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ABSTRACT

DD BOOST™ is an API to support distributed deduplication,
with clients performing chunking and fingerprinting and a
deduplicating storage server determining the uniqueness of
each chunk. By suppressing the transmission of duplicates, DD
BOOST reduces network load; by pushing the pre-processing to
clients, the server offloads computation and reduces memory
requirements. With virtual synthetic writes that explicitly
direct a server to interleave existing data with new data,
performance can be improved still further. The net result is a
dramatic increase in throughput compared to writing content
to the server via NFS, with a median reduction in network
traffic of 90-99%. This paper reports empirical results from
customer deployments of DD BOOST over several years, as
well as lab benchmarks.

I. INTRODUCTION

Deduplication is a common technique in the storage indus-
try, particularly in the context of file backup [1]. Deduplicated
storage permits content that appears multiple times to refer to a
single instance of the repeated content. This saves space within
the storage system, especially when the same content is written
many times (as backups are), but there are other ramifications
from this transformation. For example, deduplication can cause
poor locality when reconstructing the original data, because
a file consists of references to individual unique data units
that have been written over a prolonged interval [2], [3]. The
degraded locality can impact deduplication write performance
as well when the index of unique chunks is dispersed on disk.

In a sense, deduplicated storage was an outgrowth of earlier
work on deduplicated network transfers. Rsync would have
the sender compute weak and strong hashes of blocks in a
file and the receiver compute a rolling checksum to see if
the weak hash matched over any contiguous region of that
size; if the strong hashes also matched, the block could be
copied from the receiver rather than sent on the network [4].
Spring and Wetherall devised a mechanism to cache recently
transferred data and replace repeated instances of previous
network transfers with pointers into the recent history [5],
and the Low-Bandwidth File System (LBFS) used a similar
technique to avoid transferring file blocks already known to the
recipient [6]. Content would be broken into chunks based on
characteristics of the data, then fingerprinted with a collision-
resistant hash to uniquely identify each chunk. LBFS did not
deduplicate data at the storage layer, because its emphasis
was on optimizing network transfers rather than disk space.

Venti [7] was the first storage system to deduplicate at a level
smaller than a file, using hashes of fixed-sized file blocks.1

Commercial deduplication systems focused for years on
backup workloads, because they were intended to be drop-
in replacements for tape-based backup systems. With tapes,
the lack of random access meant that unless one periodically
copied the entire contents of the file system onto a consolidated
set of tapes, a full restore could require reading an arbitrary
number of past tapes; hence it led to the model of periodic full
backups followed by a small number of incremental backups
until the next full [8]. By moving backups to magnetic disk
but deduplicating repeated content, disk-based backup systems
could provide better performance and ease of management
than tape at comparable cost [9]. Variable-sized chunks were
more effective than fixed-sized file blocks, because content
within a backup stream was likely to shift.

However, the full content would be sent over the network to
the storage server even if it would be identified as duplicates
of content that is already stored. In addition, the more clients
sending backups to the storage server, the higher the load
on the server (processing, for chunking and fingerprinting the
content streams; DRAM and NVRAM for buffering content
as it’s processed).

Our DD BOOST library enables applications, such as backup
software, to perform much of the work of deduplicating
storage on clients rather than Dell EMC Data Domain™
servers [10]. Rather than simply mounting the deduplicating
storage via a standard NAS protocol such as NFS, a DD
BOOST-enabled client writes data through a library that buffers
content, performs content-defined chunking, fingerprints the
chunks, and sends just the fingerprints to the server. The server
identifies which chunks are not already stored, if any, and
the client library compresses and transfers the new content.
Thus network loads are reduced to the extent that the data
is deduplicated and compressed, and the processing to chunk
and fingerprint duplicates is left to the clients. DD BOOST,
which has been deployed commercially since 2010, has been
found to decrease network traffic by about one order of
magnitude. Shifting the initial fingerprint computation to the
clients allows the server to support additional clients with the
same resources: in lab experiments, we find the peak one-
minute CPU utilization on the server is also reduced by an
order of magnitude in DD BOOST compared to NFS.

Virtual synthetic writes are another option for backup

1Typically the distinction between blocks and chunks is whether they are
fixed in size or determined by the content [1].



clients. They mix writes of new data with directives to the
backup server to copy existing data by reference; i.e., rather
than identifying and removing duplicate data, they instantiate
duplicates through low-overhead operations. For instance, an
update to 1GB of a 1TB file system might result in writing
1GB but creating a new “full backup” on the server with a
new copy of the other 999GB. (See §II-B for details.) This
can result in orders of magnitude reduction of the data that
would be necessary for a full backup to be transferred in its
entirety.

