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Abstract—We present the first description of offline optimal
solutions for FTL and LFS cleaning, focusing on the single-write-
frontier demand-clean case. We describe an approximate solution
to this problem, based on tree pruning and Monte Carlo Tree
Search. Results are presented supporting the accuracy of this
approximation, based on both toy problems—validated against
exhaustive search—as well as longer runs. Finally we show results
for real-world traces, comparing them to both Greedy cleaning
for the same single-write-frontier case, as well as to an online
dual-write-frontier solution based on hot/cold data identification.

Optimal cleaning is seen to offer modest improvements over
Greedy, by an amount which is in fact negligible in comparison to
the improvements possible with a fairly simple dual-write-frontier
solution. From these results we draw the following conclusion:

Efficient cleaning for real workloads is not a matter
of deciding which blocks to select for cleaning, but
rather of deciding where to place incoming data,
and then collecting the free space generated by these
decisions.

I. INTRODUCTION

NAND Flash, as used in SSDs, may be read or written in
units of pages (typically 4 KB or more) but pages may not be
re-written until they are erased as part of a larger unit (typically
128 or more pages). Efficiently providing a re-writable block
interface on top of this technology requires a log-structured
or “out-of-place write” translation layer, where newly-erased
storage is used for incoming writes, and a cleaning (or garbage
collection) process is used to reclaim space used by outdated
information.

Algorithms for cleaning have been discussed in the litera-
ture, and their performance examined both experimentally and
in some cases analytically [1], [2], [3], [4], [5], [6]. However,
although we are able to measure and predict how well a given
algorithm will perform, in all but the simplest synthetic case
we do not know the limits of translation layer performance—
we can measure whether one algorithm performs better than
another, but do not know how much room for improvement
there is beyond the better of the two.

We can contrast this with the case of cache replacement,
where a simple algorithm (Belady’s MIN [7]) provides an
upper bound for the performance of any algorithm on a specific
workload. This provides a baseline to which real algorithms
may be compared, in a sense factoring out the difficulty of a
particular workload.

In this paper we present the first attempt (known to the
authors) to establish offline optimal bounds to cleaning per-
formance for arbitrary workloads, addressing the specific case
of a page-mapped translation layer with a single write frontier
for both new writes and cleaned pages, and demand cleaning,
where a block is selected for cleaning at the precise point
when we run out of free pages. Since an exact solution to the
optimal cleaning problem appears to be NP-Hard we describe
an approximation to this bound using tree pruning and Monte
Carlo Tree Search.

Performance results from this approximate algorithm on real
traces allow us to make the following conclusions:
• near-optimal cleaning, an approximation of optimal of-

fline cleaning based on branch pruning in combination
with Monte Carlo Tree Search is computationally feasible
for realistic real-world traces;

• accuracy of this algorithm is assessed via exhaustive
search on small traces and Monte Carlo simulations of
increasing size for large traces;

• near-optimal cleaning is shown to offer modest improve-
ments over online Greedy cleaning in the constrained
single-write-frontier demand-cleaned case, resulting in
performance which is lower than that obtained by multi-
write-frontier online cleaning algorithms. (e.g. hot/cold
separation)

The final point has the broadest implications. Cleaning is
typically conceived of as a process of selecting the optimal
block to clean, whether based solely on occupancy (Greedy)
or based on predictions of future behavior (Rosenblum’s
Cost/Benefit [2] heuristic). We believe that these results show
the importance of page placement on cleaning performance:
without multiple write frontiers, allowing pages of similar
lifespan to be placed in the same block, even the best offline
cleaning algorithm is unable to achieve significant improve-
ments over online Greedy cleaning.

