Campaign Storage

Peter J. Braam
Campaign Storage, LLC
Nederland, CO, USA
Email: peter.braam @ gmail.com

Abstract—Campaign Storage offers radically new approaches
to data management tasks through a modular implementation
and novel organization of storage features enabling management
of trillions of files and exabytes of data. Challenges in the
integration of commodity object stores are overcome, and a
flexible indexing system for histogram style search is introduced.
Campaign Storage raises questions about interfaces to govern
layout, clustering, bulk movement and to control advanced data
management. Its architectural choices led to an unusually short
roadmap before being used in production at a major scientific
computation facility.

Index Terms—file system, archiving, hierarchical storage man-
agement, search, data management interfaces, HSM.

I. INTRODUCTION

Campaign Storage ! provides a colder storage tier for very
large volumes of data - trillions of files and exabytes of
data. It offers scalability in capacity and scalable performance
for fast movement of data between the Campaign Storage
system and high performance storage tiers such as burst buffers
and parallel file systems used by compute clusters. Novel
histogram style search is integrated and allows policy-based
data management such as archiving. It offers snapshots and
replicas to provide data preservation and recoverability and
includes migration to cloud storage.

Campaign Storage offers a file system interface and is
layered generically on existing distributed POSIX file systems
such as GPFS or Lustre to handle metadata and it is layered
on object stores to store file data. This allows many widely
used data management tools to interface with the system.
The software can be deployed using a broad variety of low-
cost, industry standard storage hardware while leveraging cost
effective existing file systems and object stores. Different
object storage systems enable Campaign Storage’s use in
relatively high performance environments.

Los Alamos National Laboratory (LANL) implemented
Campaign Storage with a file system called MarFS, layered
on file systems and object stores. MarFS is supplemented with
a distributed parallel data mover called “pftool”. Pftool is
a parallel program with functionality like rsync [39], but it
offers some novel features, such as quick restarts of petabyte
scale file transfers and packing of a batch of small files into
a single object in MarFS. Other data movement tools such as
Lustre HSM [19] movers and gridftp [40] are being adapted
for MarFS.

IKyle Lamb and Ben McClelland invented the name “Campaign Storage”.

Dave Bonnie
Technical Lead - Campaign Storage
Los Alamos National Laboratory
Los Alamos, NM, USA
Email: dbonnie@]lanl.gov

We believe two aspects of Campaign Storage are particu-
larly interesting. First, the system has seen unusually rapid
and successful development and roll out at LANL since 2014.
At the time of writing (2017) LANL’s implementation is
in production at a world leading scale. Secondly, Campaign
Storage’s most relevant features involve advanced data man-
agement and bulk data movement operating on many files.
Both the areas of bulk storage operations and data management
are not optimally handled by the Unix file system interfaces,
and have not yet benefited from agreed data structures and
interfaces. Campaign Storage is an open source system and
has a unique opportunity to explore and establish new open
interfaces with wide reaching opportunities to innovate in data
management.

As a topic of research, Campaign Storage explores a new
tier of storage to bridge the ever widening gap in performance
and capacity between the fastest memories and the archive.
It explores scalability among 3 dimensions: data, metadata
and directory data. It has semantics suitable to bridge storage
tiers, and studies data management in an sea of data, much
larger than what is contained in faster tiers. Between High
Bandwidth Memories and tape, at least 3 other memory tiers
are present today. Between each tier performance and cost of
capacity decrease roughly an order of magnitude, while cost
of bandwidth increases at a similar rate. Campaign Storage
researches how to manage data across several of these tiers.

In this paper we start by reviewing the requirements for
a Campaign Storage system. We then move to a discussion
of the software architecture and the data movement utilities
that provide novel storage management, pausing to review
open-ended architectural areas, and its applications for data
management using data movers. LANL’s production Campaign
Storage system is discussed next and we finish with alternative
approaches and conclude our paper.

II. MOTIVATION AND PURPOSE

A. Campaign Storage

In many organizations, projects go through a period during
which their data are actively processed from time to time. We
refer to such a periods as a campaign. During the campaign
project data are staged on nearline storage for processing and
after processing data may be de-staged from nearline storage.
When a campaign terminates, some or all project data may
need to be archived.

We refer to a storage system to meet the requirements
of (i) staging from and de-staging to and (ii) archiving as
Campaign Storage. In 2014 LANL articulated its vision for
Campaign Storage. Campaign Storage, like most successful
storage systems, has been developed to accommodate specific
use patterns. We proceed to analyze the requirements under-
pinning Campaign Storage.

HPG Clustor A

HPC Clustor B

Fig. 1. Deployment of Campaign Storage in relation to other storage systems

B. Requirements Analysis

Nearline storage must offer high bandwidth, and in scientific
computing burst buffers and parallel file systems meet this
need. While solid state storage and the hardware on which
cluster file systems are deployed may offer the most cost-
effective solution for bandwidth, they command a significantly
higher price for capacity compared with commodity storage.
The trend to use higher performance nearline storage leads to
using a system with lower capacity and hence to a requirement
for a Campaign Storage system with capacity equal to a
multiple of the nearline tiers, offering high durability and
sufficient bandwidth for staging and de-staging.

