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Abstract—Log-Structure merge tree (LSM-tree) has been one
of the mainstream indexes in key-value systems supporting a
variety of write-intensive Internet applications in today’s data
centers. However, the performance of LSM-tree is seriously
hampered by constantly occurring compaction procedures, which
incur significant write amplification and degrade the write
throughput. To alleviate the performance degradation caused by
compactions, we introduce a light-weight compaction tree (LWC-
tree), a variant of LSM-tree index optimized for minimizing the
write amplification and maximizing the system throughput. The
light-weight compaction drastically decreases write amplification
by appending data in a table and only merging the metadata
that has much smaller size. We implement three key-value
LWC-stores on different storage mediums including Shingled
Magnetic Recording (SMR) drives, Solid State Drives (SSD) and
conventional HDDs, using our proposed LWC-tree. The LWC-
store is particularly optimized for SMR drives as it eliminates the
multiplicative I/O amplification from both LSM-trees and SMR
devices. Due to light-weight compaction procedures, the LWC-
store reduces the write amplification by up to 5× compared to the
popular LevelDB key-value store. Moreover, the write throughput
of the LWC-tree on SMR drives is significantly improved by up
to 467% even compared with LevelDB on HDDs. Furthermore,
the LWC-tree has wide applicability and it delivers impressive
performance improvement in various conditions, including dif-
ferent storage mediums (i.e., SMR, HDD, SSD), varying value
sizes and access patterns (i.e., uniform, Zipfian and latest key
distribution).

I. INTRODUCTION

Key-value stores are becoming widespread in modern data
centers as they support an increasing diversity of applications
[1]. However, currently the majority of key-value stores [2]–
[5] are built based on the log-structured merge tree (LSM-
tree) [6] which is used as the index structure for key-value
stores. The LSM-tree enjoys its advantages over traditional B-
trees because it adopts a memory buffer to batch new writes
and creates write sequentiality. The LSM-tree does not suffer
from random write problem. In the meanwhile, the batched
data has to be persisted to the disk sooner or later. LSM-trees
initiate compactions to absorb the temporarily buffered content
and ensure the key-value pairs in sorted order for future fast
lookups.

Compactions unfortunately introduce significant overheads
due to I/O amplifications. To compact LSM-tree tables, the
LSM-tree has to read a table file in Level Li, which is called
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a victim table, and several table files in Level Li+1, which
have key ranges overlapping with that of the victim table
and are called overlapped tables. It then merges those tables
according to their key ranges and writes back the resultant
tables. Such multiple table reads and writes can incur excessive
disk I/Os (called I/O amplification) and thus severely affect the
performance [1]. As we will see later (Section II-B), the I/O
amplification caused by compactions in typical LSM-trees can
reach to a factor of 50× or higher [7], [8], causing up to 10×
degraded write performance.

Previously proposed solutions alleviate the write amplifica-
tion and thus improve the overall performance by using large
memory to buffer more indexes or KV items [9], leveraging the
characteristic of specific devices [1], [7], [10], [11], hashing
the KV items step by step [8], reducing the number of levels
[12], or simply reducing the amplification factor in adjacent
levels. Solving the write amplification problem of LSM-tree in
this manner, unfortunately, is not cost-efficient as it requires
additional memory or it is limited to specific storage devices.
Even worse, the coupling of LSM-based key-value systems
and storage devices may further amplify the compaction I/O
overhead [1]. The I/O amplification of running the key-
value store on SMR drives which are becoming increasingly
deployed in data centers is particularly challenging due to the
SMR device auxiliary amplification.

In this paper, we present a light-weight compaction tree,
a variant of LSM-tree index which mitigates the write am-
plification during a compaction procedure by appending data
in a table and only merging a little metadata, while retaining
the level-by-level structure in LSM-tree for acceptable read
performance. The LWC-tree introduces the following four new
techniques to improve the write throughput without affecting
the read performance:

• LWC-tree employs a simplified compaction procedure,
named light-weight compaction. Instead of read, sort
and rewrite all whole tables in a traditional compaction
procedure, LWC-tree divides the data of a victim table
into segments according to the key range of overlapped
tables in the next level. Then it appends segments to
the corresponding tables and merges a small amount of
metadata simultaneously. As the unit of data management
in LWC-tree, the table is defined as a DTable.

• LWC-tree conducts metadata aggregation in adjacent



levels to remove small reads on devices. The metadata
aggregation policy collects the metadata in overlapped
tables and stores them in the victim table in the upper
level of the LWC-tree. Therefore, when performing a
light-weigh compaction, the LWC-tree only requires to
read a table sized data in a single DTable.

• LWC-tree reorganizes the DTable data structure accord-
ing to the characteristics of light-weight compaction.
DTables absorb the data from light-weight compactions
by appending the tables whose table size is variable.
DTable provides efficient lookups via binary searching
segment indexes using the sequence number.

• LWC-tree balances the workload of DTables in the same
level to ensure the balance of LWC-tree and provide an
stable and efficient operation performance. Workload bal-
ance aims to move the overly-full table to its siblings by
adjusting their key range after light-weight compaction,
which brings no extra overhead for no data movement.

More importantly, based on the LWC-tree, we design and
implement three key-value stores to explore its applicability
in modern data centers. Specifically, we implement three
LWC-tree based key-value stores on top of three kinds of
devices commonly deployed in data centers, including SSDs,
SMR drives, and conventional HDDs. For LWC-store on
SMR drives, equal division is proposed to avoid a DTable
overflowing a band in SMR drives, which reads out a DTable,
divides it into several sub-DTables and writes them back to
the same level. The experimental results demonstrate that
the LWC-tree enjoys substantial performance improvements
compared with the popular key-value store LevelDB and the
advantages are not dependent on storage medium (SMR, HDD
and SSD), value size and access pattern (uniform, Zipf and
latest key distribution).

The rest of this paper is organized as follows: the back-
ground and motivation of our work are described in Section
II. The design and implementation of the LWC-tree and the
LWC-stores are presented in Sections III, and IV respectively.
Section V presents the evaluation results and analyzes the
effectiveness of light-weight compaction. Related work is
described in Section VI, and our conclusions from this work
are given in Section VII.