II. PROBLEM DEFINITION AND CONSIDERATIONS

We consider a device with T blocks of Np pages each, giv-
ing a physical address space P = {b, p} | b ∈ {1 . . . T}, p ∈
{1 . . . Np}, a logical address space L = {1 . . . N} where
N < T · Np, a mapping M : L → P and an address trace
of length m, {ai | i = 1, . . .m} ∈ L. The utilization ρ of
the device is the ratio of valid to total physical pages, which



will reach a limit N
T ·Np

at the point when all pages in L have
occurred at least once in the address trace. At any given time
the contents of particular physical block b is the set of LBAs
{l | M(l) = (b, p)} for p ∈ {1 . . . Np}. The write frontier is
a physical address w = (bw, pw) where the next write will
be performed; i.e. if w = (bw, pw) before write access ai,
then afterwards M(ai) = (bw, pw). We assume an initial value
W = (1, 1).

After a write access, if pw < Np then the write frontier will
be incremented by 1, to (bw, pw + 1). Otherwise a new block
b′w will be selected for the write frontier and cleaned: if on
selection there are v valid pages {l1 . . . lv} in b′w they will be
moved to pages 1 . . . v (i.e. M updated so M(li) = (b′w, i))
and the write frontier set to (b′w, v + 1) before write ai+1 is
performed1.

Finally, we define a cleaning schedule as a sequence of
block numbers {bi} which correspond to valid cleaning se-
lections for the translation layer described above; i.e. for
i = 1 . . . | {bi} |, when bi is selected with vi < Np valid
pages, after Np − vi steps, bi+1 will have less than Np valid
pages. The performance goal is to find the shortest such valid
schedule; this may also be expressed as the write amplification

factor (WAF), equal to m+
∑|bi|

n=1 vi
m . In the best case each block

selected for cleaning would be empty, giving one cleaning for
every Np write operations and a WAF of 1.0.

Cleaning algorithms which have been proposed for page-
mapped translation layers (or equivalent log-structured file
systems) include Least-Recently Written (LRW [1]), Greedy,
d-Choices [8], and Cost/Benefit [2]. In LRW the oldest block is
selected, resulting in round-robin use of blocks. Greedy selects
a block with minimal valid pages, and d-Choices approximates
Greedy by sampling d pages and choosing the one with
minimal valid pages. Finally, Cost/Benefit considers data age
when selecting a block, under the assumption that new data
is more likely to be invalidated in the near future. Greedy has
been proven to be optimal for uniform random workloads [6],
while Cost/Benefit and d-Choices [8] are observed to out-
perform Greedy for certain non-uniform workloads; no cases
are known where LRW is superior.

To better understand the problem, we examine cleaning
decisions more closely, and in particular compare them to
decisions made by the Greedy algorithm. Figure 1 shows that
all optimal solutions either end in a Greedy step (if the trace
exactly fills the last block) or there is an equivalent optimal
solution ending in a Greedy step. However as seen in Figure 2,
in certain situations a non-greedy choice may result in better
performance.

To describe this in more detail, we introduce several con-
cepts. Page lifetime is the time until a page is invalidated by
another write to the same LBA; the time of this write can
be equivalently termed the death of the data in that page.
Page lifetime is solely a property of the sequence of write

1This is equivalent to holding pages in memory while erasing the block
undergoing cleaning; in practice those pages would be copied to a reserved
free block, then the newly freed block would be erased and reserved for the
next cleaning operation.
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Nτ 

NL0 NL1 NL2 NLθ-2 NLθ-1 

 W0 W1

W0 < W1

Fig. 1: An example cleaning tree showing no optimal cleaning
is achieved unless by picking Greedy in at least one of the
cleaning steps (the one at the end where valid(NL0) ≤
valid(NL1)). If the next-to-last step of the optimal solution is
Nτ , then the path ending in NL0 must be valid and optimal.

Fig. 2: An example with a short trace and two blocks where
a non-greedy choice (block 1) results in a lower total write
count than the greedy choice (block 2). pages marked with x
are unused; gray pages are invalidated.

operations, as in the example in Figure 3 where we see data
written to LBA 1 surviving through the duration of the entire
trace, while data in LBA 2 is rapidly over-written. The same
trace is shown in Figure 4 being written into two physical
blocks.