A quantitative formulation of the requirements is obtained
as follows. A leading facility implementing a SOPF system
may choose to have 10PB of nearline storage, following basic
system architecture scalability models. A project using the
system at capacity may use a significant portion of this nearline
storage, for example one third assuming that concurrently one
project is being staged, one project is being de-staged and
one project is processing. If this facility would pursue for
example 100 projects, Campaign Storage should target 300PB
of capacity and staging and de-staging IO rates should allow
several petabytes of data to move in a shorter time than the
processing slot offered to the project and quickly enough to
limit exposure to data loss in the nearline storage. At the scale
described, 10’s to 100’s of GB/sec of bandwidth are required.
Bandwidth of traditional HSM scales with the number of (high
cost) drives holding storage devices, not with the number of
storage devices.

A parallel data mover is required as single nodes will not
offer sufficient bandwidth to migrate data. Scientific compu-
tation sees other extremes: both extremely large files (PB in

size) and extremely many files (billions per directory) may
need to be handled.

When data is prepared for archival, typically a policy is
created automatically or manually to select what must be
retained and moved to the archive system. This policy is
commonly understood and/or implemented using indexes of
the file system. Traditionally such indexes and policies are
created on the nearline storage systems and pose scalability
challenges and load unrelated to requirements of the compu-
tational systems. Having 100’s of projects with independent
indexes and policies is not convenient. Campaign Storage must
support scalable indexing and search to address the needs
across all projects which might reside on faster storage tiers
during a campaign.

A project’s information provides a natural subdivision of
data in a Campaign Storage system. A container or fileset ab-
straction with good administrative properties can be beneficial.
For example, many projects seek to make their data available
in public cloud systems and it can be useful to instantiate
containers on single workstations instead of storage clusters.

We have described requirements arising in scientific compu-
tation environments, but similar considerations apply to other
situations. For example, organizations with enterprise NAS
systems face comparable cost considerations and the data on
one enterprise server sometimes plays a similar role as project
data in an HPC environment.

III. ARCHITECTURE & IMPLEMENTATION
A. Architecture

Campaign Storage offers a file system interface. The Cam-
paign Storage file system, which is called MarFS, aggregates
the storage offered by multiple file system namespaces into
its metadata repository (CS MR) and the storage offered by
multiple object stores into its object repository (CS OR).
As a result, the inodes in MarFS have a structure familiar
from other file systems: the inodes in the metadata repository
leverage extended attributes, and when needed also file data
in the metadata repository, to describe the layout of the file
data across one or more objects. Optionally, MarFS can store
files directly in the metadata file system and offer POSIX 10
semantics. Fig. 2 shows its layered decomposition.

[OS VFS / Fuse offering POSIX API]

[MarFs file system driver]

[Obiect Storage Drivers] [Metadata File System]

Fig. 2. Software modules in Campaign Storage

The module decomposition of Campaign Storage software
is simple: MarFS is a typical filter file system: it leverages
the metadata repository almost directly, with little or no
transformation of API’s and data. When performing IO on file
data, it leverages layout information in extended attributes and

performs IO directly with one or more of the object storage
systems. MarFS leaves all communication among participating
clients and servers to the underlying file system and to
the object stores’ 10 libraries. This architecture implies that
Campaign Storage exclusively uses existing mature storage
systems, leveraging their maturity. The layering and separation
of data and metadata introduces additional latency for handling
requests compared with a single integrated system.

An important consequence of this architectural decision is
that both metadata and file data are accessible through widely
used API’s. A trade off arises from using these IO interfaces
because object systems typically offer API’s more constrained
than the read/write POSIX interface. Object storage systems
offer write once semantics (“PUT”), some offer appending
writes, and fewer offer writes at random offsets and over-
writes. MarFS, depending on the backend object store used,
also supports a limited IO interface. This limitation can be
overcome by writing file data into many smaller objects
through which read-modify write operations affect only the
objects overlapping with the modified region. This method is
exploited by Dropbox [2].

In some instances it is best to write or read multiple files
through a bulk operation presented to the object stores. For
this, MarFS supports a file level IO vectorization interface,
which extends the readv and writev interfaces found in the
Unix system calls:

int copy_file_range_fv(struct
unsigned int count,int flags)
struct copy_range {
int source_fd;
int dest_fd;
off t source_offset;
off t dest_offset;
size_t length;

Fig. 3. File level IO vectorization

The semantics of the function is to copy a range of file
extents from source file descriptors to destination file descrip-
tors at varying offsets. This interface allows many files to
be packed into one, by writing source files at an offset in
the destination file. It also gives the file system complete
control over the order in which extents in files should be
transferred, which can be used to advantage particularly when
retrieving files from a serial storage medium like tape and can
be exploited as a load balancing feature by leveraging layout
information.

