
SMORE: A Cold Data Object Store for SMR Drives

Peter Macko, Xiongzi Ge, John Haskins, Jr.∗, James Kelley, David Slik, Keith A. Smith, and Maxim G. Smith

NetApp, Inc., ∗Qualcomm

peter.macko@netapp.com, james.kelley@netapp.com, keith.smith@netapp.com

Abstract—Shingled magnetic recording (SMR) increases the
capacity of magnetic hard drives, but it requires that each
zone of a disk be written sequentially and erased in bulk. This
makes SMR a good fit for workloads dominated by large data
objects with limited churn. To explore this possibility, we have
developed SMORE, an object storage system designed to reliably
and efficiently store large, seldom changing data objects on an
array of host-managed or host-aware SMR disks.

SMORE uses a log-structured approach to accommodate the
constraint that all writes to an SMR drive must be sequential
within large shingled zones. It stripes data across zones on
separate disks, using erasure coding to protect against drive
failure. A separate garbage collection thread reclaims space by
migrating live data out of the emptiest zones so that they can be
trimmed and reused. An index stored on flash and backed up
to the SMR drives maps object identifiers to on-disk locations.
SMORE interleaves log records with object data within SMR
zones to enable index recovery after a system crash (or failure
of the flash device) without any additional logging mechanism.

SMORE achieves full disk bandwidth when ingesting data—
with a variety of object sizes—and when reading large objects.
Read performance declines for smaller object sizes where inter-
object seek time dominates. With a worst-case pattern of random
deletions, SMORE has a write amplification (not counting RAID
parity) of less than 2.0 at 80% occupancy. By taking an index
snapshot every two hours, SMORE recovers from crashes in less
than a minute. More frequent snapshots allow faster recovery.

I. INTRODUCTION

Shingled magnetic recording (SMR) technology [1] provides

the next major capacity increase for hard disk drives. Drive

vendors have already shipped millions of SMR drives. Current

SMR drives provide about 25% more capacity than conventional

magnetic recording (CMR). The SMR advantage is expected to

increase over time [2], making SMR a compelling technology

for high-capacity storage.

In addition to increasing areal bit density, SMR drives

introduce several challenges for storage software and applica-

tions. The most significant challenge is that SMR does not

permit random writes. SMR drives are divided into large multi-

megabyte zones that must be written sequentially. To overwrite

any part of a zone, the entire zone must be logically erased

and then rewritten from the beginning.

There are several ways of supporting SMR’s sequential write

requirement. One is to build a block translation layer, similar

to the flash translation layer in an SSD, but this approach has

limited access to higher level information for optimizing its

use of the SMR. Another approach is to build a file system,

but state-of-the art file systems are highly complex; while it is
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feasible to quickly prototype a proof of concept, commercial-

quality file systems take years to develop and mature to the

point where they are stable, reliable, and performant [3], [4].

We have opted for a third approach. Rather than developing a

general-purpose storage system, our goal is to target a workload

that is well suited to SMR drives—storing cold or cool objects,

while frequently accessed objects are cached or tiered in high-

performance storage.

For example, typical media files are read and written sequen-

tially and range in size from a few MB to many GB or TB,

which fits well with the excellent sequential throughput and low

cost of SMR drives. Media storage is important in many wide-

spread use cases, including entertainment, medical imaging,

surveillance, etc. Such media use cases already account for

a significant fraction of new data, a trend that is expected to

continue in the future [5].

The resulting storage system, our SMR Object REpository

(SMORE), targets this workload. While we anticipate ample

demand for affordable solutions targeting the bulk storage of

media data, SMORE is also applicable to other use cases that

can benefit from low-cost storage for large objects, including

backups, virtual machine image libraries, and others.

SMORE is designed to provide the full bandwidth of the

underlying SMR drives for streaming read and write access.

Although it will accept small objects, the performance for

this type of storage has not been optimized. Finally, because

we anticipate seldom changing data, the garbage collection

overhead resulting from SMR write restrictions has only a

modest impact on SMORE’s overall performance.

SMORE fills SMR zones sequentially, erasure coding data

across zones on separate drives for reliability. As the client

deletes objects, SMORE uses garbage collection to migrate

live data from partially empty zones. A working copy of object

metadata is stored in an index on a cheap flash device. SMORE

employs several techniques to optimize for the needs and

limitations of SMR drives, such as interleaving a journal for

crash recovery in the sequential stream of object writes.