When selecting a block for cleaning we can examine its
instantaneous write amplification, the number of pages to be
copied if selected for cleaning at that point in time, as well
as the ultimate future write amplification, the lower limit on

Trace: 1, 2, 3, 2, 5, 6, 4, 2, 3, 5, 6, 2, ...
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Fig. 3: Logical page lifetime. Each write to an LBA represents
a separate page of data, which “lives” until it is invalidated by
another write to the same LBA.
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Fig. 4: Data lifetime for the trace in Figure 3 written into two
physical blocks.

the number of pages to be copied if it were cleaned at some
point in the future. (for many real workloads this is non-zero,
as some writes represent static data which is never overwritten
or erased, such as LBA 1 in Figures 3 and 4.)

III. OPTIMAL CLEANING AND ITS APPROXIMATION

Optimal cleaning may be formulated as a decision
problem—i.e. whether a valid cleaning schedule of length l
exists. For the case of a single write frontier this is clearly
in NP, as we can use a cleaning schedule (b1, . . . bl) as a
witness and verify it by running the translation layer over (ai)
using a cleaning schedule (bi) to determine the validity of the
schedule. It appears to be NP-Hard, due to the choice of > 1
block for cleaning at each of O(m) different points during
the trace; however no proof of this complexity is known to
the authors.

We analyze this as a search problem. The search tree has
a single root node representing the first cleaning decision,
with one edge for each block which could be chosen; each
of these paths reaches a node at the next cleaning decision for
that path, and then splits again according to which block is
selected. In other words, each node in the tree to be searched
corresponds to the sequence of cleaning decisions leading up
to the current choice. Leaf nodes in the graph are ones where
the trace {ai} “runs out” or is finished, and an optimal cleaning
schedule corresponds to a shortest path from the root to a leaf
node. (note that at each decision point there is always at least
one block with v < ρNp, defering the next cleaning event
d1− ρeNp accesses in the future, so the length of this path is
bounded by m

d1−ρeNp
.)

As with many search problems of this form, the tree to
be searched is huge. For example, assume a 1 GB device
comprising 2048 blocks of 128 pages each. For a trace with
writes uniformly distributed over LBAs, at every cleaning step
almost all the 2048 blocks have v < Np valid pages and are
thus legal candidates for cleaning. Since the minimal cleaning
schedule is at least m

Np
long, a naive breadth-first search would

explore O
(
2048

m
Np

)
paths. To reduce the complexity of this
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Fig. 5: Examples of death rate metric: block (a) is better than
block (b) for all non-static pages as it drops from 16 to 2
valid pages in much shorter time (5-3=2 compared to 9-0=9).
Similarly, block (d) is better than (c) for the first 12 non-static
pages requiring only 3-2=1 time units compared to 4-2=2.

search we apply two heuristics for approximating the optimal
solution: graph pruning and randomized (Monte Carlo) graph
traversal, as described below.

A. Graph Pruning (Node Selection)

We prune the search tree using the following heuristics, with
the goal of weeding out candidate paths at each step which
have little or no possibility of leading to an optimal solution.
• Instantaneous write amplification, or the number of valid

pages to be copied from the selected block. Although this
is not the only criteria (see Figure 2) it is important, since
the mean instantaneous write amplification is minimized by
an optimal solution. This metric is calculated for a candidate
block before cleaning.

• Ultimate future write amplification: the number of static
pages in a block, and thus a lower bound on the write
amplification of that block when selected for cleaning in
the future. Note that this metric is calculated for a candidate
block after cleaning—i.e. for a candidate with v valid pages,
we calculate the number of static pages in the union of those
pages and the next Np − v accesses in the trace.