The deployment of Campaign Storage proceeds as fol-
lows. Server nodes are configured for metadata and object
repositories. MarFS client nodes are generally used for data
movement and they need access to both MarFS and to other
storage systems to which data will be staged. Each client node

copy_range *r,

user visible data

Implementation of principal fle sysiem data
ore ain:
a
nas
. Packes e objec
cs-oR

cs-MR
MarFS motadata always stored in CS-MR
extended attributes point to object data

Extent
object
lookup

Fig. 4. Mapping file & directory data structures to data in metadata and object
repositories

mounts MarFS, and the networked metadata file systems in its
metadata repository will connect with the server nodes. There
is no server node for Campaign Storage itself.

The architecture addresses file IO performance through the
use of multiple servers and correct data placement. By default
file data is placed in a single object for which the object storage
service and bucket are derived from metadata at the namespace
level. However, object size limitations may require the file data
to be split into multiple chunks, each chunk to be stored as
an object, and when this is required a lookup table mapping
file offset to chunks is placed in file data on the metadata
repository. POSIX semantics are required when storing sparse
files and such files can be placed directly in the namespace.
Other options include packing of the data of small files into
a single object, while the keeping metadata for each packed
file available as an individual entry in the metadata repository.
Truly large files can be sharded over multiple object stores.
Several other options exist, for example redundancy beyond
that found in the object storage system is often required.

Campaign Storage also plans to offer several layout mech-
anisms for metadata. The basic layout simply uses the cluster
file system of the CS MR without modifications. Storing
embedded databases as an alternative form of a directory
subtree can enable bulk insertions of trees of files. Very
large directories should be striped over underlying CS MR
directories residing in multiple namespaces. At present, only
the basic layout is offered.

B. Indexing and Search

A major challenge in data management is to maintain an
inventory of the file system. Traditionally a policy manager
belonging to an HSM or data management system will crawl
the source file system to index the file trees. Only indexing at
modest speeds can be tolerated, higher rates produce too much
load on the source file system and also on the database system
holding the indexes. Campaign Storage makes two changes to
this pattern. First, it doesn’t build a general purpose index
but one using coarser sets of values. Secondly it maintains
indexes in the Campaign Storage file system, not in the source,
leveraging MarFS’ changelog data between snapshots.

access time

>16-10-01
25,785 files
25TB

16-01-01 - 16-10-01

14-01-01 - 16-01-01
type

<14-01-01

1-100MB
100MB-10G

>10G size

Fig. 5. A 3 dimensional histogram system for file size, access time and type
histograms

The index system for Campaign Storage consists of sub-
tree views (STVs), which are small databases, one attached
to each directory. Each STV contains a database with a set
of histograms. The histograms are defined by predicates. The
key for a record in the database for a histogram identifies its
predicate, and the values are three positive integers, where the
first two integers equal the number of files and the number of
directories in the subtree matching its predicate, and the third
integer equals the number of bytes in matching files. Each
file and directory defines such values, and the histogram of
a directory is formally recursively defined as the sum of the
histogram of its files and its sub-directories. Operations on
the file system lead to operations on the histograms and the
operations and the formation of histograms commute, hence
logs of operations can update the histograms.

Examples of interesting histograms are easy to find. A
traditional triple of predicates such as file size, last access time
intervals and file type leads to a multi-dimensional histogram.
An example in Figure 5 shows a system for a 4 x 4 x 3
histogram, which classifies files by type, access time and size.
For this histogram system at most 48 records are created
in each database file, possibly with a 49th record indicating
“other” if the disjunction of all predicates does not match any
files. As shown in figure 5 one may deduce from the content
of one bucket that the applicable subtree contains 25,785 files
and 2.5 TB of music. For multi dimensional histograms like
these, the usual boolean algebra of search expressions exists.

Other useful examples have histograms with predicates
classifying which storage servers are used for data storage.
A histogram with users and groups gives not only a quota
system with subtree quota usage information, but can also be
used to create an identity database for the files in the subtree.
A custom histogram may use predicates evaluated by file data
- for example by leveraging geospatial information or image
tags found in the files. We expect that there are many use cases
we have not thought off which can be flexibly addressed.

Because file systems are always changing, subtree views
also change and are best associated with snapshots of the
file system. ZFS snapshot differentials produce the views

efficiently, and ZFS maintains a parent directory id for those
files for which the link counts remains 1. An auxiliary database
that lists parents of files with link count > 1 is required to
support hard links. Subtree views associated with snapshots are
fully consistent and can form the basis of data management.

Campaign Storage offers a file system interface, hence
it is compatible with most data management systems that
perform ILM. Subtree views form an alternative for search
to create sets for policies to act on. Building the STV index
is first performed by copying the metadata of the source
file system to Campaign Storage and is then updated using
changelogs. In fact one sees in reports on HSM [19] that
frequently before data management is performed, the database
information is converted to histogram summaries. Another
powerful alternative to policy databases is offered by scanning
based ILM in IBM Spectrum Scale, and this can also underpin
Campaign Storage.