In the rest of this paper, we provide additional background
on DD BOOST (§II), describe the architecture of DD BOOST
(§III) , evaluate the system through customer telemetry and lab
tests (§IV), and then discuss lessons learned (§V) and related
work (§VI) before concluding.

II. BACKGROUND

A. History

DD BOOST originated from an earlier library based on the
Symantec OpenStorage (OST) protocol [11]. OST was created
to allow backup software systems such as Symantec Net-
Backup to interoperate with purpose-built backup appliances
(PBBAs), such as Data Domain systems, over a standard API.
By providing an implementation of OST, our PBBA could be
used by any application that used the OST APIs. The original
OST-based library, introduced in 2007, provided traditional
server-based deduplication of the application’s data. Data
Domain extended it in 2009 to include client-side chunking
and fingerprinting. Similar to LBFS [6], the client sends the
fingerprints to the PBBA, which looks up the fingerprints to
determine which chunks the client must send to the server.
(Unlike LBFS, the file is stored in a deduplicated fashion on
the server as well.) By building this distributed deduplication
capability into the OST implementation, any application using
OST benefits from distributed deduplication.

In 2010 the OST-based approach was generalized into a
client library available to all applications. Defining the DD
BOOST API offered a number of additional benefits: features
not supported by OST could be made available to applications
(such as asynchronous file replication for duplicating a backup
to a second site), API call overhead could be reduced by
calling DD BOOST APIs directly rather than via OST APIs;
and the APIs could be more general and less backup-specific,
hence better-suited to applications other than just backup
software.

B. Usage Models

The way in which PBBAs are used has changed dramatically
over time [12]. Here we describe some of the key usage
models.

Fulls and incrementals. This is the original mode and is
still used by many customers. A system writes all data (typi-
cally weekly), then periodically (daily) writes all files changed
since the last full backup [8]. (There are other approaches, such
as having many levels and writing new files changed since the
last backup of the next higher level.) Generally, the backup

software uses the modification timestamp of files to determine
what to write, so any change to a file results in the entire file
being backed up again.

A common model for this, such as the one used by Dell
EMC’s Networker™ backup software, aggregates all files in a
backup into a single larger file. The format of the aggregate
is similar to the well-known Unix tar file. Figure 1 provides
a simplified example of this usage model, for both (a) full
and (b) incremental backups. For the full backup, the client
1© writes a large backup file containing files f1..fn. 2© The
entire file is sent to the server. 3© The server chunks and
fingerprints the file. 4© The server saves all unique chunks in
compressed form and adds their fingerprints to its index. The
file is represented as a recipe consisting of its fingerprints.

In Figure 1(b), file f2 is extended and part of file f3 is
overwritten, resulting in 1© an incremental file containing both
f2 and f3 being written. 2© The entire incremental backup file
is sent to the PBBA for deduplication. The PBBA 3© performs
the chunking and computes fingerprints. Finally, 4© it looks
up the fingerprints, then compresses and stores those chunks
that do not deduplicate.

With DD BOOST, the first full backup is much like the
process in Figure 1(a), though any chunks that repeat earlier
content in the same backup or other previously stored files
can be transferred by fingerprint rather than the full content.
Figure 2 shows an incremental backup using DD BOOST. As
with the NFS example, files f2 and f3 are modified. 1© The
client backup application writes the incremental backup into
DD BOOST. 2© DD BOOST buffers the data and processes each
buffer by chunking the data and fingerprinting each chunk.
3© DD BOOST sends only the fingerprints and lengths of each

chunk in the buffer to the PBBA. 4© The PBBA looks up each
fingerprint and sends the client a list of those chunks not found.
5© DD BOOST receives that list and 6© packs the requested

chunks into compression regions. 7© The PBBA saves the new
chunks and adds their fingerprints to its index.

Thus, with DD BOOST, unchanged parts of a file within an
incremental backup would be fingerprinted but not transferred
over the network. The full backup would benefit much more,
since many files would not be modified at all. In this example,
just two chunks are sent in their entirety to create the incre-
mental backup, with other chunks being sent by reference.