• Death rate: A block with high rate in page “death” results
in few wasted pages before its pages begin to die; after
many of them die (over a short period) the block may be
cleaned with very low write amplification. Figures 5a and
5b illustrate this metric, showing valid pages vs. time for
two blocks which each start with 16 valid pages, and in
the long run retain 2 valid static pages. Pages in the first
block die within a shorter interval (3 time units) than pages
in the second block (9 time units). Rather than measuring
death rate directly, we use the slope of this line, i.e. pages
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Fig. 6: Absolute death time metric – block (b) is better than
(a) for all non-static pages and block (d) better than (c) for
the first 12 non-static pages.

invalidated per unit time, as shown by the dashed lines in
the figures.
For realistic values of device utilization, most blocks are
unlikely to be left uncleaned long enough for all non-static
pages to be invalidated. We therefore also consider the rate
at which the first j pages in a block are invalidated; this
comparison is shown in Figures 5c and 5d for j = 12. This
metric is computed for the candidate block after cleaning.

• Absolute death time, or when space will be available in a
block for future cleaning. For example, consider a block
immediately after it has been filled, i.e. just before the
next block is selected for cleaning, and assume that its
pages will all die (nearly) simultaneously at a point far
in the future. Before the block’s pages begin to die it will
be a poor candidate for cleaning, becoming a (very) good
candidate afterwards. In Figures 6a and 6b we see blocks
where all non-static pages are invalidated by time 9 and time
7, respectively.
Again we also consider absolute death time for the first k
pages, as seen in Figures 6c and 6d, where in the first case
one must wait until time 8 for 12 free pages, while the same
number of free pages may be collected from the latter block
at time 4. This metric is again calculated for the candidate
block after cleaning.

B. Pruned Search Algorithm

Algorithm 1 uses these metrics to prioritize cleaning selec-
tions based on their potential for being part of a high-quality
cleaning schedule. At each cleaning step the set of candidate
blocks is limited to:
• all candidate blocks with minimal instantaneous write

amplification a

Algorithm 1 Finding potential candidate blocks

1: invalid blocks = ∅
2: candidates = ∅
3: all static block = False
4: for b in Blocks do
5: if n valid[b]! = Np then
6: invalid blocks.append(b)
7: end if
8: end for
9: for (i = min(iwas); i <= max(iwas); i + +) do // instanta-

neous write amplifications
10: blocks with the same iwa = ∅
11: if i in iwas then
12: for j in invalid blocks do
13: if iwa[j] == i then
14: if j not in candidates then
15: if min(death time[j]) == ∞) then // all-static
16: if all static block == False then
17: candidates.add(j)
18: all static block = True
19: end if
20: else
21: blocks with the same iwa.append(j)
22: ufwa of blocks with the same iwa

.append(ufwa(j))
23: end if
24: end if
25: end if
26: end for
27: for j in min(ufwa of blocks with the same was) :

max(fwa of blocks with the same was) do
28: if j in ufwa of blocks with the same was then
29: for k in blocks with the same was do
30: if ufwa[k] == j then
31: blocks with the same ufwa[j].append(k)
32: end if
33: end for
34: end if
35: end for
36: for ind in blocks with the same ufwa do
37: if blocks with the same ufwa[ind]! = ∅ then
38: add blocks with max death rate for the

first k pages(ind)
39: add block with earliest death times for kth

page(ind)
40: end if
41: end for
42: end if
43: end for

• any candidate block with instantaneous write amplifica-
tion a + i if it has lower ultimate write amplification,
higher death rate, or earlier absolute death time than all
blocks with instantaneous write amplification < a+ i.

Instantaneous and ultimate future write amplification have
straightforward scalar definitions; however death rate and
absolute death time depend on k, the pages on which these
metrics are compared. For each of the two measurements one
could in fact calculate for each of the Np possible values of
k, resulting in a large vector comparison of dubious utility.
Instead we calculate these timings for a small number of values
of k, with that number determined by the sampling parameter
ψ ranging from 1 to Np in Algorithms 2 and 3.



Complete Graph (Optimal) Pruned Graph (Near-optimal) Greedy
Trace Traverses Internal Writes Traverses Internal Writes Traverses Internal Writes

Uniform 250,740,915 6 170 7 1 10
Normal 9,624,761 2 45 2 1 3

Exponential 9,548,995 6 80 7 1 10
Gamma 10,851,636 15 429 15 1 23

TABLE I: Effects of pruning on search reduction and accuracy. “Internal writes” counts cleaning-related writes, i.e. write
amplification.