The contributions of this work are:

• A recovery-oriented object store design, in which the disks

remain on-seek during most writes.

• Decreasing the metadata overhead by managing disks at

the granularity of zone sets, which are groups of SMR

zones from different spindles.

• A system for efficient cold object storage on SMR drives.

• A rigorous evaluation of the resulting design using recent

SMR drives, measuring write amplification and recovery

costs as well as basic system performance.
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Fig. 1: A high-level overview of the SMORE architecture.

SMORE splits incoming data into segments and erasure-codes

each across zones from multiple SMR drives. Each drive is

optionally front-ended with a small NVRAM-backed FIFO

buffer that coalesces small writes. SMORE stores an index on

a flash device.

II. ARCHITECTURE

This section is an overview of the SMORE architecture.

A detailed description of SMORE is available in a separate

report [6].

At the high level, as illustrated in Figure 1, SMORE writes

data and metadata in a log-structured format, erasure-coded

across multiple SMR drives, and uses a flash device to store

the index that maps object IDs to their physical locations. We

optionally front-end each drive with a small buffer (a few MB

in size) in battery-backed RAM for coalescing small writes,

which improves performance and space utilization. Any kind of

NVRAM will suffice for buffering, but NVRAM technologies

with limited write endurance (e.g., PCM) will require extra

capacity for wear-leveling.

SMORE uses a log-structured design because it is well suited

to the append-only nature of SMR drives. Like a log-structured

file system [7], SMORE divides storage into large, contiguous

regions that it fills sequentially. In SMORE, these regions are

called zone sets. When SMORE needs more free space, it

garbage collects partially empty zone sets and relocates the

live data. Unlike log-structured file systems, however, SMORE

is an object store and runs on an array of SMR drives. This

leads to a different design.

We also store the superblock in a log-structured manner

in a small number of superblock zones that are set aside on

each disk, usually just one per disk. When SMORE writes a

superblock, it timestamps it and replicates it to three different

disks by default. When a superblock zone is full and there

exists a more recent superblock elsewhere, SMORE trims the

zone and reuses it. During recovery, SMORE examines the

superblock zones to find the most recent superblock, which it

uses to bootstrap the rest of the recovery process.
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Fig. 2: Anatomy of a zone set. A zone set is an arbitrary

set of zones from different SMR drives. SMORE chunks each

object into equal-sized segments, erasure-codes each segment

across the multiple zones, and writes them to the zone set

together with headers called the layout marker blocks (LMBs).

When a zone set becomes full, SMORE finishes it by writing

a digest with the summary of the segments it holds.

A. The Building Blocks: Zone Sets, Segments, and Index

A zone set is a group of zones, each from a different drive,

that form an append-only container in which SMORE writes

data. The zones in a set are always filled in parallel with

equal amounts of data striped across them, encoded by a data

protection scheme specified at system initialization. SMORE

spreads data evenly across the zones in a zone set so that their

write pointers advance together. At any time, SMORE has one

or more zone sets open to receive new data.

Figure 2 shows the anatomy of a zone set. SMORE chunks

incoming objects into segments and writes each segment to one

of the open zone sets. SMORE divides each segment into equal-

sized fragments and computes additional parity fragments so

that the total number of data and parity fragments matches the

number of drives in a zone set. SMORE writes each fragment

to one of the zones in the zone set, starting with a header, the

layout marker block (LMB), which describes the segment and

is used for error detection and recovery.

SMORE keeps track of all live segments (those that belong

to live objects) in an index, which allows it to efficiently look

up segment locations. Each segment is described with its zone

set ID and the offset within that zone set. We address segments

using zone sets instead of the individual physical zones, because

this approach significantly decreases the size of the index, and

it enables SMORE to recover from a failed disk by rebuilding

the contents of the lost zones into any vacant zones on the

remaining disks, similarly to parity declustered RAID [8].

The mapping of zone set IDs to the physical locations of

the zones is stored in the superblock. The index is cached in

RAM and backed up by files on the system’s flash. The files

are updated asynchronously.

The segment is the basic unit of allocation and layout and is

typically a few tens of megabytes. An object is made accessible

for reads only after its last segment is written. SMORE marks

the last segment with a special bit in its layout marker block

and the corresponding index entry. Old versions of objects and

incomplete objects, such as those that were left unfinished by

failed clients, are eventually garbage collected.



