a) Read latency.

1KB 4KB 16KB
0

500

1000

1500

2000

2500

3000

Value size

La
te

nc
y(

us
)

 

 

BCStore

Cocytus

(b) Write latency.

1KB 4KB 16KB
0

500

1000

1500

2000

2500

3000

Value size

La
te

nc
y(

us
)

 

 

waiting time
preprocessing
coding
memcached

(c) Write latency performance and analysis.

Figure 17. Latency cost and analysis.

storage nodes becomes bottleneck. In contrast, BCStore can
improve throughput without the bandwidth bottleneck of
storage nodes and take full advantage of the bandwidth of
multiple front-end nodes. With the key distribution becomes
skewed, BCStore can achieve high throughput because of
key deduplication.

Besides, we add storage nodes and evaluate throughput
performance with different RS coding schemes including
RS(3,2), RS(4,3) and RS(5,4) with three front-end nodes.
As shown in Figure 11, with the increase of the number of
storage nodes, BCStore performs more throughput advantage
over Cocytus. This is because when the number of data
nodes increases, each parity node receives more update
requests from data nodes, which causes the parity node to be
bottleneck easily. In contrast, BCStore can take advantage of
cluster bandwidth efficiently to achieve higher throughput.
According to the results, the throughput of BCStore can
outperform Cocytus by up to 2.4x improvement.

Next we evaluate throughput performance of BCStore
with different numbers of batched requests for different
workloads. As shown in Figure 13, with the batch size
increases, the throughput becomes higher, because large
batch size can facilitate the deduplication efficiency and GC
efficiency. With the workload becomes skewed, the benefit
of large batch size becomes obvious, because more requests
are deduplicated during batch coding.

Then we evaluate the throughput performance during
data recovery. We run the uniform workload continuously
with RS(3,2) and emulate a data node failure at 20s. We

compare the performance of blocked recovery which blocks
the requests onto the failed node, and online recovery which
can handle requests during recovery. As Figure 14 shows,
throughput drops after one data node fails. With blocked
recovery, BCStore recovers the throughput performance after
all the data of the failed data is recovered. Compared
with blocked recovery, online recovery can improve the
throughput performance because the request data can be
recovered first and returned to clients timely.

D. Memory Consumption

Then, we test memory consumption of BCStore for dif-
ferent workloads. As Figure 16 shows, BCStore achieves
remarkable memory saving compared with 3-replication
(Rep) for all the workloads, because of the space efficiency
of erasure coding. The memory saving can reach to 41%
compared with replication. Moreover, BCStore can achieve
similar memory consumption to Cocytus, because BCStore
leverages real-time GC to reduce memory overhead of in-
valid data blocks and extra parity blocks. Both BCStore and
Cocytus need store extra metadata and metadata replication,
so the memory consumption is a little higher than erasure
coding for values (EC).

Besides, we also monitor the real-time memory con-
sumption of BCStore to evaluate GC timeliness. Figure 15
shows the real-time memory consumption for moderate-
skewed Zipfian workload. From the results, we can see that
memory reaches the maximum in a short time and becomes
stable in the following time. This is because most of the



requests are update requests in the workload. Through real-
time GC, BCStore can achieve similar memory efficiency
with Cocytus.

E. Latency

At last, we evaluate latency cost of BCStore and Cocytus
using uniform workload with RS(3,2) with batch size of one
coding stripe. Figure 17 shows the results of latency perfor-
mance for read and write with specific latency components.
From the results of Figure 17(a), BCStore achieves similar
read latency as Cocytus for different value sizes.

Figure 17(b) shows the average write latency of BCStore
and Cocytus to handle one coding stripe requests. From the
result, write latency of BCStore is a little higher than Cocy-
tus. Then we analyze the latency components for handling
write requests in BCStore, which is shown in Figure17(c).
The write latency consists of the waiting time for filling up
one coding stripe, preprocessing time of key deduplication
and popularity sorting, coding time and writing time for
Memcached. We observe that waiting time for batch coding
takes up a small part of the overall latency because of high
request throughput. As the value size increases, BCStore
consumes more coding time and writing time. Waiting time
for batching requests also increases because throughput
decreases with the increase of value size.