A histogram record contains 40 bytes. Auxiliary data, such
as versions and a linked list of subdirectories, may add a few
bytes to the STV. Consider a file system with 10M directories
and a file to directory ratio of 100:1. This might typically
consume around 40GB of directory data, and adding histogram
data to the directory subsystem with an average of 10,000
histogram entries per directory leads to 4TB of STV data.
The Robinhood policy database was observed to consume
approximately 1KB per file in the file system, for a total
of 1TB. Well tuned production Robinhood database systems
appear to require up to 50% of the database size in system
RAM ([19]) and are then observed to ingest 100M records at
rates of approximately 4,000 records/second. A single threaded
application on a KVM virtual machine with 2GB of RAM and
access to a single consumer grade PCI flash device ingests
metadata of 500M files at a rate of 19,000 files/second into
ZFS in a single threaded application. Using clusters of movers
and servers, LANL scaled this to over 800M files/second in
a recent study ([41]). Some of the search examples shown
by Robinhood users compute a single histogram item take up
to 15 minutes to execute. While these are encouraging early
indicators there are unquestionably important difficult cases
where our approach is at a disadvantage, and these will only
be discovered with more users.

C. Campaign Storage and Cloud

An attractive use model for Campaign Storage is to associate
a fileset, a concept which perhaps originated in AFS volumes
[25], and an object store bucket with a particular data manage-
ment task, for example the staging and archival of a particular
project or of a particular user’s file.

Such filesets and buckets are easily isolated and reused.
A single fileset and perhaps even its history in snapshots
can be stored as an object of manageable size in a cloud
system, where a cloud application running ZFS can access
it. The bucket with objects associated with the fileset can be
replicated to a cloud system for later access. Such objects and
metadata volumes can be migrated with tools like Amazon
Snowball. Also a single workstation might extract a smaller

fileset including its objects, and mount it using Campaign
Storage when greater interactivity and less data exchange with
server systems or with the cloud is desired.

Campaign Storage supports replication, leveraging ZFS and
the object storage systems, and this offers multi-location
archival storage, a frequently desired feature.

A MarFS client could move data between parallel file
systems or burst buffers by writing object data directly to
S3 and could theoretically perform metadata operations with
servers in the cloud, but it can be expected that much refined
utilities are required to make this efficient.

D. Open Architectural Questions

Unix file system API’s have proven sufficiently powerful to
see 35 years of re-use since being introduced in the early 70’s.
However, in the never ending pursuit of better performance
and data management, little has been done to get universally
adopted API’s beyond this and conceptually there is a lot
of variation between storage systems. Agreement on richer
APT’s enable the construction of portable highly efficient data
movement tools, while more complete POSIX compliance will
support a wide family of existing utilities.

Numerous storage systems, including Campaign Storage, all
parallel file systems and object storage systems, have defined
data layouts. The layout of a file can be determined at the
level of an individual file, at the level of a directory subtree
in the file system, or at the level of a metadata namespace.
It is valuable to allocate any layout resources only at the
time 10 is performed and not before. Data layouts become
a concern for users when detailed control of IO performance
and availability of data are desired. Data layouts include data
replication, erasure codes and other redundancy schemes and
layouts for sections of files.

Beyond the layout of data, layout descriptors could also
offer service descriptions to see if they are a good match for
impending operations. Particularly in a tiered storage system
many other variations may be important. In a layout descriptor,
servers or their storage targets are named or referenced,
and objects are named together with other data describing
redundancy patterns. There is no widely adopted standardized
description for layouts, and an agreed interface for this data
could have very wide usage.

Archival systems manage data in a primary storage system
and a related archival system. This involves archival attributes
indicating what data is available in a primary and/or in a
related archival storage system. Archival systems perform most
operations asynchronously and depend on changelogs and
indexes, for example to continue copying data to an archive
subject to a policy or to replay changes such as file removals
in the archive. Neither indexes nor changelogs have seen
standardization.

Better definitions and interfaces are also required for oper-
ations on aggregate structures such as collections of extents
in files and subsets of the namespace of a file system. This
is a larger area and we will try to indicate how this could
develop with a number of examples. Regarding the bulk

modification of file data, we have already discussed the file
level 10 vectorization, which extends the per file vectorization,
and successfully encoded the semantics of Campaign Storage
data movers. This call does not include bulk truncate opera-
tions (and also not fallocate’s “punch” implementation using
FALLOC_FL_PUNCH_HOLE and it includes no description of
concurrency. File level IO vectorization may be a sufficiently
general interface for a single thread of control transferring
data between two sets of linear address spaces, represented by
the two sets of file descriptors. However, if communicating
processes perform IO this opens up many further possibilities.
Among others, collective 10 [1], PLFS [6] and the ADIOS
[2] IO patterns have demonstrated significant benefits of such
patterns, but the nature of the data structures involved is not yet
clear and may relate closely to distributed layouts of data. For
example, the peer-to-peer patterns of communication found in
bittorrent [38] go beyond what these descriptors offer and have
demonstrated unique scalability for some problems.