Segments provide several benefits. They reduce memory

pressure by allowing SMORE to start writing an object to

disk before the entire object is in memory. Likewise, they let

SMORE handle objects that are too large to fit in a single

zone set. Segments also ensure sequential on-disk layout by

avoiding fine-grained interleaving when writing several objects

concurrently. Finally, large segments minimize the amount of

metadata (i.e., index entries) required for each object.

Each zone in an opened zone set can be optionally front-

ended with a small NVRAM-backed FIFO buffer, which allows

the system to efficiently pack small objects even in the presence

of large physical blocks (which could possibly reach 32KB

or larger in the future [9]) and optimize write performance.

Fragments and FIFO buffers are sized so that the system

typically reads and writes 2 to 4 disk tracks at a time, amortizing

the cost of each seek across a large data transfer.

SMORE deletes an object by removing the object’s entries

from the index. It also writes a tombstone to an open zone set

as a persistent record of the deletion. Tombstones are processed

while recovering the index after a failure. SMORE’s garbage

collector reclaims the space occupied by deleted and overwritten

objects in the background.

B. Recovery-Oriented Design

SMORE follows a recovery-oriented design. By designing

for fast and simple recovery, we can use SMORE’s recovery

logic in place of more complex consistency mechanisms.

There are a variety of failures that could damage the index.

SMORE handles all of these scenarios with a single recovery

mechanism—replaying updates based on the layout marker

blocks intermingled with object data in zone sets. Using the

same logic for multiple failure scenarios ensures better testing

of critical recovery code. It also avoids the overhead and

complexity of implementing different mechanisms to handle

different faults.

SMORE periodically checkpoints the index, storing a copy

in dedicated zone sets on the SMR drives. In the event of

a failure, it reads the most recent checkpoint and updates it

by scanning and processing all layout marker blocks written

since the last checkpoint. As an optimization, SMORE writes

a digest of all layout marker blocks as the last entry in each

zone set. During recovery, SMORE can read this digest in one

I/O operation instead of scanning the entire zone set.

We limit the number of zone sets that need to be examined

during recovery by examining only those that could have been

appended to since the last index checkpoint. Whether a zone

set could have been written to is implied by its state:

• Empty: An empty zone set

• Available: An empty zone set that can be opened

• Open: A zone set that can receive writes

• Closed: A full zone set (does not accept any more writes)

• Indexed: A zone set that was closed at the time of an

index checkpoint

• Index: A dedicated zone set for storing an index snapshot

We keep track of these states in the superblock, but update

the superblock only when we transition zones from empty to

available and from closed to indexed, which are both bulk

operations. This makes the overhead of superblock updates

negligible. We intentionally keep the number of opened zone

sets low to reduce seeks and maximize the disk throughput for

streaming writes. We thus do not transition zone sets directly

from empty to opened, which would require the superblock to

be updated frequently. Only the zone sets with states available,

open, and closed need to be examined during recovery.

We do not update the superblock when trimming zone sets,

we simply check the write pointers of all open, closed, and

indexed zone sets during recovery and set their states to empty

if they are trimmed. This is a very quick operation because

the disks allow us to read the positions of all write pointers

using a single command.

C. Garbage Collection (Cleaning)

When an object is deleted, its space is not immediately

reclaimed, because those fragments became read-only once they

were written into the sequential zones. A zone set containing

deleted data is said to be dirty. Eventually space is reclaimed

from dirty zone sets by moving any live data into a new zone

set, then trimming the old zones. This cleaning may be done

on demand when more space is needed in the system or as

a background task concurrent with normal client operation.

Superblock and index snapshot zones are trimmed during

normal operation and do not need cleaning.

SMORE uses a greedy strategy by always cleaning the zone

set with the most dead space. Once a zone set is selected for

cleaning, all of the live data is relocated to another zone set

and only the tombstones that are newer than the most recent

index snapshot are relocated. As the data and tombstones are

relocated, the index is updated accordingly. After all valid items

have been copied and indexed anew, the zones of the old zone

set are trimmed and made available for writing new content.

If the node crashes during garbage collection, garbage

collection can be begun anew after a reboot, starting from any

zone set. Any incompletely cleaned zone set will eventually be

selected again for cleaning. Content in the zone set that was

cleaned previously will be found to be invalid at that time and

discarded, while any still-valid content will be relocated.