VI. RELATED WORK

A. Replication

Replication is a traditional approach to achieve data
availability in many systems [24–28]. Primary-backup ap-
proach [25, 29] replicates data across multiple servers, with
one server designated as the primary node, and the rest as
backups. Clients only send requests to the primary node.
Chain replication [26] can be viewed as an instance of the
primary-backup approach, which can achieve high through-
put and availability without sacrificing strong consistency.
Replication state machine [27, 28, 30] is a widely-used pro-
tocol to guarantee the consistent operations across multiple
replications. RAMCloud [31] stores redundant copies on
disk or flash and leverages large-scale back-end cluster to
achieve fast data recovery.

Compared with replication approaches, BCStore leverages
primary-backup replication to provide availability of metada-
ta and keys, while using erasure coding for values to achieve
space efficiency. Besides, BCStore does not require large-
scale cluster for fast data recovery. BCStore can recover
data quickly from distributed memory and provides high data
availability of in-memory KV-store.

B. Erasure Coding

Erasure coding is widely used in storage systems in both
academic work and industry to achieve data availability
and space efficiency [10, 11, 32–35]. Local Reconstruction
Code [10, 11] adds local parities to reduce the number of

coding blocks needed to read during recovery, while keeping
low storage overhead. EC-Cache [36] leverages erasure
coding to achieve a load-balanced and low latency cluster
cache for data-intensive workload. Piggybacking code [32]
adds new functions of one byte-level stripe onto the parities,
which reduces the amount of data required during recovery.
Lazy recovery [34] decreases erasure coding recovery rate to
reduce the required network bandwidth. Cocytus [7] applies
erasure coding in the in-memory KV-store to achieve fast
data recovery and space efficiency.

Different from previous erasure coding applications, BC-
Store addresses the bandwidth efficiency for applying era-
sure code in the in-memory KV-store, especially for write-
intensive workload. We design batch coding to reduce
bandwidth cost, and propose a heuristic garbage collection
algorithm to improve memory efficiency.

C. KV-stores

There have been a lot of work on application and opti-
mization of KV-store. DeCandia et al. builds Dynamo [37], a
highly available KV-store through data replication with weak
consistency. LinkedIn develops Voldemort [5] as distributed
KV-store system. Lakshman et al. develops Cassandra [38],
a schema-based distributed key-value store. Large-scale in-
memory KV-Stores like Memcached [1] and Redis [2]
have been widely used in Facebook [3], Twitter [4] as
data cache. MICA [39] optimizes parallel data access and
network stack of request handling to achieve high throughput
for a wide range of workloads. Silt [40] designs three
basic key-value stores with different emphasis on memory-
efficiency and write-friendliness. Memc3 [41] presents a set
of workload inspired algorithms such as optimized cuckoo
hashing and optimistic locking to improve Memcached per-
formance. Other research works have proposed using new
hardware such as RDMA [42–45], high speed NICs [39],
and FPGAs [46] to optimize key-value store. Some other
in-memory KV-store databases [47–50] aim to speed up
transaction performance.

BCStore focuses on high data availability of in-memory
KV-store and bandwidth efficiency of applying erasure code
for online services. Our work is complementary with pre-
vious KV-store optimizations and can be applied to these
KV-Stores to provide high availability and efficiency.

VII. CONCLUSION AND FUTURE WORK

Efficiency and availability are two crucial features for
in-memory KV-Stores. In this paper, we build BCStore,
which applies erasure coding for data availability and space
efficiency, and design batch coding mechanism to achieve
high bandwidth efficiency for write workload. Besides, we
propose a heuristic garbage collection algorithm to improve
memory efficiency. We theoretically analyze the bandwidth
cost and latency cost of batch coding. At last, through



evaluating different workloads with different system config-
urations, BCStore can achieve high bandwidth efficiency and
memory efficiency with little latency overhead compared to
erasure coding with in-place update.

In future work, we first plan to study new replication
and erasure coding schemes to optimize performance of
BCStore. Then we want to explore advanced hardware like
RDMA and NVRAM to extend our work. At last, we
consider to handle transactions on BCStore to support in-
memory database.

VIII. ACKNOWLEDGEMENT

We would like to thank our shepherd Swaminathan Sun-
dararaman for his guidance, and MSST reviewers for their
valuable feedback. This work is supported by State Key Pro-
gram of National Natural Science Foundation of China under
Grant No. 61232004, NSFC under Grant No. 61472009, and
Shenzhen Key Fundamental Research Projects under Grant
No. JCYJ20151014093505032.

REFERENCES

[1] B. Fitzpatrick, “Distributed caching with memcached,” Linux journal,
vol. 2004, no. 124, p. 5, 2004.

[2] J. Zawodny, “Redis: Lightweight key/value store that goes the extra
mile,” Linux Magazine, vol. 79, 2009.