Algorithm 2 Adding blocks with minimum absolute death times

1: for (k = ψ; k <= Np; k = k + ψ) do
2: if candidates != ∅ then
3: min for kth page cand=min(death time[x][k] for
x in candidates)

4: else
5: min for kth page cand =∞
6: end if
7: min for kth page blk = min(death time[x][k] for x in
blocks with the same ufwa[ind])

8: if min for kth page cand > min for kth page blk
then

9: for j in blocks with the same ufwa[ind] do
10: if blocks with the same ufwa[ind][j] not in

candidates then
11: if min for kth page blk == death time[j]

then
12: candidates.append(j)
13: break
14: end if
15: end if
16: end for
17: end if
18: end for

Algorithm 3 Adding blocks with maximum death rate

1: for (k = ψ; k <= Np; k = k + ψ) do
2: if candidates != ∅ then
3: max death rate for first k pages cand =
min(death time[x][k] − death time[x][1] for x in
candidates)

4: else
5: max death rate for first k pages cand =∞
6: end if
7: max death rate for first k pages blk =
min(death time[x][k] − death time[x][1] for x in
blocks with the same ufwa[ind])

8: if max death rate for first k pages cand >
max death rate for first k pages blk then

9: for j in blocks with the same ufwa[ind] do
10: if blocks with the same ufwa[j] not in

candidates then
11: ifmax death rate for first k pages blk ==

death time[j]][k]− death time[j][1] then
12: candidates.append(j)
13: break
14: end if
15: end if
16: end for
17: end if
18: end for

C. Graph Traversal

Even though graph pruning greatly reduces the branching
factor of the tree to be searched, for realistic I/O traces and
device sizes the complexity of the resulting problem is still
too great for traditional search algorithms such as depth-first-
search (DFS), (with complexity O (|V |+ |E|)). We instead
employ Monte Carlo Tree Search (MCTS) [9] , a stochastic
search algorithm. MCTS relies on random node sampling and
expansion of the most promising nodes. It consists of four
steps which are repeated over and over until a certain condition
e.g. the allowed run time is met. The followings are the steps
taken in each iteration of the algorithm:
• Selection: Starting from root node NR, at every node an

edge (a child node) is selected to maximize the value of
a policy function (π) set to traverse the tree towards the
most promising nodes. Upper Confidence Bound (UCB1)
is a typical π policy which is defined as follows:

Xj +

√
2 lnn

nj
(1)

where Xj is the average number of wins (rewards)
achieved by taking node j, nj is the number of times
node j has been visited and n is the total number of
visits for all the nodes at that level.

• Expansion: Unless the selection phase traverses the graph
from NR all the way to one of its leaves e.g., NLi, the
process is continued by expanding the last selected node’s
children and choosing node NE as one of its children to
expand the tree.

• Simulation: The process continues with a random (or
heuristics-based) playout from NE to a leaf node NLi.

• Back-propagation: The results of the simulation phase is
back-propagated to update the value of nodes from NE
up to NR.
Figure 7 depicts these phases with an example.
In the Simulation phase above we use Greedy cleaning
to complete each traverse, which we find accelerating
the convergence of the algorithm compared to other
approaches (e.g. random).

IV. EVALUATION

We implemented our framework in python using roughly
1000 lines of code supporting both optimal and near-optimal
cleanings with DFS and MCTS as graph traversal options
of choice. The implemented MCTS algorithm supports both
greedy and random block selections for its simulation step and
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Fig. 7: Steps of Monte Carlo Tree Search (MCTS) where x/y in each node is the reward rate defined as the number of wins
(x) over the number of traverses (y). The right-handed branch (highlighted) is selected, expanded, and simulated. Then the
weights based on simulation results are back-propagated.

runs for the given number of traverses set by user rather than
time.

We use 4 synthetic as well as 10 real-world block traces
(from the Microsoft Research Cambridge set [10]) to 1) eval-
uate the impact of graph pruning and MCTS techniques for this
application and 2) to examine the performance of approximate
optimal cleaning on real world traces, as compared to a Greedy
cleaning baseline.