III. EVALUATION

SMORE is implemented as a library in approximately

19,500 lines of C++ (excluding tests and utilities). We used

libzbc [10] to interface with SMR drives. The SMORE

library presents an object-based read/write API (PUT, GET, and

DELETE) and can be linked into a higher-level storage service,

such as OpenStack Swift, to provide a complete solution.

We designed SMORE to support a cool storage tier for large

media objects. Thus, our evaluation focuses on quantifying

SMORE’s performance under different aspects of this workload.

A. Test Platform

Our test platforms uses six HGST Ultrastar Archive Ha10

drives. These are 10TB host-managed SMR drives with 256MB

zones. According to our measurements, the average read
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Fig. 3: Read bandwidth as a function of object size. The

best possible read performance is 590MB/s (the dashed line).

SMORE achieves near-optimal read performance for large

objects.

performance is 118MB/s across all zones (with peak 150MB/s

at the outer diameter) and the average write performance

is 55MB/s (with 65MB/s at the outer diameter). The write

bandwidth is lower than the read bandwidth because after the

drive writes a track, it verifies the correctness of the previous

track [11].

We restrict the capacity of the drives by using only every

60th zone. This limits the overall system capacity enough

to make the duration of our benchmarks manageable while

preserving the full seek profile of the drives. We configure our

zone sets for 5+1 parity. The resulting total system capacity

is 766GB. We verified that our results are representative by

comparing them to the results of select test cases that we ran

with the system’s full 50TB capacity.

The drives are connected to a server with 32 Intel Xeon

2.90GHz cores and 128GB RAM. SMORE uses direct I/O,

bypassing any buffering in kernel, so that our results are not

skewed by the large amount of main memory in our system.

We ran our workloads using six threads unless noted otherwise.

B. Workload Generator

We generate our workloads with two different distributions

of object sizes: (1) workloads in which all objects have the

same size, ranging from 1MB to 1GB, and (2) workloads with

object sizes that follow a truncated log-normal distribution

modeled after the file sizes in the cold storage system of the

European Center for Medium-Range Weather Forecasts [12],

which is representative of the types of workloads we expect

SMORE to be used for. The peak of the distribution is around

128MB, with a majority of objects between 16MB and 512MB.

We truncate the distribution to omit objects less than 1MB

in size, because we assume that small objects will be stored

further up in the storage hierarchy or coalesced into larger

objects before being stored in SMORE.

C. Ingest Performance

To measure ingest performance, we look at workloads

consisting of 100% PUT operations until the systems fills up,

and we vary the object sizes from 1MB to 1GB and the number

of threads from 3 to 24. SMORE ingests data at approximately

280MB/s regardless of object sizes and the number of threads,

which is almost exactly 100% of the maximum write bandwidth

allowed by our SMR drives. As long as there is any input

data available, SMORE streams it sequentially onto the SMR

drives, thus ensuring maximum possible performance. The

performance does not depend on object size because per-object

overheads are negligible. It does not depend on the number

of threads because with only six drives our system quickly

becomes disk limited.

D. Object Retrieval Performance

To evaluate read performance, we filled our test system to

80% of its capacity and read objects at random in their entirety.

Reading random objects results in the worst-case behavior.

Figure 3 shows the aggregate read bandwidth across all

client threads as a function of object size. The best possible

read performance allowed by our disks is 5× 118 = 590MB/s

(the dashed line in the figure). SMORE achieves near-optimal

read performance for large objects, but the read performance

of small objects is dominated by seeks.

The read performance remains constant as the system ages.

For example, we took the system with a mixture of object sizes

and aged it by deleting and creating new objects until we wrote

more bytes than 500% of the capacity of the system, which is

a higher churn than we expect for cold data. We then measured

the read performance again by reading random objects, and

the resultant aggregate bandwidth was within the margin of

error of the read performance measured on an unaged system.

SMORE achieves good read performance because it attempts

to keep segments from a single object close together. By default,

it schedules writes to zone sets so that a single writer can

write 12 segments of data (240MB, or 48MB per drive) from a

single object before switching to a different writer. The garbage

collector then does a best effort to keep the fragments together.

The lowered concurrency for writes is practically unnoticeable

in large object workloads, while the read gains are significant.

To quantify this gain in read performance, we repeated our

benchmarks with this feature disabled, so that segments from

different objects are more interleaved. The read performance

caps at 390MB/s, compared to 570MB/s from our original

benchmarks.