[3] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab et al., “Scaling memcache
at facebook,” in Presented as part of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13), 2013,
pp. 385–398.

[4] M. Rajashekhar and Y. Yue, “Twemcache: Twitter memcached,” 2012.
[5] “Project Voldemort,” http://www.project-voldemort.com/voldemort/,

2016.
[6] A. Goel, B. Chopra, C. Gerea, D. Mátáni, J. Metzler, F. Ul Haq,

and J. Wiener, “Fast database restarts at facebook,” in Proceedings of
the 2014 ACM SIGMOD international conference on Management of
data. ACM, 2014, pp. 541–549.

[7] H. Zhang, M. Dong, and H. Chen, “Efficient and available in-memory
kv-store with hybrid erasure coding and replication,” in 14th USENIX
Conference on File and Storage Technologies (FAST 16), 2016, pp.
167–180.

[8] M. K. Aguilera, R. Janakiraman, and L. Xu, “Using erasure codes
efficiently for storage in a distributed system,” in Dependable Systems
and Networks, 2005. DSN 2005. Proceedings. International Confer-
ence on. IEEE, 2005, pp. 336–345.

[9] J. C. Chan, Q. Ding, P. P. Lee, and H. H. Chan, “Parity logging with
reserved space: towards efficient updates and recovery in erasure-
coded clustered storage.” in FAST, 2014, pp. 163–176.

[10] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, “Erasure coding in windows azure storage,” in Presented
as part of the 2012 USENIX Annual Technical Conference (USENIX
ATC 12), 2012, pp. 15–26.

[11] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “Xoring elephants: Novel
erasure codes for big data,” in Proceedings of the VLDB Endowment,
vol. 6, no. 5. VLDB Endowment, 2013, pp. 325–336.

[12] S. Gokhale, N. Agrawal, S. Noonan, and C. Ungureanu, “Kvzone
and the search for a write-optimized key-value store.” in HotStorage,
2010.

[13] R. Sears and R. Ramakrishnan, “blsm: a general purpose log struc-
tured merge tree,” in Proceedings of the 2012 ACM SIGMOD In-
ternational Conference on Management of Data. ACM, 2012, pp.
217–228.

[14] H. Amur, D. G. Andersen, M. Kaminsky, and K. Schwan, “Design of
a write-optimized data store,” 2013.

[15] “Improving cdn capacity utilization with peak
load pricing,” https://www.citrix.com/content/
dam/citrix/en us/documents/products-solutions/
improving-cdn-capacity-utilization-with-peak-load-pricing.pdf,
2016.

[16] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E. Thereska,
“End-to-end performance isolation through virtual datacenters.” in
OSDI, 2014, pp. 233–248.

[17] “Robust Distributed System Nucleus (rDSN),” https://github.com/
Microsoft/rDSN, 2016.

[18] Y. Bu, V. Borkar, G. Xu, and M. J. Carey, “A bloat-aware design for
big data applications,” in ACM SIGPLAN Notices, vol. 48, no. 11.
ACM, 2013, pp. 119–130.

[19] L. Egghe, “Zipfian and lotkaian continuous concentration theory,”
Journal of the American Society for Information Science and Tech-
nology, vol. 56, no. 9, pp. 935–945, 2005.

[20] “libMemcached,” http://libmemcached.org/, 2016.
[21] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library

in c/c++ facilitating erasure coding for storage applications-version
1.2,” 2008.

[22] J. S. Plank, K. Greenan, E. Miller, and W. Houston, “Gf-complete:
A comprehensive open source library for galois field arithmetic,”
Technical Report UT-C S-13–716, University of Tennessee, 2013.

[23] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of
the 1st ACM symposium on Cloud computing. ACM, 2010, pp.
143–154.

[24] T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault tol-
erance,” ACM Transactions on Computer Systems (TOCS), vol. 14,
no. 1, pp. 80–107, 1996.

[25] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “The
primary-backup approach,” Distributed systems, vol. 2, pp. 199–216,
1993.

[26] R. Van Renesse and F. B. Schneider, “Chain replication for supporting
high throughput and availability.” in OSDI, vol. 4, 2004, pp. 91–104.

[27] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18–25, 2001.

[28] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and
P. Li, “Paxos replicated state machines as the basis of a high-
performance data store,” in Symposium on Networked Systems Design
and Implementation (NSDI), 2011, pp. 141–154.