Virtual Synthetic backups. One of the biggest changes
over time has been the use of incremental strategies by backup
applications. After some number of incremental backups, the
application may want to create an up-to-date full backup
by combining the incremental backups made since the last
complete backup. The full backup provides the application
an ability to consolidate the content, so a future restore can
operate on the unified backup file rather than starting from
an old “full” backup followed by a large number of updates.
Without this consolidation, each update must be processed
sequentially and may require obsolete data to be read and then
later overwritten.

In fact, some applications choose to synthesize a new full
backup after every update. This allows the restore functionality



(a) First full backup. 1© Individual files f1..fn
are aggregated into a single stream of data and
2© transferred to the server. The top of the figure

shows a blown-up representation of part of this
stream, as it is 3© chunked and fingerprinted on
the PBBA. Chunks in this example are variable-
sized, averaging 8K with minimum and maxi-
mum sizes of 4K and 12K, respectively. 4© The
server packs together and compresses chunks,
adding their fingerprints to its index.

(b) Incremental backup. 1© The backup applica-
tion writes an aggregated backup file consisting
of updated files. Here, f2 has had data appended
and the first part of f3 has been overwritten. 2©
The entirety of f2 and f3 are sent to the PBBA,
which 3© chunks and fingerprints the data. In this
example, C1, C4, and C5 are unchanged, while
the new C6 and C7 are saved. The incremen-
tal file, with recipe <C1, C6, C7, C4, C5>, is
added to the PBBA file system.

Fig. 1. Before DD BOOST, a client would send backups to the PBBA using NFS. Not only (a) the first full backup but (b) all subsequent incremental and
full backups would be transferred in their entirety. All fingerprinting, deduplication, and compression would be done on the PBBA.



Fig. 2. With DD BOOST, after the full backup is written to the PBBA, subsequent incremental backups send a subset of the files. Some chunks in the
incremental may be duplicates, which the PBBA will identify as being unnecessary to transmit. The DD BOOST client library then packs the new chunks into
groups of approximately 128 KB before compressing them and sending them to the PBBA.

to ignore the existence of incremental backups, by always
operating on a single file representing a point-in-time view
of the system. The specifics of what gets written varies by
application. A traditional Unix file system backup would
generally use modification timestamps, so it might write parts
of a file that have not actually changed (similar to the DD
BOOST incremental backup). For this application, the real
difference is that a full backup is created by reference to the
previous full and subsequent updates, rather than by writing
the data as a new file. A database or virtual machine backup
may use logs or change-block tracking [13], respectively, to
know precisely what has changed. Since these applications
tend to write only data that they know have changed rather
than all data when performing an incremental backup, the
amount of data written on the client is reduced. Updating
unchanged data requires just the explicit reference to large
sequences of the previous version rather than per-chunk index
lookups, reducing the load on both the client and the PBBA.

What is written will not deduplicate as well as a full backup
would, because the unchanged data is not repeatedly written.
When the application does want to produce a new full backup,
most if not all of the data needed already exists on the server.
By providing synthetic writes (also called virtual writes), DD
BOOST is able to efficiently support these incremental merge
strategies. We refer to backups utilizing these writes as Virtual
Synthetic (VS) backups [10].

A synthetic write sends no data from the client to the PBBA.
Instead of providing data to be written to a file on the PBBA,

a synthetic write provides a list of data regions already on
the PBBA to be written to the new file. These data regions
are simply portions of existing files. Thus a new complete
backup file is created from a previous backup file and one
or more incremental backup files, without first reading the
data. Synthetic writes can be intermingled with normal writes
if there is additional client-side data that has not previously
been written to the server.

While the incrementals do not deduplicate well (somewhat
limiting the benefits of distributing deduplication to the client),
synthetic writes have the opposite effect. They are efficient,
so systems tend to use them liberally, generating a “full”
backup after hours or days rather than weekly. This drives up
deduplication on the PBBA by frequently creating new files
with the same underlying content, in turn having surprising
implications on other activity on the PBBA. For instance, dra-
matic increases in deduplication significantly impacted Data
Domain’s garbage collection performance, leading to a new
design [14].