II. BACKGROUND & MOTIVATION

To provide better service quality and responsive user expe-
rience for many data-intensive Internet applications, key-value
stores have been adopted as the infrastructure in modern data
centers. In addition, the performance gap between random I/O
and sequential I/O has increased, decreasing the relative cost
of the additional sequential I/O and widening the range of
workloads that can benefit from log-structure [13]. Therefore,
key-value stores based on LSM-trees which transform random
accesses to sequential accesses are gaining increasing popu-
larity and have widespread practical deployments.

A KV store design based on an LSM-tree services two goals
[8]: one goal is that new data has to be quickly admitted into
the store to support high-throughput write, which is achieved

by the data organization discussed in Section II-A and the
other goal is that KV items in the store are sorted to support
fast lookups, which is achieved by recurring compactions
discussed in Section II-B.

A. LSM-trees and LevelDB

The LSM-tree is a widely used persistent data structure
that provides efficient indexing for a key-value store with a
high rate of inserts and deletes [6]. It first batches writes into
memory to avoid random writes and exploit the high sequential
bandwidth of hard drives and then updates the in-memory
content to the LSM-tree at a later time. Since random writes
are nearly two orders of magnitude slower than sequential
writes on hard drives [6], LSM-trees can thus provide better
write performance than traditional B-trees that incur excessive
random accesses, even though they perform more writes due
to the compaction process.

LevelDB, inspired by BigTable [2], [4] is a popular open-
source key-value store from Google using the LSM-tree to
organize the key-value pairs. We use LevelDB as an example
to explain the data structure of LSM-trees. The LSM-tree uses
an in-memory buffer, called MemTable, to absorb incoming
KV items, which results in high-throughput write in LevelDB.
The quickly admitted data is sorted according to their keys
simultaneously by the skip-list in memory. Once a MemTable
is filled up, it is turned into an immutable MemTable, which
still remains in the memory but no longer accepts new data.
Later on, the immutable Memtable in the size of several
megabytes is dumped to the disk, generating an on-disk data
structure called SSTable. SSTables are immutable and each
SSTable contains a number of KV items stored in the unit of
data block. The KV items can be indexed by the metadata of
SSTable and LevelDB can locate the block of a specific KV
item via binary searching on the index. In the metadata of an
SSTable, for each block there is a Bloom filter to indicate the
presence of the KV items in it [8], which facilitates avoiding
unnecessary accesses to data blocks to reduce read latency.

The combination of MemTable and immutable MemTable
in the memory, together with the multi-levels SSTables on disk
compose a key-value store based on the LSM-tree. Since the
LSM-tree is the core element of LevelDB and other widely
used key-value stores, such as RocksDB [14] at Facebook,
Cassandra [15], HBase [16] and PNUTS [17] at Yahoo!, the
reductions of write amplification in our proposed LWC-tree
can be beneficial to all KV stores based on LSM-tree and
enjoy wide applicability.

B. Performance Degradation by Compaction

As mentioned before, LSM-trees achieve outstanding write
performance by batching key-value pairs and later writing
them sequentially. Subsequently, to enable future efficient
lookups and deliver an acceptable read performance (for both
individual keys as well as range queries), LSM-trees contin-
uously compact key-value pairs at adjacent levels throughout
the lifetime to sort key-value items. The compaction procedure
of LSM-trees requires constant reading, sorting and writing



TABLE I
MEANINGS OF THE SYMBOLS

Sdata Data size of disk I/O in a compaction
Ssst Size of an SSTable
Sdt Size of a DTable
Smetadata Metadata size in a compaction
RA/WA R/W amplification from LSM-tree or LWC-tree
ARA/AWA Auxiliary R/W amplification from SMR drives
MRA/MWA Overall R/W amplification, MWA=MA × AWA
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Fig. 1. The compaction procedure of LSM-trees. The compaction involves
read, sort and rewrite multiple SSTables, causing serious I/O amplification.

KV items, which introduces excessive writes and represents a
performance bottleneck of LSM-tree based key-value stores.

More specifically, a single compaction has three steps. For
the convenience of exposition, let us call the SSTable selected
to compact in level Li as a victim SSTable and the SSTables
whose key ranges fall in the key range of the victim SSTable
in the next level Li+1 as overlapped SSTables. To start a
compaction, LevelDB first selects victim SSTables and the
overlapped SSTables according to the score of each level,
and then it decides whether more victim SSTables in Li

can be added into the compaction by searching the SSTables
whose key ranges fall in the ranges of overlapped SSTables.
Figure 1 pictorially shows the three steps of a compaction
procedure of LSM-trees. As it is shown, during the compaction
procedure, LevelDB first reads the victim SSTable in level Li

and overlapped SSTables in level Li+1. After that, LevelDB
merges and sorts SSTables that have been fetched into memory
by the first step. Finally, LevelDB writes the newly generated
SSTables to disk. According to the size limit of each level
in LevelDB, the size of Li+1 is 10 times that of Li and this
size factor is called amplification factor (AF). Due to this size
relationship, on average a victim SSTable in level Li has AF
overlapped SSTables in level Li+1 and thus the total data size
involved in a compaction is given by Equation 1, where Ssst

represents the size of an SSTable and Sdata represents the
data size of disk I/O in a compaction. The 2× multiplication
indicates both read and write the total data. With a large
dataset, the ultimate amplification could be over 50 (10 for
each gap between L1 to L6), as it is possible for any newly
generated SSTable to migrate from L0 to L6 through a series
of compaction steps [1].

Sdata = (AF + 1)× Ssst × 2 (1)

To quantitatively measure the degree of amplification and
performance degradation due to compaction in practice with
LevelDB, we carry out the following experiments with the
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Fig. 2. Write amplification and performance degradation due to
compactions. 2(a): the comparison between write data size and actual disk
I/O size; 2(b): the write amplification of different write data sizes; 2(c): the
random write performance with and without compaction; 2(d):the random
read performance with and without compaction.

same configuration of LevelDB on HDDs in section V. First,
we randomly load databases of size 5GB, 6GB, 7GB, 8GB,
9GB and 10GB, respectively. The value size is 4KB by default.
Figure 2(a) shows the relationship between input data size and
actual disk I/O data size. As can be seen, in all cases, LevelDB
incurs significant write amplification. For example, writing
10GB input data results in 110.7GB actual disk write and the
corresponding write amplification ratio is 11.57 as shown in
Figure 2(b). Based on Figure 2(a), Figure 2(b) calculates all
the write amplification factors and a minimum value of 10.19
is observed. Second, to evaluate the random I/O performance
with compaction or without compaction, we use 6 different
database sizes for the initial random loads as well and random-
ly query 1 million keys following a uniform distribution. For
the I/O performance without compaction, we trigger a manual
compaction immediately after finishing loading the database
and before starting performing I/Os to eliminate concurrent
compaction and mitigate the compaction interferences. Figure
2(c) and Figure2(d) show the performance degradation caused
by compaction to random write and random read, respectively.
The write and read throughputs without compaction on average
are 13.01× and 2.23× the throughputs with compaction,
respectively. We design the LWC-tree mainly to eliminate the
amplification caused by compactions in LSM-trees.