[29] P. A. Alsberg and J. D. Day, “A principle for resilient sharing
of distributed resources,” in Proceedings of the 2nd international
conference on Software engineering. IEEE Computer Society Press,
1976, pp. 562–570.

[30] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys (CSUR),
vol. 22, no. 4, pp. 299–319, 1990.

[31] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosen-
blum, “Fast crash recovery in ramcloud,” in Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles.
ACM, 2011, pp. 29–41.

[32] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A solution to the network challenges of data
recovery in erasure-coded distributed storage systems: A study on the
facebook warehouse cluster,” in Presented as part of the 5th USENIX
Workshop on Hot Topics in Storage and File Systems, 2013.

[33] N. B. Shah, K. Rashmi, P. V. Kumar, and K. Ramchandran, “Dis-
tributed storage codes with repair-by-transfer and nonachievability of
interior points on the storage-bandwidth tradeoff,” IEEE Transactions
on Information Theory, vol. 58, no. 3, pp. 1837–1852, 2012.

[34] M. Silberstein, L. Ganesh, Y. Wang, L. Alvisi, and M. Dahlin,
“Lazy means smart: Reducing repair bandwidth costs in erasure-coded
distributed storage,” in Proceedings of International Conference on
Systems and Storage. ACM, 2014, pp. 1–7.

[35] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang et al., “f4: Facebooks warm blob
storage system,” in Proceedings of the 11th USENIX conference on
Operating Systems Design and Implementation. USENIX Associa-
tion, 2014, pp. 383–398.

[36] K. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and K. Ram-



chandran, “Ec-cache: load-balanced, low-latency cluster caching with
online erasure coding,” in 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16). USENIX Association,
2016, pp. 401–417.

[37] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007.

[38] “Apache cassandra,” http://cassandra.apache.org/, 2016.
[39] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “Mica: A holistic

approach to fast in-memory key-value storage,” management, vol. 15,
no. 32, p. 36, 2014.

[40] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “Silt: A memory-
efficient, high-performance key-value store,” in Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles.
ACM, 2011, pp. 1–13.

[41] B. Fan, D. G. Andersen, and M. Kaminsky, “Memc3: Compact and
concurrent memcache with dumber caching and smarter hashing.” in
NSDI, vol. 13, 2013, pp. 385–398.

[42] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using rdma efficiently
for key-value services,” in ACM SIGCOMM Computer Communica-
tion Review, vol. 44, no. 4. ACM, 2014, pp. 295–306.

[43] C. Mitchell, Y. Geng, and J. Li, “Using one-sided rdma reads to build
a fast, cpu-efficient key-value store.” in USENIX Annual Technical
Conference, 2013, pp. 103–114.

[44] P. Stuedi, A. Trivedi, and B. Metzler, “Wimpy nodes with 10gbe:
Leveraging one-sided operations in soft-rdma to boost memcached.”
in USENIX Annual Technical Conference, 2012, pp. 347–353.

[45] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast in-memory
transaction processing using rdma and htm,” in Proceedings of the
25th Symposium on Operating Systems Principles. ACM, 2015, pp.
87–104.

[46] M. Blott, K. Karras, L. Liu, K. A. Vissers, J. Bär, and Z. István,
“Achieving 10gbps line-rate key-value stores with fpgas.” in Hot-
Cloud, 2013.

[47] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and
J. Dees, “The sap hana database–an architecture overview.” IEEE Data
Eng. Bull., vol. 35, no. 1, pp. 28–33, 2012.

[48] T. Lahiri, M.-A. Neimat, and S. Folkman, “Oracle timesten: An in-
memory database for enterprise applications.” IEEE Data Eng. Bull.,
vol. 36, no. 2, pp. 6–13, 2013.

[49] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. S-
tonecipher, N. Verma, and M. Zwilling, “Hekaton: Sql server’s
memory-optimized oltp engine,” in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data. ACM,
2013, pp. 1243–1254.

[50] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
transactions in multicore in-memory databases,” in Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles.
ACM, 2013, pp. 18–32.

[51] Q. Huang, H. Gudmundsdottir, Y. Vigfusson, D. A. Freedman, K. Bir-
man, and R. van Renesse, “Characterizing load imbalance in real-
world networked caches,” in Proceedings of the 13th ACM Workshop
on Hot Topics in Networks. ACM, 2014, p. 8.

IX. APPENDIX

In the Appendix, we analyze latency cost in batch coding
and bandwidth cost in GC in theory. Table I shows the
variables and corresponding meanings used in the following
analysis.