Figure 3 provides an example of the VS approach, anal-
ogous to the updates using NFS or DD BOOST. 1© The first
full backup is sent the same way as with DD BOOST. (Some
duplicates may be identified in this process, but usually not
many.) Then, parts of f2 and f3 are updated. The next backup
combines 2© references to unchanged files with 3© modified
files (sent using the same DD BOOST protocol). Thus, instead
of having both a full and incremental backup, a new file is
synthesized to represent the current state of the system. In this



Fig. 3. VS backups start with a full backup, similar to NFS or DD BOOST. After this, they can send incremental updates indefinitely, combining regions
from the full backup to create a new full backup on the PBBA. Here, the client uses special DD BOOST VS commands to direct the PBBA to copy files f1
and f4..fn by reference. It writes files f2 and f3 using standard DD BOOST operations that perform client-side deduplication. The gray areas represent chunks
that are sent from the client, while the dashed arrows point at unfilled areas that are deduplicated via DD BOOST.

figure, the shaded areas in f2 and f3 are new chunks that are
transferred to the PBBA, while the white parts of these files are
chunks that match the previous backup and are deduplicated.

Finally, it is important to note that these models are not
exclusive to the DD BOOST API. For instance, OST has
“optimized synthetic backups,” which direct the storage server
to create a new backup from the specified data [11]. This
is compared to regular “synthetic backups” that would be
constructed on a separate media server, requiring data transfer
from the storage server to the media server and back.

III. ARCHITECTURE

This section presents the architecture and APIs for DD
BOOST.

A. DD BOOST Functions

DD BOOST currently supports about 100 functions:
Library initialization / utility routines (31 calls)

These initialize DD BOOST and allow setting/getting various
library and server parameters, managing errors, connecting
to the server, checksums, etc.

Standard file system calls (34 calls) These support basic file
and directory operations such as open, close, read, write,
truncate, sync, get attributes, etc.

Additional file capabilities (17 calls) These include APIs to
create snapshots, clone or copy a file or directory, perform
synthetic / virtual writes, report file statistics, etc.

Fig. 4. DD BOOST architectural overview.

Special features (12 calls) These APIs provide custom fea-
tures such as comparing all or parts of two files, creating
and managing access control tokens, and performing file
replication.

Figure 4 depicts how DD BOOST interacts with applications



and Data Domain PBBAs.2 The DD BOOST library sits in the
middle, with some applications using it directly and others
(NetBackup, BackupExec, and Oracle RMAN) going through
specialized APIs that have been modified to use DD BOOST. It
manages interactions with the PBBA via RPCs sent over either
TCP or FibreChannel (FC). (RPCs sent over FC are received as
SCSI commands by the SCSI driver on the server and passed to
a FC daemon, which extracts the embedded RPC and forwards
it on to the NFS daemon.) Some simple DD BOOST calls (e.g,
library initialization) are handled entirely in the DD BOOST
library. Other operations result in one or more RPCs to the
server. For example, a write call may only buffer the user data
until there is sufficient data for chunking and fingerprinting. If
sufficient data is provided or has accumulated, the write call
will result in one or more ”send references” RPCs sending the
list of chunks to the server, one or more ”receive references”
RPCs retrieving the list of chunks that need to be sent to
the server, and then a number of ”send data” RPCs to send
those chunks to the server. Additionally, the first write of a file
will send an open RPC, as the file is not opened on the server
until it is actually written in order to improve performance and
conserve server resources. If a client uses excessive resources,
for instance by opening too many parallel connections, it will
be throttled by the PBBA.

To guard against accidental (or intentional) misrepresenta-
tion of the fingerprint of a chunk [15], the PBBA recomputes
fingerprints before storing them locally. While this adds some
computational load, the effort is only expended on new data.

B. Nonsequential I/O

The DD BOOST API was originally intended for backing up
data to a PBBA using an interface derived from the days of
tape backup. Whether a file is an aggregate of many individual
files (similar to a “tar” file), the concatenation of raw disk
blocks, or a single file copied directly from the client to the
PBBA, it would be written sequentially from start to finish.

Thus DD BOOST was optimized for writing files in their
entirety, starting at offset zero, with no change in offset or
overwriting of existing content. Random writes were sup-
ported, but due to the difficulty of chunking data when using
variable size chunks, random writes would cause deduplication
to revert to the server using OST-level calls such as NFS
writes. Read performance was less important than write per-
formance, since backups (writing data) were done frequently
but restores (reading data) were rare.