III. LWC-TREE DESIGN

As demonstrated in the previous section, the conventional
LSM-tree incurs excessive I/O amplification when used as the
key-value store index. We design the LWC-tree to alleviate the
I/O amplification caused by compactions and aim to achieve
high write throughput without sacrificing read performance.
As a variant of LSM-tree, LWC-tree is also composed of
one memory-resident component and multiple disk-resident
components. Key-value items are written to the memory
component first, then dumped to disk, and finally compacted
to lower levels. We keep the sorted tables and the multi-level



structure in LWC-tree to guarantee the read efficiency of KV
stores.

The LWC-tree has four distinct features from the LSM-tree.
First, LWC-tree employs a light-weight compaction mechanis-
m to eliminate I/O amplification by appending data in tables
and merging metadata (Section III-A). Second, each table
preserves the aggregated metadata of overlapped tables in a
lower layer to further reduce small random disk reads during
the compactions (Section III-B). Third, the LWC-tree has a
new data structure for SSTable, which is named as DTable,
to improve the lookup performance in a table (Section III-C).
Lastly, the LWC-tree creates workload balance for DTables
to ensure operation efficiency and the balance of LWC-tree
(Section III-D).

A. Light-weight Compaction

Compactions are needed during the entire life in LSM-trees
to ensure acceptable read and scan performance. However,
compactions bring about excessive I/O amplification as the
LSM-tree table files have often to be read and written to
disk during compactions. And also the extra I/Os contend
for the disk resources, causing degraded performance, as
demonstrated in Section II-B. To reduce the excessive I/O
amplification and alleviate the degraded system throughput due
to compaction, we propose a new approach to implementing
light-weight compaction.

Motivated by the observation that only merging and sorting
keys is sufficient while values can be managed separately
[1], [18], our design of the LWC-tree moves a further step
and proposes to merge and sort the metadata of table files
to fasten compaction speed. Since the metadata size of each
individual table file is much smaller than the table size itself,
compacting only metadata can thus significantly reduce the
amount of data involving in compactions, resulting in light-
weight compaction.

To carry out a light-weight compaction, the LWC-tree first
reads the victim DTable into memory and this DTable includes
the aggregated metadata of overlapped DTables (Section III-B)
as well as its own data and metadata. Then, the LWC-tree
divides the victim DTable into several segments corresponding
to the key ranges of each overlapped DTable. Based on the
division, it merges and sorts the metadata of each segment and
the metatdata of its associated overlapped DTables. Lastly, the
resultant new segments and metadata are appended into the
overlapped DTables by overwriting out-of-date metadata.

Figure 3 graphically shows the procedure of light-weight
compaction in LSM-trees. As an example, let’s assume that
the DTable having the key range of ‘a-c’ in level L1 is
selected as the victim table for compaction and its three
overlapped DTables in level L2 have the key range of ‘a’,
‘b’, and ‘c’, respectively. Then instead of reading, merging,
sorting all the four involved DTables as in the conventional
compaction, the LWC-tree only reads the victim DTable and
divides it into three segments corresponding to each of the
three overlapped DTables’ key ranges, namely, ‘a’, ‘b’ and
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Fig. 3. The light-weight compaction procedure of LSM-trees. The light-
weight compaction involves reading one DTable, sorting the metadata and
appending newly generated segments, which dramatically reduces the I/O
amplification relative to the traditional compaction procedure in LSM-trees.

‘c’. After reading the victim table into memory, the LWC-
tree clears any invalid key-value pairs and sorts the valid key-
value pairs. In the meanwhile, the newly generated metadata of
each segment and the metadata of its corresponding overlapped
DTables are merged. Finally, the segments are appended into
the overlapped DTables in level L2 together with the updated
metadata, as indicated in the right part of the figure.

In a light-weight compaction, it only needs to read one
DTable from disk and appends AF (amplification factor)
segments back to disk. Equation 2 calculates the total amount
of I/O data size (Sdata) involved in a light-weight compaction,
where Sdt represents the size of a DTable and Smetadata

represents the metadata size. Comparing it with the overhead
of the original compaction in LSM-trees given by Equation
1 in Section II-B, we can see that the I/O data size of light-
weight compaction could be reduced by 10×, assuming the
maximum size of a DTable equals to an SSTable and the AF
is 10 by default according to LevelDB [4]. In addition to I/O
amplification reduction, the light-weight compaction keeps the
key ranges of the tables in the same level sorted. In other
words, the key ranges of the tables in the same level of the
LWC-tree are not overlapped, which helps to provide high
table lookup efficiency.

Sdata = 2× Sdt +AF × Smetadata (2)

B. Metadata Aggregation

As discussed in the preceding section, the LWC-tree em-
ploys an efficient compaction policy by considering only
metadata during compactions, which could result in up to 10×
I/O data reduction. However, so far we have not yet discussed
how to efficiently obtain the metadata of overlapped DTables
during compactions, which can critically impact compaction
speed. An intuitive method would be to read the metadata from
the overlapped DTables in the next tree level whenever the
metadata is needed. Unfortunately, this method incurs extra
cost due to randomly reading the metadata, offsetting the
efficiency of our light-weight compactions. Another straight-
forward solution is to cache all metadata in the memory for fast
metadata accesses. However, this solution is not cost effective
since the metadata size is non-trivial. Figure 4 shows the ratio
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Fig. 5. The metadata aggregation between adjacent levels. This figure
shows that before compaction, the metadata of overlapped DTables is collect-
ed in the victim DTable and after compaction, the newly produced metadata
is aggregated in the empty victim DTable.

between metadata and data as the value size varies in two
scenarios where the table size is 4MB and 40MB, respectively.
As it is shown, the metadata overhead increases as the value
size decreases. Particularly, the metadata overhead of small
value sizes is significant. Unfortunately, as revealed by existing
key-value workloads analysis, small value sizes are dominant
in the real world [19]. For instance, the metadata overhead is
around 17% and up to 9% for the value size of 64B and 256B,
respectively. Equally put, to support a 10T key-value store, the
total metadata would require 925GB memory when the value
size and table size are respectively 256B and 40MB.