Bulk handling of metadata is becoming essential in scientific
computing, where it is expected that basic operations may
create or move billions of files, and Campaign Storage aims
to meet this requirement. This topic has been researched in a
sequence of designs from CMU [26], [27], [28], and a driving
design pattern for this is client side write back metadata
caching, which scales creation performance with each client
contributing approximately local file system rates, rapidly
exceeding anything servers can offer. Small database tables
are a form of containers representing subsets of filesystems.
Integration of these into existing file systems using a serialized
format for containers and their differentials, is a requirement
for a bulk API that efficiently addresses advanced metadata
operations. However, metadata retrieval may not see simi-
lar improvements. Achieving POSIX semantics when storing
metadata on multiple servers is notoriously hard, even to en-
force essential behavior such as not renaming a directory into
its own subtree. Further complexities surround operations that
move a file or directory of the containing file system into such
containers or rename elements across servers. The containers
containing subsets of file system metadata, their identification
for bulk movement, their grafting relationships among each
other as well as concurrency constraints and parallelization
opportunities have seen mostly ad-hoc approaches.

E. Data Movement and HSM

A large number of data movement utilities exist and it may
be surprising that a number of them leverage sparse files which
are not directly supported by object storage systems used in
MarFS.

Pftool is a distributed application to move data between two
file systems mounted. It leverages MPI as its network protocol.
The functionality pftool offers falls in 3 groups: list, copy
and verify. Listing operations scan the file system in parallel,
copy moves metadata and data and verify validates that the
data is correct. pftool’s roadmap is to offer functionality much
aligned with rsync in a distributed fashion. Los Alamos also
incorporated functionality in pftool to pack small files into

Dirs Queue
Readdir

Load
Balancer

Scheduler x

Stat Queue Stat

ananp asuoq

Copy/Rsync/
CaRIC —>
p/R/C Queue Compare

Fig. 6. pftool functional decomposition

single objects. A further important feature of pftool is to
restart aborted operations efficiently, leveraging an extended
attribute to communicate this to a running instance. A detailed
architecture of pftool is discussed in a report [4] published by
LANL.

A second data mover for Campaign Storage is a Lustre
HSM mover [29]. This data mover targets an object storage
system named Spectra Logic Black Pearl [30] which imple-
ments objects on tape systems. Here refined control over the
interface between Lustre and MarFS is required, to ensure that
batches of requests can be executed using a bulk interface,
and to allow prioritization based on the order of data on tape
and operational considerations. MarFS and the HSM mover
provide fundamental HSM functionality that also supports the
more widely used DMAPI [32] interface. While third party
policy manager such as Robinhood [33] or Komprise can co-
exist with this solution, a new possibility is to create metadata-
only copies of source file systems in MarFS and leverage
the indexing mechanisms described to replace the policy
manager. The ingest rate to metadata repositories appears to
be easily an order bigger than to policy manager databases.
Campaign Storage directly supports handling multiple archival
destinations, such as faster storage for use while data is still
regularly accessed while migrating to cold storage when this
requirement ceases to exist.

IV. LANL’S CAMPAIGN STORAGE DEPLOYMENT
A. Basic System Architecture

Los Alamos deployed a first prototype of Campaign Storage
on commodity hardware nearly three years ago in 2014. This
first iteration inspired the architecture described thus, and the
driving factor in its deployment was identical. Refining this
architecture and completing the implementation MarFS led to
the current production deployment at Los Alamos between
2014 and 2016.

The deployment of Campaign Storage at Los Alamos is
composed of a 48 node commodity cluster of storage servers,
a 3 node cluster of metadata servers, and a 30 node cluster
of file transfer agents (FTAs). The 48 storage nodes have
multiple disk enclosures attached to them with a raw capacity
of approximately 64 petabytes in aggregate. The FTAs mount
all of the external filesystems (NFS, Lustre, HPSS) to facilitate
movement between those systems and Campaign Storage. The
three metadata servers run IBM’s GPFS, which allows for

Robi d Policy manager uses Lustre file
system and LHSM interface for batch
jobs

"r[Lustre Clients
J
J

Lustre HSM (LHSM) interface

Clients send LHSM interface

¥ commands and transparent restore
[MDS and HSM coordinator] requests to coordinator
¢ Coordinator dispatches and load
Mover nodes (Lustre clients) balances work over mover nodes
]
J
Agent and Lemur Plugin on Lustre
mover nodes move data between
Lustre and HSM
HSM system

Fig. 7. Lustre HSM building blocks

both high-speed clustered metadata access as well as the full
suite of information lifecycle management (ILM) tools that
allow for easy management of millions to billions of user files.
Current usable capacity is artificially limited to 23 petabytes to
facilitate future expansion onto LANL’s in-development tiered
erasure model.