A. Graph Pruning Effects

Although graph pruning at each cleaning step reduces the
complexity of graph search, it raises the question of whether
the optimal solution in fact traversed one of the pruned
subgraphs, and if so, how much accuracy was lost due to
the eventual selection of a sub-optimal path. To answer these
questions we search for optimal cleaning schedules for several
traces using depth-first search (a) with heuristic pruning and
(b) without pruning, in effect performing an exhaustive search
of all possible cleaning schedules.

Due to the complexity of exhaustive search we generate 4
synthetic traces of 46 writes each, over a device with 8 blocks
and 32 pages total (Np = 4). The footprint (i.e. number of
distinct LBAs) of the traces ranged from 15 to 29 pages in
each trace and writes in each trace follow a different data
distribution i.e. Uniform, Normal, Exponential and Gamma.
Results of these tests are shown in Table I, showing both
the number of paths explored and the number of internal
writes due to cleaning. Although only limited confidence may
be drawn from these short traces, the differences between
exhaustive search and pruned search were tiny at most (e.g. a
write amplification of 46+7

46 vs 46+6
46 ) while Greedy required

nearly twice as many internal writes as optimal in each case.

B. Monte Carlo Tree Search

The runtime of MCTS is not the question, as it performs a
user-specified number of traversals and reports the best result;
instead the question is how many traversals are needed for
it to converge to an accurate answer, and how quickly that

Trace Traverses (%) Accuracy (%)
Uniform 21 100
Normal 75.5 100

Exponential 2.5 100

Gamma 3 50
5.6 100

TABLE II: MCTS results for short traces vs. DFS with graph
pruning.

answer degrades with fewer runs. Using UCB1 and Greedy
playout as described above, we measure how many MCTS runs
are needed to replicate the results obtained by pruned DFS;
results are shown in Table II. With no decrease in accuracy, the
number of traverses is reduced by 25% and 79% for Uniform
and Normal, and by a factor of 20 or more for Gamma and
Exponential.

C. MCTS and Real Traces

We next evaluate MCTS-based approximate optimal clean-
ing for real-world traces on devices of realistic size. We
simulate a device with 64K blocks of 128 4 KB pages and
a spare factor of 2%; each simulation was initialized by
prepending sequential writes to the entire LBA space to the
trace being simulated. In Table III we see results for ten
selected MSR traces. In each case we were able to find
multiple paths with better performance than Greedy, with a
maximum improvement of 4.68% (hm 0); the largest number
of better-than-Greedy paths found was 17 (src2 0).

In Figure 8 we see MCTS performance vs. Greedy for 1 to
50,000 MCTS runs. In most cases the improvements due to
increasing run count begin to plateau by 16,000 runs; in all
cases the improvement for 16,000 runs is very close to that
for 50,000 runs in Table III.

D. Near-optimal vs Greedy

Table IV shows the total number of cleanings needed by
near-optimal and greedy paths for the MSR traces tested.
The two algorithms choose very similar paths, with small
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Fig. 8: Near-optimal improvement vs Greedy, 1 to 16,384 MCTS runs.

Trace Number Maximum Improvement (%)
hm 0 4 4.68

proj 0 15 3.44
prxy 0 9 0.77
rsrch 0 7 1.23
src1 2 9 2.64
src2 0 17 3.8
stg 0 11 0.88

ts 0 4 0.96
usr 0 13 1.24

wdev 0 4 0.28

TABLE III: The number of paths found better than Greedy for
MSR traces along with the their maximum reduction in term
of internal writes.
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Fig. 9: Near-optimal single-write-frontier performance vs.
extent-based hot/cold data segregation.

differences in cleaning performance. To compare the deci-
sions in more detail we express each path as a sequence
n1, . . . ni, . . . nm where ni is the number of valid pages seen
on the ith cleaning, truncate the longer trace (Greedy), and
compute the correlation between these two series, as shown

in Figure 10. We do this for each of the better-than-greedy
paths discovered, showing the range of correlations across the
traces in purple and correlation vs. the best cleaning sequence
in green.