Over time users increasingly wanted to use the PBBA as
a more general file server or in other modes such as change-
block tracking [16]; thus, supporting nonsequential I/O became
more important. Nonsequential reads are easily supported,
since the metadata for a deduplicated file can be used to map
an offset to a specific chunk, but the system must be careful
not to allow readahead to adversely impact performance. Write
performance is still the greatest priority, however: to map

2Currently, DD BOOST works only with Data Domain systems. It could be
standardized similar to OST to work with other PBBAs.
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Fig. 5. DD BOOST and VS were introduced in 2010 and 2013, respectively;
both took time to attain a sizable fraction of deployed Data Domain systems.

efficiently from an offset to a chunk rather than the other
way around, fixed-sized chunking has advantages. For some
workloads, fixed chunks moderately degrade deduplication due
to shifting content [17], [18], but fixing the unit of dedupli-
cation is useful for maintaining acceptable write performance
for arbitrary offsets. This is especially true for workloads such
as VM images that always write full blocks that are aligned
to some blocksize. The choice of variable-sized or fixed-sized
chunking can be specified on a per-file basis.

IV. EVALUATION

We divide our evaluation into an overview of customer use
and lab benchmarks to compare protocols head-to-head. We
answer the following questions:
• How many systems use DD BOOST and VS backups?
• How much bandwidth is saved via DD BOOST?
• How do DD BOOST and NFS scale under load when writing

backups? How much does the cumulative change in the
backups affect performance? How much does VS help?

• How do processor loads for DD BOOST compare to NFS?

A. Telemetry

As DD BOOST was first released in 2010, we analyzed daily
reports from customer systems to ascertain the rate of adoption
and the bandwidth reductions achieved. Figure 5 shows that the
fraction of systems using DD BOOST has increased steadily,3

as has those using VS backups.
Systems using VS tend to have much higher deduplication

rates than those without, and the writes performed on the
PBBA via a synthetic write directive are counted as pre-
compression writes. This results in many systems having
bandwidth improvement rates that round to 100%.

Therefore, we evaluate the bandwidth savings by dividing
PBBAs depending on their use of VS. Figure 6(a) shows
box-and-whisker plots, by year, for systems with no VS. (We
start in 2013 because before then there are few systems using

3It starts with about 10% of systems having DD BOOST enabled as of the
start of 2010, as this includes those using the earlier OST version.
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Fig. 6. Bandwidth savings from DD BOOST, grouped by year, and segregated by use of VS backups.

DD BOOST and no systems using VS.) We see that even the
systems that do not use VS see median savings over 90%,
compared to a median of 99% savings for systems with VS.
Figure 6(b) shows the corresponding plots when VS is used.

The box plots for the non-VS systems are remarkably
similar across years, and each shows a large variance from
the median. We have not analyzed these metrics enough to
know the cause behind systems saving as little as 60–70% of
bandwidth, but an educated guess might be that they write
changed blocks but do not write periodic full backups that
would deduplicate well on the clients. As they do not use
VS, these systems aren’t getting the “credit” for performing
server-side operations without requiring network I/O.

The VS systems show the median and bottom quartile rising
steadily: this may indicate that the increase in adoption rates
shown in Figure 5 also results in more widespread use of
VS on each system, or even that systems that started using
VS sometime during the year had less overall benefits. In the
steady state (after the first year), even the outliers at the low
range are saving 90% of network traffic.

The box plots for Figure 5 are Tukey box plots, in that they
do not show data that were outliers via the interquartile (IQR)
method. For systems with no VS, the percentage of data as
outliers ranged from 15-16%, and the median percent savings
of the outliers increased from 26-32%. For systems with VS,
the percentage of outliers decreased from 10.2% to 7.5% from
2013–2016, while the median percent savings of the outliers
increased from 72% to 82%.

B. Lab Experiments

We used an internal load generator [14], [19] to evaluate
DD BOOST in comparison to a direct NFS mount to the
PBBA. The generator creates N parallel streams, each with
its own “lineage.” Within a lineage, one version of a file has a
predetermined amount of overlap with the previous file, which
is transformed through a series of moves, deletions, and inser-
tions: approximately 1% is added and deleted with each new
generation, with 3% of data shuffled internally. Compression
within each file is fixed at 2:1 for these experiments, through

a combination of uncompressible and extremely compressible
data. The changes are deterministic, so adjacent generations
within a lineage will contain largely the same data; across
lineages, no duplication exists.

While previous work using this load generator has applied
a uniform distribution to the choice of locations for update
operations [14], [19], experience with VS backups led to a
more detailed examination of change rates in user backups.
For our experiments, we use a normal distribution, which
concentrates updates more frequently in a smaller range of
data. This results in larger sequences that are more conducive
to stitching together via the VS protocol, and the parameters
have been validated against sample customer datasets.