To address this issue, we propose metadata aggregation to
cluster the metadata of overlapped DTables into the corre-
sponding victim table, as it is illustrated in Figure 5. After
finishing the light-weight compaction, the updated metadata
of overlapped DTables in level Li+1 which has been merged
recently in memory is aggregated and stored in the victim
DTable in level Li so as to avoid the accesses during the
next compaction. The victim DTable always contains the most
recent metadata of overlapped DTables so that consistency can
be guaranteed. Though the metadata aggregation introduces
an extra write in a compaction, it however reduces AF times
random reads on average during the next compaction. Overall,
for a light-weight compaction, it only requires to read the
victim DTable because all the needed metadata and data are
already in the victim DTable, which significantly reduces
incurred I/O traffic.

C. Data structure of DTable

Similar to the SSTable in LSM-trees, the DTable is our
proposed basic data management unit in LWC-trees and its
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Dtable
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Index block
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Fig. 6. The data structure of DTable This figure shows the organization
in a DTable, which is comprised of the metadata from overlapped DTables,
data and metadata.

detailed data structure is depicted Figure 6 . A DTable contains
the aggregated metadata from overlapped DTables, data and
metadata. The data of DTable includes several segments, and
each segment is composed of the appended data blocks of a
light-weight compaction. A light-weight compaction appends
the sorted data segment to the overlapped DTables without
modifying the data written before. As a result, the appended
data from compaction is sorted in each individual segment
but the key ranges of different segments may be overlapped.
These overlapped segments in the DTables could potentially
damage the lookup performance within a table. To facilitate
the read and search performance within a DTable, our LWC-
tree employs a new method for managing the metadata.

The metadata stored in a DTable includes the bloom filter
blocks, overlapped Meta index blocks for overlapped DTa-
bles’ metadata, Meta index blocks for metadata, index blocks
for data blocks, and a footer. The index of data block is used
to identify a 4KB data block. Each block has a bloom filter
to indicate the existence of KV items in this block. When
conducting a light-weight compaction, the metadata of new
generated segment and the metadata of overlapped DTables
are merged in memory. Concretely, first, LWC-tree generate
new bloom filters for blocks in segment, and the new bloom
filters just append to the filter blocks of the corresponding
overlapped DTable; second, the index blocks for blocks in
segment are established and write together with the index
blocks of the overlapped DTable; third, the index for metadata
and overlapped DTables metadata are modified according their
new location; fourth, the footer is updated as well.

Segment indexes: The index block is also organized in
segments, similar to the data organization. The LWC-tree
assigns a sequence number to each segment, with the larger se-
quence number indicating fresher recency. The indexes in each
segment are sorted as well. To find a KV item in a DTable,
the LWC-tree starts with checking the largest sequence number
segment. It looks for the data block to which the wanted key
might belongs. If such a block is found, it then checks the
block bloom filter to confirm the existence of the key. If the
key exists, then the data block is returned. Other it repeats the
same process in decreasing sequence number segments. The
LWC-tree ensures that only one data block read is needed to
find a KV item.
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Fig. 7. The imbalanced workload of DTables in Level Li. This figure
shows the unbalanced data distribution of DTables in a level. The LWC-tree
chooses to migrate data from Table 1 to Table 2 and from Table 5 to Table 8
to keep balance.
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Fig. 8. The workload balance during a compaction. This figure shows
the procedure of performing workload balance between two adjacent tables
in Level Li, e.g., Table 1 and Table 2. Workload balance is conducted after
light-weight compaction, which modifies the key range of imbalanced tables
without actual data mitigation and introduces no extra overhead.

D. Workload Balance in DTables

It is possible that different DTables of the same level of
LWC-tree can have different amount of data due to their
represented key ranges. Figure 7 shows the workload dis-
tribution across the DTables in the same level at a specific
timepoint during the running. The process of light-weight
compaction appends data to each DTable according to their
key ranges, causing the data volume in DTables being dynamic
and imbalanced, which may affect the read performance of
LWC-tree. To avoid that, the LWC-tree attempts to construct
a balanced tree in which each DTable is filled with the data
of the same size. As an example in Figure 7, we may expect
to move the data of overly-full table to its siblings, such as
migrate the data from Table 1 to Table 5 and from Table 2 to
Table 8 to achieve balance.

To this end, the LWC-tree introduces a method to realize
workload balance by adjusting the key range of the overly-full
table and its siblings in the same level during the light-weight
compaction without extra overhead. Concretely workload bal-
ance separates the key range of overly-full table into two part,
and gives a part of key ranges to its next neighbor. So the
incoming workload is replaced according to the new key range
of DTables and resulted in a quite balanced workload placing.
This works because the LWC-tree (same as the LSM-tree)
doesn’t have strict subset relationships across levels.

Figure 8 shows an example of ensuring workload balance in
Table 1&2. After DTable 1 with excessive data finishing com-
paction from Li to Li+1, the key range of Table 1 is separated
into 2 parts according to workloads key range distribution.

For example, the first part is range ‘a-b’ and the second part
is range ‘c’ in Figure 8. Noticing that DTable 2 contains the
minimal data, the LWC-tree adds the second part key range ‘c’
into DTable 2, resulting in the key ranges of Table 1 and Table
2 becoming ‘a-b’ and ‘c-d’, respectively. Due to the adjustment
of the key ranges of DTables, the incoming workload of
DTables will be changed and the workload balance is achieved
as a result. Similar to the key range adjustment between Table
1 and Table 2, the LWC-tree consecutively conducts the key
range adjustments from Table 5 until Table 8 step by step as
indicated by the green arrows. Please note that it is not allowed
to give a part of key range of Table 5 to Table 8 directly, as
the keys must be sorted for tables in a level. The key range
redistribution process during compaction imposes almost no
extra overhead, as it incurs no data migration.