A. Latency Cost

Here we compute the latency cost of waiting one coding
stripe using probabilistic model. We assume that all the
requests are update requests and are distributed to different
data nodes uniformly. We use exponential distribution to
model the possibility of request arrival in a period of

variable meaning
Nr the number of requests
k the number of data nodes
m the number of parity nodes
Nm the number of moved blocks
Ng the number of GC stripes
Sv object size
T request throughput

Table I
VARIABLE TABLE

time. The probability distribution function of exponential
distribution P (t) can be represented as follows:

P (t) = 1− e−λ∗t (4)

P (t) represents the possibility that one request arrives in
time t on one data node. λ represents the average arrival
number of requests per unit time. Because overall request
throughput is T and requests are distributed among data
nodes uniformly, λ for each data node can be represented
as T

k .
The formula can be expanded as:

P (t) = 1− e−T
k ∗t (5)

We use G(t) to represent the possibility that all the data
nodes receive one request individually in time t, which de-
notes the possibility for waiting one coding stripe. Because
the request arrivals are independent among data nodes, G(t)
can be represented as:

G(t) = (1− e−T
k ∗t)k (6)

Then we obtain the probability density function g(t)
through the derivation of G(t):

g(t) = (T ∗ (1− 1/e
T∗t
k )(k−1))/(e

T∗t
k ) (7)

The waiting time for fill up one coding stripe can be
represented by the expectation of g(t), that is E(t):

E(t) =

∫ ∞
0

t ∗ (T ∗ (1− 1/e
T∗t
k )(k−1))/(e

T∗t
k ) dt (8)

The latency model can be extended to other workload
patterns (e.g. Zipfian distribution). We set different λ for k
data nodes. Then the possibility of receiving one request on
each data node in time t can be represented as:

G′(t) =
k∏
i=1

(1− e−λi∗t) (9)

Then through deducing the probability density function,
we can obtain the expectation of the waiting time for
batching a coding stripe under other workload patterns.



B. Bandwidth Cost

Then, we compare the overall bandwidth cost of batch
coding and in-place update in theory.

First, we analyze the bandwidth cost of in-place update.
We assume that all the requests are write requests. For each
write request, data object is sent to data node and the delta
is sent to all parity nodes. Delta size is equal to object size.
Thus, the overall bandwidth cost of in-place update Bin can
be represented as follows:

Bin = Nr ∗ Sv +m ∗Nr ∗ Sv (10)

With batch coding mechanism, every k requests send m
parity block updates. Thus, the traffic to parity nodes is
proportional to the ratio of the number of parity nodes and
the number of data nodes. The bandwidth cost of batch
coding Bbc can be computed as follows:

Bbc = Nr ∗ Sv +
m

k
∗Nr ∗ Sv (11)

The overall bandwidth cost needs to add GC bandwidth.
In GC, each data move triggers a delta broadcast to all
the parity nodes. So the overall GC bandwidth Bgc can be
represented by

Bgc = m ∗Nm ∗ Sv (12)

Here we analyze the upper bound and lower bound of
GC bandwidth. The best case is that the number of moved
blocks is 0. For example, all the write requests insert new
keys, or all the update requests concentrate on hot stripes so
that there are no valid data blocks in the GC stripes. Thus,
the lower bound of GC bandwidth cost is 0.

The worst case is that all the requests are update requests
and each GC stripe has one invalid data block as shown in
Figure 4(c), so the number of moved blocks is the product of
k−1 and Ng . We assume all the write requests are distributed
on data processes uniformly. Thus, the number of GC stripes
can be represented as Nr/k. GC bandwidth cost of the worst
case Bgc w can be deduced as follows:

Bgc w =
m ∗ (k − 1)

k
∗Nr ∗ Sv (13)

Through adding Bbc and Bgc w, we can obtain the overall
bandwidth cost of batch coding of the worst case, which is
the same as the bandwidth cost of in-place update,

Bbc all w = Nr ∗ Sv +m ∗Nr ∗ Sv (14)

Based on the above analysis, the worst case of overall
bandwidth cost of batch coding can not exceed in-place
update.

For other unbalanced workload patterns (e.g. Zipfian),
coding stripes may not be filled up, which causes generating
extra parity blocks compared with uniform workload pattern.

Under these workload patterns, the worst case of overall
bandwidth cost of batch coding may greater than in-place
update. In this case, we can leverage load balancing tech-
niques [51] (e.g. consistent hashing, hot-content replication)
to migrate load imbalance among data nodes.