E. Device/Trace Size vs Quality of Results

To examine the effect of device and trace size on the quality
of results, we prepare a series of traces spanning different LBA
ranges, by filtering the MSR traces for a specific LBA range,
and replay those traces for simulated device sizes of 128 to
32,768 blocks of 128 pages each, using a 10,000-run cutoff.
The results are shown in Figure 11, showing number of blocks
on the X axis vs cleaning improvement on the Y axis. We see
that for small devices there are cleaning schedules which offer
significant improvements over Greedy, while for larger devices
the improvements are far more modest.

F. Dual Write Frontier Cleaning

For the demand-cleaned, single-write-frontier case exam-
ined above, the improvements over Greedy cleaning are quite
small. We compare these with an implementation of dual-
write-frontier cleaning with hot and cold data segregation [11],
with identical device size, trace, and over-provisioning. Results
may be seen in Figure 9; while MCTS-based near-optimal
offline cleaning struggles to achieve a 4 or 5% improvement
over Greedy, dual-write-frontier cleaning offers performance
improvements of 70% or more for half of the traces, with the
smallest gain being 30% for trace hm 0.

This appears to be the most significant lesson from this
work. Given the restrictions of a single write frontier and
demand cleaning, even an offline algorithm can do little better
than online Greedy. Given two write frontiers to allow pages
to be placed according to their predicted lifespan, a fairly
simple online algorithm is able to improve performance by



Trace hm 0 proj 0 prxy 0 rsrch 0 src1 2 src2 0 stg 0 ts 0 usr 0 wdev 0
Greedy 65,756 342,457 224,556 21,781 90,075 20,115 33,034 24,255 30,851 13,803

Near optimal 64,807 340,810 224,102 21,774 90,057 20,070 33,016 24,242 30,790 13,803

TABLE IV: Total number of cleanings needed in Greedy and near-optimal paths with 50,000 MCTS runs.
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Fig. 10: Pearson correlation between the near-optimal and greedy cleaning paths. (missing sections for src1 2 and wdev 0 are
undefined).

nearly a factor of two in many cases, in contrast to negligible
improvements (< 5%) for offline near-optimal cleaning.

V. RELATED WORK

A number of works have addressed performance of online
flash and LFS cleaning algorithms [4], [12], [5], [3], [8], [1],
[6]. To date few works have examined the offline problem:
Ben-Aroya and Toledo [13] give performance bounds for
the offline wear leveling problem with one free block, and
Cheng et al. [14] describe an approximation to offline optimal
performance of a cache with flash-like write/erase limitations.
In the area of caching Belady’s result [7] is well-known, and
various offline caching problems have been proven NP-hard:
Albers et al. [15] and Brehob et al. [16] prove the NP-hardness
of offline optimal replacement for non-standard caches, while
Chrobak et al. [17] prove the strong NP-completeness of
offline caching for variable-sized items. To date the authors
are not aware of any work addressing offline optimal cleaning
or its complexity.

VI. CONCLUSIONS

We present the first description of offline optimal solutions
for FTL and LFS cleaning, focusing on the single-write-
frontier demand-clean case. We describe an approximate solu-
tion to this problem, based on tree pruning and Monte Carlo
Tree Search. Results are presented supporting the accuracy
of this approximation, based on both toy problems—validated
against exhaustive search—as well as longer runs. Finally we
show results for real-world traces, comparing them to both

Greedy cleaning for the same single-write-frontier case, as
well as to an online dual write frontier solution based on
hot/cold data identification.

Optimal cleaning is seen to offer modest improvements over
Greedy, by an amount which is in fact negligible in comparison
to the improvements possible with a fairly simple dual-write-
frontier solution. From these results we draw the following
conclusion:

Efficient cleaning for real workloads is not a mat-
ter of deciding which blocks to select for cleaning,
but rather of deciding where to place incoming data,
and then collecting the free space generated by these
decisions.
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