Briefly, the load generator works as follows. In these tests,
we want to compare the performance of writing and reading
files with good locality and those with poorer locality. The
initial file, which we call generation 0 (“gen-0”), is written
completely sequentially. Because it does not deduplicate with
any existing content, it should be packed into the minimum
number of storage containers needed to hold the compressed
data in the file. The first change to the file is called generation
1; we also refer to this as a low-generation file. It has some
fragmentation as many chunks refer to those from generation
0 while some are newly added or modified. High-generation
files have been evolved through many iterations of changes
to content. Thus a high-gen write has gone through many
more rounds of transformation and will deduplicate less. In
addition, each generation written to a PBBA results in more
fragmentation, impacting read and write performance [2], [3].

Once the first generation is written, each generation is
transformed using a set of rules and distributions derived
from customer datasets. The file is modified by a sequence
of additions, deletions, and modifications over clusters of data.
Based on analysis of backup datasets, we default to an average
of one cluster of added data, one cluster of deleted data, and
two clusters of modified data per gigabyte. The location of the
center of the first update is picked randomly, and the location
of each update after the first, relative to the previous update, is
based on a distribution: half the time the update is within 1%



of the entire file size, relative to the previous cluster, with a
mean distance of 8% of the file size and a standard deviation
of 18%. The σ value for the normal distribution, i.e., the range
of most updates from the center of the cluster, is 0.25% of the
file size for modifications, 0.45% for deletions, and 0.9% for
additions.

We iterate through all generations of a lineage, but we
only write the following versions to the PBBA: 0 (the initial
file), 1, then every fifth version 5, 10, ..., 40 before timing the
writes to high-gen data, generation 41. We compare the write
performance and read performance, respectively, for NFS and
DD BOOST on the gen-0, low-gen, and high-gen versions.

To compare the different protocols directly, we used an
EMC Data Domain DD2500 server (8 cores@2.20GHz,
64GB DRAM, 3 shelves of disks, 2 10GbE ports). We
have four identical clients running CentOS 6.5, with
12 cores@2.67GHz and 32 GB DRAM. Two clients share
a given 10GbE port, and except for the single-stream case,
operate in parallel on N

4 20 GB files apiece. All measurements
are repeated three times and error bars are shown.

Figure 7(a) shows effective network bandwidth for gen-
0, low-gen, and high-gen writes. (This is the data per unit
time written by a client; since the data for each generation is
fixed, it is inversely proportional to how quickly the operation
completes.) The x-axis shows the number of parallel streams,
ranging from 1–64. When writing gen-0, DD BOOST and
NFS are nearly identical, gaining a slight improvement when
moving from 1 stream to 8 streams but not improving much
beyond that. The lines for gen-0 DD BOOST and NFS nearly
overlap at this scale, though DD BOOST transfers only half
the data due to compression; DD BOOST’s relative effective
bandwidth is only 40% of NFS with one stream but 10–25%
better with parallel streams. Once the data is highly duplicated,
NFS shows little benefit from increased streams past the first
version, while DD BOOST improves with offered load.

DD BOOST gets similar bandwidth for low-gen and high-gen
writes, though the error bars highlight greater inconsistency
when reaching 64 streams. High-gen scales better with more
parallel streams, perhaps due to dataset size. In the cases of
low-gen and high-gen, DD BOOST transfers only about 5% of
the data NFS writes to the PBBA.

We also measured the CPU utilization of the clients and
PBBA during the experiments. For gen-0, where the clients
must write all data to the PBBA, the peak one-minute uti-
lization on each client is under 0.5% for both DD BOOST and
NFS, but NFS is roughly 1

2 that of DD BOOST. Since both are
so low, this distinction is unimportant, but more importantly
the utilization for DD BOOST falls below that of NFS for
the low-gen and high-gen runs. This indicates the benefit of
not transmitting duplicates compensates for the overhead of
chunking and fingerprinting.

Figure 7(b) shows the bandwidth for read performance—
something for which PBBAs are not optimized. With low
parallelism, both protocols perform similarly, though NFS has
a slight advantage. There is greater differentiation at higher
stream counts, but they remain close as long as there has

been some fragmentation. NFS does consistently outperform
DD BOOST for reads of the gen-0 file.