This production system was deployed in the fall of 2016 and
provides users with approximately 20 GB/s of read and write
bandwidth when transferring large datasets across multiple
parallel transfers. Data is currently stored via the Scality RING
software configured with 20+4 erasure and user quotas are
implemented through a custom tool that interfaces directly
with the GPFS internal API. Data access to the Scality RING is
through an S3-like interface that utilizes curl. Each computing
campaign project is segregated into its own GPFS fileset
for both ease of management and expedient inode scanning
for timely quota enforcement. LANL is continuing to work
on user engagement in an effort to more fully utilize the
newly available Campaign Storage tier. User data set sizes
of hundreds of terabytes have already been created and stored
within the current system.

B. Challenges in Deployment

Deploying large-scale storage systems such as the one
described here typically are not without some amount of pain
from both users and administrators. Additionally, deploying a
system with a new software stack at a scale never tested before
also generally presents its own difficulties. The production
deployment of MarFS Campaign Storage at Los Alamos was
not immune to these issues, however, the rollout was handled
quite readily by a pair of system administrators with no loss
of user data or extensive downtime.

One difficulty that we found in early user testing of the
system was that standard Unix command line tools don’t
necessarily write sequentially. Specifically, “cp” will recognize

strings of zeros and create sparse output files by seeking ahead
and not writing those buffers. Typical tools like “rsync” are
also generally incapable of functioning on a purely sequential
basis. Some of these optimizations can be avoided by disabling
sparse file creation via flags, however, Los Alamos decided to
simply restrict data movement into the system by disabling
FUSE writes and only allowing users to utilize pftool for
transfers. This hardened the idea to users that this wasn’t a
typical storage system, and that they could not expect their
past workflows to translate directly. While such restrictions are
common to all domain specific storage systems, we think it is
attractive to gradually overcome them. Reading data through
FUSE as well as manipulating metadata were left open for
user interaction.

C. Future Development

While the initial goals of the Los Alamos Campaign Storage
tier were modest at approximately 1 GB/s per petabyte usable,
Los Alamos is continuing to pursue new storage paradigms
that will increase both data safety and usable bandwidth. This
will be achieved through the use of both additional erasure
coding in MarFS itself as well as utilization of next-generation
filesystems like ZFS for the underlying data storage.

V. RATIONALE AND RELEATED WORK

Many may question why a new effort like MarFS is
necessary. The central requirement is to provide a scalable
near-POSIX interface with adequate performance, cost, and
efficiency, at this time.

Current object storage systems incorporate erasure coded
data layout and excellent management and good scaling for
data storage. In contrast RAID solutions do not offer adequate
data protection at a truly massive scale. The object system
built into parallel file systems such as Lustre or Panfs lack
manageability, widely used interfaces and place load on the
metadata services. Object storage systems are not suitable
for exporting namespaces. While products such as Cleversafe,
Scality, and EMC ViPR are moving towards the “sea of data”
concept where data can have multiple personalities including
POSIX, Object, and HDFS [16], such namespace solutions are
not near POSIX and not efficient. MarFS offers the metadata
scalability of N POSIX name spaces.

It is possible to put object storage systems under scalable
file systems like GPFS [17] using a block interface over the
object storage system, but the block write patterns of these
parallel file systems are not well suited to benefit from these
object storage systems’ high performance and manageability.
MarFS will be able to use any object storage system, including
cloud-based services, as a back end storage repository.

The team has investigated existing open source projects,
and there doesn’t appear to be one that provides the needed
functionality. Ceph [23] provides a file system on objects,
but isn’t known for scaled out metadata service. GlusterFS
[24] can offer a global name space combining multiple file
systems into one mount point. It also hashes the file names
across the file systems, something MarFS does not yet offer.

The main difference is the approach to what GlusterFS doc-
umentation refers to as unified file and object. GlusterFS has
been integrated to be object storage for OpenStack Swift (for
objects) and block storage for OpenStack Cinder (for blocks).
Conversely, MarFS is designed to put a near-POSIX interface
over any object storage system, including OpenStack Swift.

One may question if HSM (hierarchical storage manage-
ment) systems such as HPSS [8] (High Performance Storage
System) or DMF [9] (Data Migration Facility) can meet the
requirements. These systems currently don’t take advantage
of the enormous industry investments in object storage. HPSS
metadata performance is likely 1/10th or less of what MarFS
metadata performance is expected to be. MarFS will leverage
existing tools and be a small amount of code to combine
these tools. MarFS will not offer all features of an HSM
system, although batch utilities could move data around inside
of MarFsS to various kinds of storage systems directed by data
management policies. Histogram based policy management
appears also in products like Komprise [10] and Apple’s
2016 file system [31], and appears related to mutidimensional
data modeling [42]. HSM systems are not generally highly
parallel. MarFS is designed for dozens to hundreds of metadata
servers/name spaces and thousands or even tens of thousands
of parallel data movement streams. HPSS is designed for an
order of magnitude less parallelism.