IV. LWC-STORE DESIGN AND IMPLEMENTATION

The demand for high capacity KV stores in an individual
KV server keeps increasing. This rising demand is not only
due to data-intensive applications, but also because of the
virtualization purpose and the cost benefit choice of using
fewer servers to host a distributed KV store. Today, it is
an economical choice to host a multi-terabytes KV store on
one server using either hard disks or SSDs. The proposed
LWC-tree is an optimized variant of the LSM-tree and thus
is generally applicable for various devices. Therefore, we
implement three key-value stores, named LWC-stores, on
HDD, SSD and SMR drives respectively, based on the LWC-
tree. Out of the three storage devices, the SMR drive is one
of the most elegant choices to provide large capacity with no
significant cost impact [20]–[23]. Even though SMR drives
have the random write limitation, the LWC-tree is still able
to fully utilize the SMR drive and eliminate its weakness on
I/O constraint. In this section, we focus on the design and
implementation of LWC-stores on SMR drives.

A. Auxiliary write amplification of SMR drives

Shingled magnetic recording is leading the next generation
disk technology due to its increased disk areal density. SMR
drives achieve disk capacity expansion by overlapping tracks
on one another like shingles on a roof. The overlapped tracks
of SMR drives bring a serious I/O constraint, where random
I/O or in-place update may overwrite the valid data in band.
A solution to handle the access restriction of SMR drives
is to enforce an out-of-place update policy, in which the
data in SMR drives requires a reorganization via performing
garbage collection [24]. However, no matter using the in-place
or out-of-place update, SMR drives still generate read/write
amplification, named Auxiliary Write or Read Amplification
(short for AWA or ARA). Even worse, the AWA and the WA
induced by applications create a multiplicative effect on write
traffic to SMR drives, as it is with flash devices [25].

Previous work on flash devices has demonstrated an exam-
ple of this amplification with LevelDB, where a small amount
of user writes can be amplified into as much as 40× more
writes to the flash device [7]. To reveal the amplification
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Fig. 9. The multiplicative read and write amplification on drives. This
figure shows the average I/O amplification and multiplicative I/O amplification
at different SMR band sizes.
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on SMR drives, we experimentally measure the amount of
amplification by running LevelDB on an SMR emulator which
is artificially banded on top of a conventional HDD [26].
The multiplicative WA and RA (in short MRA, MWA) is
shown in Figure 9. As an example, in a 40MB band size
SMR drive, the WA and RA from LSM-tree multiplied by
ARA and AWA increase from 9.81 and 9.83 to 62.29 and
52.85, respectively. This severe amplification is attributed to
two factors: traditional key-value stores being built on top of a
shingled disk and Ext4 delivering suboptimal performance [27]
due to random accesses and I/O amplification. Ext4 as a
mature and widely used file system, is not sequential-oriented
[28]. Given the multiplicative effect of I/O amplification, it is
thus important to minimize additional KV store writes (as what
we discussed in Section III), and reduce the I/O amplification
on SMR drives (Section IV-B).

B. The LWC-store on SMR Drives

As seen in the previous section, building KV stores on
SMR drives with traditional Ext4 file system introduces serious
multiplicative write amplification. Therefore, developing KV
stores on the Ext4 file system based on the LWC-tree can also
lead to random disk I/Os due to its non-sequential properties,
which aggravates the write amplification of SMR drives. For
this reason, we implement the LWC-store on SMR drives
without having a file system.

The LWC-store on SMR drives is a key-value store system,
which runs directly on top of an SMR drive and manages the
underlying disk in an SMR-friendly manner. To get around the
I/O constraint of SMR drives by eliminating I/O amplification,
the LWC-store assigns each DTable to a sequential physical
address (PBA) space. In SMR drives, a sequential PBA space
is organized as bands and the invalid data at the tail of a band
can be overlapped without suffering from overwrite penalty.
Subsequently, each DTable of LWC-store is mapped to a band,
where the table size could be variable but should not be larger
than the band size. Using a band as the disk management
unit is cost-effective as it does not suffer garbage collection
overhead. Figure 10 depicts the overall system architecture of
LWC-store on SMR drives. At the high level, the LWC-tree
provides a light-weight compaction. At the device level, the
SMR device provides dedicated bands to store the dynamically
sized DTables. The interactions between the key-value store
and the SMR device can be realized via the ZBC/ZAC
interfaces.

In a light-weight compaction, the new segment and metadata
are appended to the corresponding band by overwriting the
out-of-date metadata. This is viable because SMR drives write
data in sequence and overlaps happen in only one direction
[22]. In addition, as the metadata is always located at the end
of the DTable, overwriting the metadata at the tail of a band
would neither damage the valid data nor bring I/O amplifica-
tion. Comparing to the traditional LSM-tree based KV stores,
LWC-stores not only mitigate the write amplification from
compactions but also eliminate the auxiliary I/O amplification
from SMR drives.

C. Equal Division

The implementation of LWC-stores on SMR drives places
each DTable in an SMR band, therefore the maximum size
of a DTable is limited by the SMR band. LWC-stores expect
that each DTable is perfectly filling the band at the time of
performing compactions, so that the data would not overflow
a band and the KV store would not induce extra space
overhead. However, for some workloads with the latest key
distribution, the data appended to some DTables during light-
weight compaction may overflow the bands. Solving this
problem by continuously compacting oversized DTables and
flushing to lower layers could bring cascading compactions
and result in more oversized DTables.

To address the above problem, equal division of LWC-store
is proposed, which divides an oversized DTable of into several
sub-DTables and set the sub-DTables at the same level. The
key range of each sub-DTable is therefore limited to a smaller
scope. The division is designed to reserve a suitable free space
in a band for the DTable, so that the DTable would not be
oversized and at the same time the band space would not
be wasted. More specifically, when conducting a division, the
LWC-store reads out the oversized DTable in Li from disk,
separates the data into n DTables of equal data size and writes
the divided DTables back to disk still in Li. As a result, the



TABLE II
BASIC DISK PERFORMANCE MEASUREMENTS.

SSD HDD SMR
Sequence read (MB/s) 1200 169 165
Sequence write (MB/s) 901 155 148
Random read 4KB (IOPS) 8647 64 70
Random write 4KB (IOPS) 19712 143 5-140

key range is separated into n parts accordingly. One benefit of
our equal division is to keeping data sorted within a table.