E. Write Amplification

We measure the write amplification by repeating our bench-

mark on a system that already contains data. We delete objects

at random as fast as new objects arrive, which provides the

worst-case measurement of the garbage collection overhead,

but we expect the deletes to be at least weakly correlated in

practice. We run three sets of benchmarks, each measuring the

write amplification while maintaining different proportions of

live data in the system: 70%, 80%, and 90%.

Figure 4 summarizes our results. Note that the best write

amplification we can achieve is 1.2, due to our 5+1 zone set

parity configuration (represented by the dashed line). SMORE

achieves good write amplification, especially for 70% utilization,

and even for 80% utilization with large objects.
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system utilization. The theoretically best write amplification

is 1.2 (the dashed line), given our 5+1 zone set configuration.

SMORE achieves good write amplification, especially for 70%

utilization, and 80% utilization for larger object sizes.
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Write amplification is particularly high for large utilization

levels and small object sizes, because objects are deleted at

random. As objects get smaller, there is less variance in the

amount of dead data per zone set. As a result, the greedy

garbage collector has to copy more live data when cleaning

zone sets. For example, deleting a single 1GB object typically

results in a lot of dead data in a few zone sets. Deleting an

equivalent amount of data in randomly selected 1MB objects

results in a smattering of dead data in a large number of zone

sets.

F. Recovery Performance

In SMORE, recovery consists of two phases: reading the

most recent index snapshot, and then updating it from the zone

digests and layout marker blocks in the recently updated zone

sets. We can tune SMORE for faster recovery by taking more

frequent index snapshots.

1) Creating Snapshots: Considering that SMORE is tuned

for large objects, the overhead of snapshots is not significant.

Figure 5 shows the time it takes to create an index snapshot

for an 80% full system for various object sizes. The plot shows

both the time it takes to create a snapshot just on the flash and

the additional time it takes to copy it to the SMR drives. The

time to create a snapshot depends primarily on the number of

segments stored in the object store but not on the time since

the last snapshot, since our snapshots are not incremental.
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sets for a workload with mixed-size objects, when restoring

from a snapshot on the flash device. (The crashing mechanism

itself was approximate and nondeterministic as to when exactly

it caused a crash. Therefore there is uneven spacing of data

points.)

For all workloads except for the pure 1MB objects, it takes

less than 0.15 seconds to create a snapshot on our test system.

After extrapolating out the result to a 50TB system with

mixed object sizes, we see that creating a snapshot would

take approximately 1.5 to 1.6 seconds.

Copying to the SMR involves simply a single seek and

sequential write of the snapshot, because snapshots are stored

in dedicated zone sets, and in the vast majority of cases, the

index fits inside a single zone set. In the case of the mixed

workload, the index is less than 1MB in size. This would fit into

a single zone set even when extrapolated to a 50TB system. On

the other hand, because copying to SMR is asynchronous, the

actual time to perform the snapshot might be longer, depending

on the foreground workload.

2) Recovery: Figure 6 shows the time it takes to recover

SMORE for a workload with a mix of object sizes as a number

of examined zone sets during recovery. The time from the

most recent snapshot spans from zero to 4.5 hours. In this

benchmark, we took a snapshot after filling up the system to

80% of its capacity and then continued with a 100% PUT &

DELETE workload, varying the amount of time we allowed

the system to run until we crashed it.

This models the most common case, in which SMORE

recovers starting from an index snapshot stored on the flash

device, and only if that fails (which is very rare) it uses the

index snapshot backup stored on the SMR drives. When we

reran our recovery benchmark with an empty flash device, it

took 0.28 seconds to copy the index snapshot from the SMR

drives to the flash.

With zero zone sets to replay, we see the best-case time,

where the most recent index snapshot is fully up to date. At the

other extreme, when we recover every zone set (the last two

data points in the plot), we see the worst-case performance.

Seven seconds is thus the longest possible duration of recovery

in our test system. When we need to recover every zone set,

we do not need to start from an index snapshot.

As shown in Figure 6, the trend is linear with the number of

examined zone sets (R2
> 0.999). After extrapolating this to



a full 50TB system, we see that it would take only 7 minutes

to recover the index in the worst case.

The overhead of creating snapshots and the time it takes

to recover can be balanced to meet a specific recovery

time objective. For example, if the system needs to recover

from a crash within 5 seconds, we need to take a snapshot

approximately every 2 hours. If it takes less than 0.15 seconds

to take a snapshot, then the overhead of snapshotting is only

2.1× 10
−3%. Even when extrapolated to a 50TB system with

1.5 second-long snapshots, the overhead of snapshots would

be only 0.021%.

IV. RELATED WORK

SMORE builds on a long history of write-optimized storage

systems, dating back to the Sprite Log-Structured File System

(LFS) [7]. Like LFS, SMORE writes all data sequentially

to large disk regions, but it writes the data incrementally,

uses layout marker blocks to enable recovery, and maintains a

working copy of its metadata in flash.

Sawmill [13] extended LFS to work on a RAID array, and

several LFS-inspired file systems, such as WAFL [14], ZFS [4],

and btrfs [3], have integrated RAID functionality within the

file system, leveraging the write coalescing behavior of LFS

to avoid small update penalties in RAID, but often relaxing

the sequential write requirements of LFS to achieve lower (or

no) cleaning costs. SMORE also integrates RAID functionality,

but maintains strict adherence to LFS-style writes due to the

requirements of SMR.

A. SMR File Systems

Similar to SMORE, prior SMR file systems use log-structured

storage, and they generally place the primary copy of their

metadata on a random write device, such as an unshingled

section of the SMR drive [15], [16], or on an SSD if it is

available [17]. SMORE limits the amount of flash storage it

uses, storing only a single copy of the metadata index on

flash and using log records embedded in zone sets to provide

recovery. HiSMRfs [17] also uses flash and spans multiple

SMR drives, but it targets general-purpose workloads, which

leads to a different design that requires mirrored SSDs for

storing metadata and hot files.

Huawei’s Key-Value Store (KVS) [18] uses recovery-oriented

design like SMORE, but it is a single-disk system with erasure

coding of objects across multiple drives handled higher in the

storage stack. SMORE benefits from being designed as a multi-

disk system from the ground up, which decreases the index

size and simplifies data management and recovery.

SAFS [19] is a single-disk system optimized for append-only

workloads that stores all incoming data into the same zone

but separates the data later, which optimizes for sequential

reads at the cost of rewriting all data. In contrast, SMORE

uses segments to write multiple megabytes of data to an object

without interleaving.

Kadekodi et al. [20] demonstrated that an SMR disk that

permits the client to write anywhere enables building a file

system with better performance and less frequent garbage

collection. SMRDB [21] is a key-value store for database-like

workloads based on a Log-Structured Merge (LSM) Tree.

In addition to developing custom file systems and object

stores for SMR drives, there is an ongoing effort to adapt

existing file systems such as ext4 [22], nilfs [23], and

xfs [24] to SMR drives.

B. Shingle Translation Layers (STLs)

Another method to incorporate SMR drives into a storage

system is by using a shingle translation layer, similar to drive-

managed SMR drives. The most common approaches write

incoming data to one or more persistent caches and merge the

data later with the original band [25], [26]. SMR disks that

allow random writes to shingled zones enable STLs that take

advantage of circular buffers [25], [27], [28] or managing data

at the level of small, wedge-shaped regions [29]. Using drives

with only a few tracks per zone enables efficient static address

mapping schemes [30].

C. Other Related Work

Aghayev and Desnoyers [26] and Wu et al. [31] provide

benchmark-based analysis of the behavior of commercial drive-

managed and host-aware SMR drives, respectively.

Categorizing data based on hotness can significantly decrease

write amplification on SMR drives [32], [33], [28], and has

also been found helpful in F2FS [34].

Finally, there is a rich history of archival storage systems built

using conventional hard drives. Some of this work describes

complete systems [35], [36], [37]. Other researchers have

focused on specific problems, such as data reduction [38],

[39], power management [40], [41], or long-term data preser-

vation [42], [43]. This research predates the introduction of

SMR technology and does not address the unique requirements

of SMR disks.

V. CONCLUSION

In this work, we presented SMORE, an object storage system

designed to reliably and efficiently store large, seldom-changing

data objects on an array of host-managed or host-aware SMR

disks. Using a log-structured approach to write data to the

large, append-only shingled zones, we were able to achieve full

disk bandwidth when ingesting data—for a variety of object

sizes—with only a moderate amount of system optimization.

Moreover, SMORE achieves low write amplification during

worst-case churn when the system is filled to 80% of its capacity.

Finally, the recovery-oriented design of SMORE, specifically

the interleaving of log records with object data, allows a simple

and efficient recovery process in the event of a failure without

any additional logging mechanism.
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