There are products that are optimized for WAN and HSM
metadata rates. For example, General Atomics Nirvana Storage
Resource Broker, iRODS [15] (Integrated Rule Oriented Data
Systems). Many parallel file systems implement POSIX files
over objects with full POSIX semantics, but due to synchro-
nization of metadata, such approaches are not known for
massive parallelism in a single file.

The team has looked at name space solutions. EMC’s
Maginatics [14] offers a hybrid approach, but is targeted at
enterprise use cases. The Camlistore [12] open-source project
appears to be targeted and personal storage. Bridgestore is a
POSIX name space over objects, but it places metadata in a
flat space. Avere NFS [11] over objects is focused at NFS so
shared file N-1 will not be high performance.

VI. CONCLUSIONS

Campaign Storage offers a straightforward architecture and
promises data management, staging and archiving of massive
collections of files, leveraging existing systems with best of
breed qualities for metadata and data storage. It has seen
an unusually quick rollout into production and can offer a
radically simpler approach to HSM, including built in policy
management. Standardization and development of agreed in-
terfaces for data management and bulk data movement will
contribute significantly to embrace different platforms with
multiple data management tools and as an open source system
Campaign Storage exemplifies the needs for this and may
contribute to this significantly.

REFERENCES

[1] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Collective I/O in
ROMIO,” In Proceedings of the The 7th Symposium on the Frontiers

of Massively Parallel Computation(FRONTIERS ’99). IEEE Computer
Society, Washington, DC, USA, pp. 182-189, 1999.

[2] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible 10 and integration for scientific codes through the adaptable
10 system (ADIOS),” In Proceedings of the 6th international workshop
on Challenges of large applications in distributed environments (CLADE
’08). ACM, New York, NY, USA, pp.15-24, 2008.

[3] “Dropbox explanation of object layout,” Stanford University,
(Date last accessed February, 2017). [Online]. Available:
https://www.youtube.com/watch?v=PE4gwstWhmc, Published on
Sep 10, 2012.

[4] H. Chen, G. Grider, C. Scott, M. Turley, A. Torrez, K. Sanchez, and
J. Bremer, “Integration experiences and performance studies of a COTS
parallel archive system,” IEEE Cluster 2010 Conference, pp. 166-177,
2010.

[S] B. Chamberlain, “Programming Models at the Exa-scale,”
Cray Inc, Cross-cutting Technologies for Computing at the
Exascale, February 2nd 2010 Rockville, MD, Available:

http://chapel.cray.com/presentations/Chamberlain-ProgEnv-CrossCut.pdf

[6] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate, "PLFS: a checkpoint filesystem for parallel
applications,” In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (SC '09). ACM, New York,
NY, USA, 2009.

[7] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and M. Shellenbaum,
“The Zettabyte File System,” Technical report, Sun Microsystems., pp.
1-13, 2003.

[8] H. Hulen, O.Graf, K. Fitzgerald, and R. W. Watson. “Storage Area
Networks and the High Performance Storage System”. 10th NASA
Goddard Conference on Mass Storage Systems and Technologies, 2009.

[9] Silicon Graphics International Corp,“DMF”, (Date
last accessed February, 2017). [Online]. Avail-
able://www.sgi.com/products/storage/tiered/dmf.html

[10] “Komprise,”(Date last accessed February, 2017). [Online]. Available:
https://www.komprise.com/

[11] Avere NFS, “Fastest Performance for Cloud & On
Premises,” (Date last accessed February, 2017). [Online].
https://www.averesystems.com/solutions/applications/performance .

[12] B. Fitzpatrick and M. Lonjaret, Lecture Presentation, “Camlistore: Your
personal storage system for life,” LinuxFest Northwest 2016, Available:
https://www.youtube.com/watch?v=8Dk2iVIc67M .

[13] H. Reuter, “Hiding HSM Systems from the User,” IEEE Symposium on
Mass Storage Systems 1999, pp. 215-221.

[14] Maginatics, “Directory Write Leases in MagFs,” Lecture slides, (Last
Date accessed February, 2017). [Online]. Available: http://maginatics.com
, Mountain View, CA, United States.

[15] Open Source Data Management Software, “iRODS Consortium,” (Date
last accessed February, 2017). [Online]. Available: https://irods.org

[16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” In Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST) (MSST
’10), IEEE Computer Society, Washington, DC, USA, pp. 1-10,2010.

[17] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for
Large Computing Clusters,” In Proceedings of the 1st USENIX Confer-
ence on File and Storage Technologies (FAST *02), USENIX Association,
Berkeley, CA, USA, 2002.

[18] E. Barton and A. Dilger, “High Performance Parallel I/O,” Chap. 8, pp.
91-106, CRC press, Boca Raton, 2015.