However, the biggest challenge of implementing equal
division is to determine the optimal division number ‘n’.
Generally, the larger the division number is, the more adequate
band space there will be. The sufficient free space in the band
ensures high performance by reducing the subsequent divi-
sions, although it may lead to a lower space usage efficiency.
On the contrary, a smaller division number could save the
band space in some degree but damage the performance due
to more frequent divisions. By default, we choose the division
number n to be the amplification ratio between adjacent levels.
However, we have also conducted a sensitivity study on the
division number to see how it affects the performance and
space usage efficiency.

V. EVALUATION

In this section, we conduct extensive experiments to evaluate
the LWC-stores. The experiments include main evaluations
and sensitivity evaluations. The aim of evaluations is to
demonstrate that the LWC-store reduces the I/O amplification
and improves overall performance on a wide variety of system
configurations and various storage devices (SMR, SSD and
HDD), especially for SMR drives.

The test machine used for our experimentation has 16
Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz processors and
64GB of memory. The operating system is 64-bit Linux 4.4.0-
31-generic, and the file system to support conventional Lev-
elDB is Ext4. The storage devices used for the test are a 1TB
Seagate ST1000DM003 HDD, a 5 TB Seagate ST5000AS0011
SMR drive and a 400GB Intel P3700 SSD. Table II lists the
performance characteristics of these devices. As we can see,
the SMR drive shows a similar sequential I/O performance
and random read performance comparing to the conventional
HDD, while the random write restriction of an SMR drive
is obvious, which is consistent with the findings in existing
works [26]. In addition, the Intel P3700 SSD exhibits much
better performance than the HDD and SMR drive.

A. Main Evaluation

For the first set of experiments, we intend to use the
LWC-store on SMR drives to demonstrate the superiority
of the design strategies of LWC-store. Main evaluations are
conducted in the following configurations:

LevelDB on HDDs (LDB-hdd): Running the original Lev-
elDB on a conventional HDD, which represents the baseline
for our evaluations.

LevelDB on SMR drives (LDB-smr): Running the original
LevelDB on a Seagate drive-managed SMR drive, which
induces serious multiplicative I/O amplification due to the
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Fig. 11. Load Performnce This figure shows random and sequential load
performance of 4 different key-value stores. Our proposed LWC-smr on an
SMR outperforms LDB-smr dramatically in both random and sequence load.

incompatibility between the traditional LSM-tree based key-
value store and the SMR device as mentioned in Section IV-A.

SMRDB: SMRDB is an SMR drive optimized key-value
store, which proposes an SMR friendly solution to improve
the performance of KV stores on SMR drives [12]. The main
design choices of SMRDB are to reduce the LSM-tree levels
to only two levels (i.e., L0 and L1), allow the key ranges
overlapped in the tables at the same level, and match the
SSTable size with the band size (40MB by default).

LWC-store on SMR drives (LWC-smr): LWC-smr is our
proposed key-value system, which includes the light-weight
compaction in LWC-tree and tables with size variation in SMR
drive. LWC-smr is implemented based on LevelDB 1.19 [4]
and the SMR emulator [26] as discussed in Section IV-B. The
default band size is 40MB, and the DTable size is variable but
is not larger than the band size.

In the main evaluation, we use the default micro-
benchmarks in LevelDB to evaluate the overall performance
of the four configurations. We use the key size of 16 bytes
and the value size of 4 KB.

1) Load Performance: We first examine the random load
and sequential load performance in each KV store system
by inserting a total size of 100GB KV items with sequential
keys and uniformly distributed keys. For both sequential load
and random load, the benchmark is constructed by 25 million
entries. The major difference of theses two workloads is that
inserting entries in sequence does not incur compactions,
while random loading does. Random loading performance is
significantly influenced by the compaction efficiency.

Figure 11(a) gives the comparisons of the random load
performance of the four key-value systems. From this figure,
we can make three observations. First, LWC-smr improves
the random load performance to 9.8 times that of LDB-
smr. One reason for that is because LevelDB conducts costly
compaction procedures constantly, which pull the random load
performance down, as aforementioned in Section II-B. Another
reason is because LWC-smr is built directly on the SMR drive
and is free from file system overheads, while LDB-smr suffers
from excessive Ext4 overhead with SMR drives [27], [28], as
aforementioned in Section IV-A. Second, LWC-smr outper-
forms LDB-hdd by 4.67 times, which verifies that by adopting
LWC-smr, SMR devices can deliver an even better random
load performance than conventional HDDs. Moreover, LDB-
hdd also suffers from the amplification from the LSM-tree
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Fig. 12. Read Performnce This figure shows random and sequential read
performance of 4 different key-value sotres. The y-axis unit of sequential read
is the throughput in MB/s, and the y-axis unit of random read is the latency
per operation in millisecond.

in LevelDB. Third, LWC-smr delivers a better random load
performance than SMRDB due to the restrictions of SMRDB’s
two-level construction and the key range overlaps in the same
level, which increase the data size for a compaction and has
limited effect to improve the random load performance. In
addition, as the database grows larger the weakness of the
two-level LSM-tree becomes more evident [8]. In general, our
LWC-smr achieves significant advantages because of the light-
weight compaction in the LWC-tree and the absence of file
system overheads between DTables in the LSM-tree and bands
in SMR devices. Moreover, the property of ensured sequential
writes of the LWC-smr contributes to its leading position in
the comparisons.

Figure 11(b) compares the sequential load throughput of
the four key-value store systems. From this figure, we can
obtain three conclusions. First, no matter on which key-
value system, the corresponding sequential load performance
is much better than the random load performance, which can
be mainly attributed to the compactions caused by random
loading. Second, LWC-smr and SMRDB both deliver compa-
rable performance as LDB-hdd, which is due to the absence
of compactions. Third, LDB-smr is about 3.7× inferior to the
other three systems. This is because of the embedded indi-
rection of drive managed SMR drives and the non-sequential
Ext4 file system [27], [28].

2) Read Performance: This experiment is to evaluate the
read performance including sequential read and uniformly
distributed random read by looking up 100K entries against a
100GB random load database. Figure 12 presents the sequen-
tial and random read performance. We make three conclusions
from the results of sequential lookup. First, LWC-smr obtains
the best performance compared to the other counterparts
due to the big DTable and the sequential data layout on
the SMR drive. Second, LWC-smr improves the sequential
read performance to 1.31× that of SMRDB since LWC-smr
has no overlapped tables in the same level. Third, LDB-smr
outperforms LDB-hdd in sequential read due to the internal
cache of drive-managed SMR drives. The major difference
between the random lookup and sequential read is that LDB-
smr suffers from degraded performance compared to the other
three key-value stores, as the internal cache of drive-managed
SMR has limited efficiency for random read. In addition, both
LWC-smr and SMRDB exhibit a comparable random read
performance, meaning that if designed properly one can expect

Fig. 13. The microscopic view of compactions. This figure shows the
compactions resulting from randomly loading a 40GB database to the four
KV systems. The x-axis denotes the the number of compactions and the y-axis
denotes the data size in each compaction.
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Fig. 14. The overall compaction time. This figure shows the overall
consumed time on compactions for randomly loading a 40GB database to
four KV systems. The y-axis unit is the time in seconds.

SMR devices to deliver the same level of performance as
HDDs while enjoying their capacity benefits.

3) Performance of Light-weight Compaction: The com-
pactions in key-value systems consume a large percentage
of device bandwidth [8], [9], which influences the overall
performance by blocking foreground requests. Therefore, how
efficiently compactions can be conducted seriously affects the
performance. To microscopically investigate the compaction
behaviors, we randomly load a 40GB database and record the
number of compactions, data size of each compaction, and
the total time taken to complete the compactions of the four
key-value systems.

Figure 13 depicts the number of compactions and the
corresponding written data size. From this figure, we obtain a
primary observation that LDB-smr and LDB-hdd have much
more compactions than SMRDB and LWC-smr, while SMRD-
B has larger compaction size relative to other counterparts.
That is to say, although SMRDB reduces the compactions
of LSM-tree, it however incurs larger compaction size un-
fortunately. The reason is because SMRDB allows key range
to overlap in Level L0 and Level L1, and a compaction in
SMRDB involves all the tables with overlapped key ranges.
By contrast, LWC-smr has smaller compaction data size (about
45× less than the size of SMRDB) and fewer compaction
numbers, resulting in LWC-smr delivering a better compaction
efficiency.
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Fig. 15. I/O amplification Figure (a) and (b) shows the read or write
amplification from KV stores (RA/WA) and the read or write amplification
from SMR drives (ARA/AWA). Figure (c) and (d) shows multiplicative read
or write amplification (MRA/MWA) of LWC-smr and LDB-smr. The y-axis
denotes the read/write amplification and the x-axis denotes different SMR
band sizes.

The overall time spent on compactions fully reflects the
influence of data size and the number of compactions of
different KV stores. Figure 14 gives the corresponding total
compaction time for randomly loading a 40GB database of
four KV systems. From this figure, we can draw a conclusion
that the light-weight compaction in LWC-smr gets the highest
efficiency, which is 7×, 3.75× and 9.61× faster than that of
LDB-smr, LDB-hdd and SMRDB respectively, explaining the
performance advantages observed in preceding sections.

4) I/O Amplification: The I/O amplification of a key-
value system on SMR drives is generated by compaction and
multiplied by the auxiliary amplification from SMR drives, as
discussed in Section IV-A. In this section, we evaluate the am-
plification(RA/WA), auxiliary amplification(ARA/AWA) and
the multiplicative amplification(MRA/MWA) respectively to
explore why LWC-smr improves the performance over the
LSM-tree based key-value store.

Figure 15(a) and Figure 15(b) present the read/write ampli-
fications of trees and auxiliary amplification of SMR drives
in both LWC-smr and LDB-smr with different band sizes.
From these figure, we can draw two conclusions. First, the
LWC-tree outperforms the LSM-tree by reducing the read and
write amplification up to 5.49× and 6.32× respectively on
average. This is because the light-weight compaction in LWC-
tree reduces the total compaction size for loading a database.
Second, in the device level the LWC-smr outperforms LDB-
smr by eliminating AWA and ARA. This is because LWC-
smr observes the random write constraint of SMR and never
overlaps valid data on disk. In addition, we make an obser-
vation that the auxiliary amplification of LDB-smr increases
with the increase of band size, while LWC-smr does not. For
example, the AWA of LDB-smr increases from 2.59 to 7.77,
while the AWA of LWC-smr remains around 1.14. Figure 15(c)
and Figure 15(d) depict the multiplicative amplifications with
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Fig. 16. YCSB Macro-benchmark Performance. This figure shows
the performance normalized to LDB-hdd. The x-axis represents different
workloads, the y-axis denotes the normalized values, and the number on each
bar shows the actual throughput (K ops/s). Workload A is composed with
50% reads and 50% updates, Workload-B has 95% reads and 5% updates,
and Workload-C includes 100% reads. Workload-D has 95% reads and 5%
insert latest keys. Workload-E has 95% range queries and 5% insert new keys,
Workload-F includes 50% reads and 50% RMW.

different band sizes. MWA is the overall write amplification
caused by WA and AWA, so as MRA. This figure shows
that LWC-smr mitigates the overall amplification by dozens of
times, which validates the effectiveness of the design strategies
of LWC-smr.

5) Macro-Benchmark: The YCSB benchmark [29] provides
a framework and a set of seven workloads applicable for
evaluating the performance of key-value stores. We perform
YCSB benchmarking as a supplement to verify the perfor-
mance advantages of the LWC-smr. We load 100GB database
first, and then test the performance in different workloads with
100k entries. Figure 16 compares the throughput of the four
key-value systems. The y-axis in the figure gives the nor-
malized comparison results relative to LDB-hdd. The primary
conclusion is that LWC-smr outperforms other systems in all
workloads, especially for random load. This is because LWC-
smr obtains more advantages for random load than read, which
accords with the experiments in preceding sections.

B. Sensitivity Study

In this section, we perform a sensitivity study on several
parameters, including division number, value size, storage
medium. For this sensitivity study, we use the micro bench-
marks distributed with LevelDB code and set the database size
to be 100GB.

1) Division Numbers: To examine the impacts of division
number and pick an optimal division number for LWC-smr,
we conduct experiments with division number ranging from 2
to 16. Figure 17 shows the random write throughput and the
corresponding space usage efficiency of LWC-smr. The space
usage efficiency is defined as the ratio between the required
storage space of the key-value store and the actually used disk
space. From this figure, we can make two observations. First,
a small division number helps to maintain a high space usage
efficiency but with quite bad random write performance for
as it incurs less frequent divisions. On the contrary, a large
division number hurts the space usage efficiency badly but
delivers a better random write performance. In conclusion, 12
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Fig. 18. Random write throughput in varying value sizes. This figure
shows that the LWC-tree exhibits advantages in all the examined value sizes
and the bigger the value size is, the more prominent the advantage is.

is a relative good choice for the division number of LWC-
smr, as it achieves a good trade-off point between space usage
efficiency and random write performance.

2) Value Size: To examine the impacts of value size, we
perform another set of 100GB random write with the value
size of 64B, 256B, 512B, 1KB, 4KB, 16KB and 64KB,
respectively. Figure 18 shows the random write throughput
of three key-value store systems. Generally, the throughput of
LWC-smr, LDB-hdd and LDB-smr increase with the increase
of value size. Moreover, the relative improvement of LWC-
smr increases with the value size as well. For example, the
random write throughput of LWC-smr increases from 1.77×
to 5.51× that of LDB-hdd when the value size increases from
64B to 64KB. The phenomenon results from the fact that the
LWC-tree operates on metadata while the LSM-tree involves
data itself and therefore the LWC-tree merges less metadata
with increased value size.

3) Storage Medium (HDD,SSD): To explore the applicabil-
ity of the LWC-tree in different storage mediums, besides of
the experiments of LWC-stores on an SMR device we have
done so far, we then evaluate LWC-stores on HDDs and SSDs.
We report the performance comparisons in the following two
configurations: (1) LevelDB on conventional HDD (LDB-
hdd), where the original LevelDB is run on a conventional
HDD; and (2) LWC-store on conventional HDD (LWC-hdd),
where the LWC-store is run on top of a conventional HDD
without a file system in between. Its performance difference
relative to LDB-hdd reflects the applicability of our design
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Fig. 19. Performance comparison in HDD and SSD. The x-axis denotes the
different performance measurements including: random write, sequential read,
and random read. The y-axis denotes the normalized performance relative to
LDB-HDD. The number on top of each bar is the actual performance value.

ideas to HDDs. Figure 19(a) compares the LevelDB and LWC-
store on an HDD in terms of the performance of random
write, random read, and sequence read. From this figure, we
can make three observations. First, LWC-hdd improves the
random load performance to 5.05 times that of LDB-hdd. This
is attributed to the efficient light-weight compaction which
mitigates the I/O amplification in the LWC-tree significantly.
Second, LWC-hdd improves the sequential read performance
to 2.01 times that of LDB-hdd for LWC-hdd’s sequential
on-disk data layout. Third, LWC-hdd delivers a comparable
random read performance as LDB-hdd. Figure 19(b) gives a
similar comparison but on the SSD storage medium. On the
high level, we can make similar observations as it is with the
HDD medium in Figure 19(a). However, a major difference is
that, the absolute performance improvement ratio in an SSD
is slightly smaller than that in an HDD, which is attributed
to the policy of LWC-store that is designed to improve the
throughput by reducing amplification. Since the bandwidth
of HDD is far less than that of SSD, the impact of write
amplification under SSD is not as serious as that under HDD
and SMR drives, limiting the potential improvement of the
LWC-store on an SSD.

VI. RELATED WORK

Key-value stores have recently become a hot research
interest as many data center applications rely on key-value
stores. Various key-value stores have been proposed for spe-
cific storage medium. Wisckey [1] is a flash optimized key-
value store. Its main idea is to separate keys from values
to reduce I/O amplification by mitigating the migration of
values. NVMKV [7] is an FTL-aware light weight KV store
which leverages native FTL capabilities to provide a high
performance. SkimpyStash [10] is RAM space skimpy key-
value store on flash-based storage, which moves a part of
the table to the SSD using a linear chaining. FlashStore [30]
is a high throughput persistent key-value store using cuckoo
hashing. LOCS [31] is an LSM-tree based KV store on SSD,
which exposes its internal flash channels to applications to
better work with the LSM-tree based KV store. SILT [11]
combines the log-structure, hash-table, and sorted-table lay-
outs to provide a memory-efficient KV store. Memcached [3]
and Redis [32] are the popular memory KV implementations.
GD-Wheel [33] provides a cost-aware replacement policy
for memory based KV stores, which takes access recency



and computation cost into account. It is granted that a full
understanding of storage devices (such as SSD [34]–[38] and
SMR [26], [28], [39]) contribute to a better design of device
specific key-value stores. We optimize the key-value stores for
SMR drives which are being considered to be widely deployed
due to its capacity advantages.

Other researches are dedicated to develop key-value stores
for specific scenarios. zExpander [40] dynamically partitions
the cache into two parts for high memory efficiency and low
miss ratio, respectively, by compressing one of the partitions.
ForestDB [41] addresses the performance degradation of large
keys by employing a new hybrid index scheme. LSM-trie [8]
constructs a prefix tree to store data in a hierarchical structure
which helps to reduce the metadata and the write amplification.
bLSM [13] proposes a “spring and gear” merge scheduler,
which bounds write latency and provides high read and scan
performance. Atlas [5] is a key-value storage system for
cloud data, which stores keys and values on different hard
drives. Among these Works, bLSM, LSM-trie, Wisckey, VT-
tree, Altas and LOCS are optimized for traditional LSM-tree
based key-value stores.

VII. CONCLUSION

The constantly occurring compactions in the LSM-tree
based key-value stores seriously damage the overall perfor-
mance. Running KV stores on different storage devices can
lead to different degrees of influence, especially on SMR
drives with severe multiplicative amplification. In this paper,
we propose LWC-tree with light-weight compaction to reduce
the amplification and accelerate the compaction procedure by
operating the metadata during compactions. we design and
implement three high performance KV store systems for SMR
drives, HDD and SSD, respectively. Extensive experiments
have demonstrated that the LWC-store significantly improves
random write throughput compared with other schemes, in-
cluding SMRDB and LevelDB, by up to 5 times. Furthermore,
we have also experimentally demonstrated that the perfor-
mance improvement remains across different storage mediums,
value sizes and access patterns (i.e., uniform, Zipf and latest
key distribution).
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