Finally, we show the benefit of VS backups in Figure 7(c).
It shows the bandwidth, in terms of user writes, for standard
DD BOOST and DD BOOST with VS, on the low-gen and
high-gen datasets. (No VS backup is possible for gen-0.) The
standard DD BOOST curves are the same as in Figure 7(a); by
comparison, VS consistently outperforms regular DD BOOST,
though DD BOOST closes the gap by scaling better with higher
numbers of parallel streams.

V. LESSONS LEARNED

DD BOOST has been a victim of its own success. As
customers used DD BOOST for traditional backups and found
it helpful, they wanted to do more with it. This led to uses
that the original design did not consider and did not support
well if at all. Some of the lessons and challenges are:

In-line transformations. When doing a complete backup of
a database or filesystem on a periodic basis, a high degree of
deduplication would be expected if the data has not changed
significantly. Only the fraction of the data that is new or
modified should actually need to be stored. However we found
in some database backups very little deduplication occurred
despite only a small fraction of the data being different. The
reason is that some backup applications don’t just write the
data but include metadata in-line with the data, such as a date
or timestamp [20]. This metadata changes with each backup,
so it will appear to the deduplication algorithm that the data
has changed. We refer to this kind of metadata as marker data,
as the applications typically use it to mark the backup data
as belonging to a certain backup instance, a certain database
instance, or other tags. The marked data is typically small and
of a known format, so if we know marker data is present the
deduplication algorithm can look for and detect the marker
data. For the purposes of deduplication the marker data can
be ignored (though it must still be stored along with the other
data), and doing so can greatly improve deduplication. Format
and content of markers are application-specific, so markers
need to be handled on a per-application basis. Marker detection
and processing for various important applications have been
added to both the PBBA and the DD BOOST Client Library
over time to maintain high deduplication rates.

Similarly, DD BOOST was modified to transform certain file
paths to organize files into smaller directories. This is useful
when applications require searching all files in a directory,
something the PBBA was not designed to support efficiently,
without directly modifying the core application.

High availability. Originally our PBBA hardware was not
highly available: a hardware failure or software crash on the
server would result in the storage and data being unavailable
until a restart could be done, often taking many minutes or
longer. This would cause any application using DD BOOST
to fail since accesses to the server would timeout, unless the
application itself could detect and work around the failure. (An
application could possibly recover via periodic checkpoints
saving work done so far, then resuming from the most recent
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Fig. 7. Effective write and read bandwidth as a function of parallel streams, for gen-0, low-gen and high-gen files. (Higher is better.)

checkpoint after detecting a failure and determining that the
system was responding again.) With customers increasingly
needing to backup or restore at all hours of the day, provid-
ing backup applications that operated through server failures
became a high priority. This required both highly available
hardware and changes to DD BOOST. We developed server
systems with redundant hardware that could recover from
software or hardware failure in a few minutes at most. DD
BOOST then had to be updated to detect and recover properly
from any server failure.

To recover from a failure, DD BOOST follows a similar
checkpointing strategy to applications. After writing a fixed
amount of data to a file (by default 128 MB, but configurable)
DD BOOST performs a file synchronization operation that
guarantees all data written to the server is in persistent storage.
Between these periodic synchronization operations the data
written since the previous synchronization operation is retained
in buffers in the client. If a failure is detected, the file is
recovered by truncating it to its size at the last successful
synchronization operation, then re-writing newer data.

To detect the failure, DD BOOST has to rely on the server.
Until the server recovers, DD BOOST simply sees RPCs that
time out since the server is not responding. These RPCs are
resent until the server recovers (if the server does not recover
quickly enough, DD BOOST will consider the server dead and
fail). During recovery, the server marks all files that were
opened by DD BOOST as needing recovery. After recovery
any RPCs that reference files that DD BOOST had open will
return a special error indicating a failover has occurred and
file recovery is necessary. This error causes DD BOOST to do
the previously described recovery for the file before resuming
normal file operations. (This is similar to distributed recovery
in other file systems, e.g. Sprite [21].)

VS writes must be handled differently, since a synthetic
write sends no data from the client. Instead of retaining data,
DD BOOST retains the list of data regions provided with each
synthetic write. During recovery, these saved lists are used to
repeat the VS operations.

File usage. Backup applications using tape tended to write
a backup as a single large file or several large files [22].
This meant both the DD BOOST client software and the PBBA

software did not need to support many thousands of files or
small files. This has changed over time, as some backups
have replicated complete file systems one-for-one. It is now
common for millions of files and directories to exist on
the backup server [12]. While this shift did not require a
change in APIs, it did require a change in internal design and
implementation to efficiently support large numbers of files
and directories. For example, lookup of files in a directory
had to scale much better when the directory could contain
thousands of files.

Virtualization. Another recent transformation of Data Do-
main is its availability as a virtual image, called the Data
Domain Virtual Edition (DDVE) [12]. DDVEs can be used
in small environments that do not require a standalone PBBA,
and they can also be deployed in the cloud. A DDVE is more
resource-constrained than a PBBA, so when DD BOOST allows
the clients to buffer streams and pack them into compression
regions, the DDVE needs less memory. Thus a DDVE can
ingest data via DD BOOST when its resource requirements to
ingest over NFS would be excessive.

Compression and encryption. More applications are com-
pressing data stored in memory and in files. For security
purposes data is similarly being encrypted when stored persis-
tently. Thus backup applications are often writing compressed
and/or encrypted data. This is a challenge for deduplication, as
both of these tend to produce data that is essentially arbitrary
and thus eliminate the opportunities for deduplication.

We deal with compression primarily by trying to work with
applications to disable compression and allowing the PBBA to
perform compression instead. Encryption is more complicated.
Our PBBA supports encryption, so applications can leave it to
the appliance. If they do not trust the PBBA to manage the
data securely, the application can write fixed-sized blocks that
are individually encrypted, so the same data will encrypt in
the same way each time. If an entire large file is encrypted
monolithically, a small change may trickle through the entire
file, changing all data.

VI. RELATED WORK

LBFS [6] has similarities to DD BOOST, in that it provided its
own API for files to be deduplicated prior to network transfer.



Files would be written and cached as whole files, using a
new API to write temporary files and then commit them to be
written in their entirety. At that point they could be chunked,
fingerprinted, and transferred to the server. In contrast, DD
BOOST supports sequential writes that are chunked on the fly,
as well as a reversion to NFS to support nonsequential I/O.
This means that a single small random write requires only the
new data to be transferred.

Embedding deduplication with network transport has been
done in numerous contexts, such as rsync [4], DOT [23],
czip [24], and Jumbo Store [25]. The principal distinction of
DD BOOST is that it integrates network transport with dedupli-
cating storage. Avamar™ [26], Taper [27], and Jumbo Store
use hierarchical views of content (directed graphs similar to
Merkle trees [28]) to identify changing content more efficiently
than comparing every individual chunk. VS backups in Data
Domain are similar in that they aggregate large regions of
unchanged data.

More generally, there is a large body of work in deduplica-
tion optimization and the tradeoffs of different approaches.
For example, there are numerous studies of the impact of
deduplicating at the granularity of whole files, fixed-sized
blocks, or variable-sized chunks [17], [18], [29].

VII. CONCLUSION AND FUTURE WORK

We have described over five years of experience with a dis-
tributed deduplication API, DD BOOST. Over time, the use of
Virtual Synthetic backups, which have the effect of efficiently
creating full backup files while only transferring new data, has
extended distributed deduplication further. Instead of writing a
full backup and analyzing it on the PBBA or client to extract
new content, the backup application provides only the new
content, yet the full backup is made available efficiently on
the PBBA. We have seen extensive adoption of DD BOOST,
which has become a fundamental underpinning of our PBBA.

More recently, we have released the first version of a
FUSE-based file system (BOOSTFS) that extends distributed
deduplication to unmodified applications [30]. Once we have
experience with BOOSTFS in the field, we expect to follow up
with additional analyses.
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APPENDIX
UNIFORM DISTRIBUTION

As noted in §IV-B, previous evaluations of Data Domain in
the literature used a workload generator following a uniform
distribution [14], [19]. While the choice of distribution is not
the focus of this paper, we include a comparison between
the normal distribution presented in the evaluation (§IV) and
the same experiments using a uniform distribution. Figure 8
presents the three subfigures corresponding to Figure 7, for
writes and reads of NFS and DD BOOST, and writes of VS and
DD BOOST. We see that the results for NFS and DD BOOST
are substantially similar using the two distributions, while
VS is dramatically worse on a uniform distribution than a
normal one. This is because rather than clustering updates and
allowing large regions of unchanged data to be referenced in
a single operation, as with the normal distribution, Figure 8(c)
shows that VS performs much worse with frequent switches
between changed and unchanged data.
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