[19] C. Beyer, “Robin Hood 2.5 on Lustre 2.5 with DNE, Site status and
experience at German Climate Computing Centre in Hamburg,” DKRZ,
http://robinhood.sourceforge.net/rugl6/RUG16_DKRZ.pdf, = September
2016 [Date last accessed February 2017]

[20] “Cleversafe,” Wikipedia, (Date last accessed February, 2017). [Online].
Available: https://en.wikipedia.org/wiki/Cleversafe

[21] “Scality,” (Date last accessed February, 2017). [Online]. Available:
https://scality.com/

[22] DellEMC, “Dell EMC Vipr Controller, Automate and Simplify
Storage Management,” (Date last Accessed February 2017). [On-
line]. Available: https://www.emc.com/collateral/data-sheet/h11750-emc-
vipr-software-defined-storage-ds.pdf

[23] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C.
Maltzahn, “Ceph: a scalable, high-performance distributed file system,”
In Proceedings of the 7th symposium on Operating systems design and

implementation (OSDI *06), USENIX Association, Berkeley, CA, USA,
pp. 307-320, 2006.

[24] Red Hat, Inc [US], “GlusterFS,” (Date accessed February, 2017). [On-
line]. Available: https://www.redhat.com/en/technologies/storage/gluster

[25] M. Satyanarayanan, “Scalable, Secure, and Highly Available Distributed
File Access,” Computer, IEEE, Carnegie Mellon University, May 1990.

[26] Q. Zheng, R. Kai , G. Gibson, W. Bradley , G. Grider, “DeltaFS:
Exascale File Systems Scale Better Without Dedicated Servers,” Proc. of
the Tenth Parallel Data Storage Workshop (PDSW15), co-located with the
Int. Conference for High Performance Computing, Networking, Storage
and Analysis (SC15), Austin, TX, November 2015.

[27] L.Xiao, Lin, K. Ren, Q. Zheng, and G. A. Gibson. ShardFS vs. IndexFS:
Replication vs. Caching Strategies for Distributed Metadata Management
in Cloud Storage Systems, 2015 ACM Symposium on Cloud Computing
(SOCC 2015), Aug 29-30, 2015, Hawaii.

[28] K. Ren, Q. Zheng, S. Patil, G. Gibson, “Scaling File System Metadata
Performance With Stateless Caching and Bulk Insertion,” ACM/IEEE
Int’l Conf. for High Performance Computing, Networking, Storage and
Analysis (SC’14), November 16-21, 2014, New Orleans, LA.

[29] Wikipedia,“Lustre HSM Tools design,” (Date last
accessed February 24, 2017).[Online]. Available:
https://wiki.hpdd.intel.com/display/PUB/HSM+Agent+Design

[30] Spectra, “Spectra Logic Black Pearl”, (Date last
accessed February 24, 2017). [Online]. Available:
https://www.spectralogic.com/products/blackpearl/

[31] ARS Technica, Apple File Systems (APFS), “A ZFS developer’s
analysis of the good and bad in Apple’s new APFS file sys-
tem,”(Date last accessed February 24, 2017). [Online]. Avail-
able: https://arstechnica.com/apple/2016/06/a-zfs-developers-analysis-of-
the-good-and-bad-in-apples-new-apfs-file-system/

[32] DMAPI, Systems Management: Data Storage Management (XDSM)
API, CAE Specification, X/Open Document Number: C42, ISBN: 1-
85912-190-X,1990, (Date last accessed February 24, 2017). Available:
http://pubs.opengroup.org/onlinepubs/9657099//

[33] T. Leibovici, “Taking back control of HPC file systems with Robinhood
Policy Engine”, CoRR, abs/1505.0144, 2015.

[34] Lustre HSM Tools design,(Date last ac-
cessed February 24, 2017). [Online]. Available:
https://wiki.hpdd.intel.com/display/PUB/HSM+Agent+Design

[35] Spectra Logic Black Pearl, (Date last accessed February 24, 2017).
[Online]. Available: https://www.spectralogic.com/products/blackpearl/

[36] Apple File Systems (apfs), (Date last retrieved February 24, 2017). [On-
line]. Available: https://arstechnica.com/apple/2016/06/a-zfs-developers-
analysis-of-the-good-and-bad-in-apples-new-apfs-file-system/

[37] DMAPI,(Date last accessed February 24, 2017). [Online] Available:
http://pubs.opengroup.org/onlinepubs/9657099/

[38] Bittorrent, (Date last accessed February 2017). [Online]. Available:
http://bittorrent.org

[39] Andrew Tridgell, Paul Mackerras,
rithm”,(Date last accessed February 2017).
https://rsync.samba.org/tech_report/

[40] Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M., “The Globus
Striped GridFTP Framework and Server.” ACM/IEEE SC 2005 Confer-
ence (SC’05). p. 54, 2005.

[41] J. Inman, W. Vining, G. Ransom and Grider, G. “MarFS, a Near-POSIX
Interface to Cloud Objects”, Usenix ;login: Spring 2017, Vol. 42, No. 1

[42] T.B. Pedersen, C.S. Jensen, C.E. Dyreson “A foundation for capturing
and querying complex multidimensional data”, Information Systems 26
(5), 383-423

“The rsync algo-
[Online]. Available:

